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Figure 1. We introduce a method for automatic human cinemegraph generation from single RGB images focusing on generating plausible
garment animation as if they are blown in the wind.

Abstract

Cinemagraphs are short looping videos created by
adding subtle motions to a static image. This kind of media
is popular and engaging. However, automatic generation of
cinemagraphs is an underexplored area and current solu-
tions require tedious low-level manual authoring by artists.
In this paper, we present an automatic method that allows
generating human cinemagraphs from single RGB images.
We investigate the problem in the context of dressed humans
under the wind. At the core of our method is a novel cyclic
neural network that produces looping cinemagraphs for the
target loop duration. To circumvent the problem of collect-
ing real data, we demonstrate that it is possible, by working
in the image normal space, to learn garment motion dynam-
ics on synthetic data and generalize to real data. We evalu-
ate our method on both synthetic and real data and demon-
strate that it is possible to create compelling and plausible
cinemagraphs from single RGB images.

1. Introduction

Cinemagraph, a term originally coined by Jamie Beck
and Kevin Burg, refers to adding dynamism to still images
by adding minor and repeated movements, forming a mo-
tion loop, to a still image. Such media format is both en-
gaging and intriguing, as adding a simple and subtle motion
can bring images to life. Creating such content, however,
is challenging as it would require an artist to first set up
and capture a suitable video, typically using a tripod, and
then carefully mask out most of the movements in a post-
processing stage.

We explore the problem of creating human cinemagraphs
directly from a single RGB image of a person. Given a
dataset of images and corresponding animated video pairs,
a straightforward solution would be to train a fully super-
vised network to learn to map an input image to a plausible
animated sequence. However, collecting such a dataset is
extremely challenging and costly, as it would require cap-
turing hundreds or thousands of videos of people holding
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a perfectly still pose under the influence of the wind from
different known directions. While it is possible to simulate
different wind force directions using oscillating fans in a
lab setup [10], capturing the variability of garment geome-
try and appearance types in such a controlled setting is far
from trivial. Hence, we explore the alternative approach of
using synthetic data where different wind effects can eas-
ily be replicated using physically-based simulation. The
challenge, then, is to close the synthetic-to-real gap, both
in terms of garment dynamics and appearance variations.

We address this generalization concern by operating in
the gradient domain, i.e., using surface normal maps. Be-
ing robust to lighting or appearance variations, surface nor-
mals are arguably easier to generalize from synthetic to
real, compared to RGB images. Moreover, surface nor-
mals are indicative of the underlying garment geometry
(i.e., folds and wrinkles) and hence provide a suitable repre-
sentation to synthesize geometric and resultant appearance
variations [21, 44] as the garment interacts with the wind.

Further, we make the following technical contributions.
First, we propose a novel cyclic neural network formulation
that directly outputs looped videos, with target time periods,
without suffering from any temporal jumps. Second, we
demonstrate how to condition the model architecture using
wind parameters (e.g., direction) to enable control at test
time. Finally, we propose a normal-based shading approach
that takes the intermediate normals under the target wind
attributes to produce RGB image frames. In Figure 1, we
show that our method is applicable to a variety of real test
images of different clothing types.

We evaluate our method on both synthetic and real im-
ages and discuss ablation results to evaluate the various de-
sign choices. We compare our approach against alternative
approaches [27, 38] using various metrics as well as a user
study to evaluate the plausibility of the generated methods.
Our method achieves superior performance both in terms of
quantitative metrics as well as the perceptual user study.

2. Related Work

2.1. Looping video generation

In this work, we are interested in synthesizing cinema-
graph style looping animations where only certain parts
of a frame are in motion. A typical method for creating
such looping clips is to leverage video as input. Many ap-
proaches exist that solve an optimization problem to iden-
tify segments and transition points in the input video that
can be looped seamlessly [1,4,7,14,23,24,32,35,42]. While
we focus on generating such a looping clip from a static sin-
gle image, we use a video based method [23] to ensure our
training data is looped properly.

In the context of animating a single image in a looping
manner, one approach is to warp regions of the image us-

ing Fourier methods in a stochastic manner which amounts
to displacing the original texture [12]. Another approach is
to transfer the phase patterns from an example video to the
given input image [30]. Okabe et al. [28] also transfer the
motion patterns from an example video to an input image
of a fluid. Specifically, they map the example video to a
constant flow and residual layers, which represent the high
frequency motion patterns that are not explained by warp-
ing a reference frame using constant flow. Such residual
patterns are transferred to the input image. These meth-
ods work best for natural phenomena such as water and fire
where flow-based texture displacement and warping result
in plausible animation. Halperin et al. [18] present another
approach to animating a single image by focusing on repeat-
ing patterns. While demonstrating impressive results, such
a method is not suitable for our problem since the motion
a garment undergoes blowing in the wind is fundamentally
different than displacing repeating patterns.

With the recent success of deep learning methods, sev-
eral learning based approaches have been proposed to cre-
ate looping animations from single images. While Endo et
al. [16] predict a flow map to warp the input images di-
rectly, Holynski et al. [19] first generate a constant flow
map directly from a single image and then warp image fea-
tures using the generated flow map to synthesize the RGB
frames. In a follow-up work, Mahapatra et al. [27] extend
this framework to provide additional control of the motion
direction and region of the image to be animated. We com-
pare our method to this state-of-the-art approach and show
that the assumption of constant flow is not suitable for gar-
ment motion and leads to unsatisfactory results. Recently,
Fan et al. [17] present a method to animate fluids in a still
image. Their method uses an additional depth map estima-
tion to generate a surface mesh for the fluid region and thus
utilizes physically based simulation priors to predict a mo-
tion field. While our approach of incorporating a surface
normal map representation is similar, we focus on very dif-
ferent types of motions in our work.

2.2. Animating single images

With the success of deep learning, several methods have
been recently proposed to animate a given image. One ap-
proach is based on using a driving video and focus on syn-
thesizing specific type of content and motion such as time-
lapse videos [11,26], facial and body animation [33,38]. We
compare our method to the most recent method of Wang et
al. [38] and show that it is not suitable to capture the subtle
motions observed in a human cinemagraph.

Another line of work directly predicts video or future
frames from a given single image [22, 40, 41, 43] or a se-
mantic map [29]. Dorkenwald et al. [15] learn a genera-
tive model that encodes a latent residual representation and
sample such latent code to synthesize a video from a given
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Figure 2. Given an input image (top, left) and its predicted surface normal map (bottom, left), we present a network that synthesizes a set
of surface normals that resemble the effect of the garment blowing in the wind with a given direction. We ensure a looped animation by
encoding the time t with a cyclic positional encoding with respect to a predefined loop duration (150 frames in our experiments). We then
synthesize the corresponding RGB images demonstrating plausible garment deformation using an intrinsic image decomposition technique.

image. Many of these methods, however, synthesize multi-
ple frames at the same time and hence operate only at low
resolution without providing control. To address the latter
challenge, Blatmann et al. [8, 9] enable the user to provide
a poke that determines the final location of a sparse point
in the input image. The resulting videos, however, are not
looped in contrast to cinemagraphs.

Another interesting direction is to train a single image
based generator [31], which can then be utilized to generate
animations by providing random walks of the appearance
of the object of interest in the latent space. Arora et al. [2]
extend this approach to work with an input GIF. While im-
pressive, such approaches do not provide the controllability
we aim to achieve with our approach, however.

3. Methodology

Given a single input RGB image of a person, I ∈
RW×H×3, our goal is to generate a looped video sequence,
V := {I0, I1, ..., It|I0 = It}, where the loose garments
worn by the person exhibit a plausible motion as if blown in
the wind. We assume the direction of the wind can be pro-
vided by a unit vector w in the image plane to control the
output animation. Hence, our goal is to learn the mapping
F(I,w) −→ V w.

To more effectively represent the underlying garment ge-
ometry and the changes it undergoes due to the wind force,
our method operates on the surface normal map N that cor-
responds to the input image I . Specifically, given an input
image I , we first predict the surface normal map using an
off-the-shelf normal estimator [3]. We then propose a novel
cyclic network architecture that maps N to a sequence of
normal maps V w

N := {N0,N1, ...,Nt|N0 = Nt} that
demonstrate plausible motion of the underlying garment un-

der the influence of a wind force with a direction given by
w. Finally, we synthesize back the corresponding RGB im-
ages given the original input image and the sequence of
animated normal maps using a constrained reshading ap-
proach. We provide the overall pipeline in Figure 2 and
next discuss the details of our approach.

3.1. Cyclic and Controllable Animation

Given an input normal map N and a wind direction
w, our goal is to learn the mapping FN (N ,w) −→
V w
N = {N0,N1, ...,Nt|N0 = Nt} where V w

N demon-
strates plausible garment animation. Our goal is to synthe-
size a cyclic animation sequence with a predefined period of
T , so that t = T − 1. This amounts to synthesizing normal
maps that satisfy constraints Nt = Nt+kT ∀k ∈ Z.

We tackle this problem as an image-to-image translation
task where our goal is to learn f(Nt,∆t,w) −→ Nt+∆t

where ∆t ∈ [−T/2, T/2]. Note that, since we are inter-
ested in looped animations, negative values for ∆t corre-
spond to valid animation samples. We realize the function f
as a UNet architecture that is conditioned on both the resid-
ual time ∆t and the wind direction w, as shown in Figure 3.
To enforce a cyclic behaviour, we first encode ∆t using si-
nusoidal functions as:

φ∆t =
2πn

T
∆t, n = 1, 2, 3, 4, 5.

x∆t = {cos(φ∆t), sin(φ∆t)}.
(1)

This formulation ensures that f(Nt,∆t + kT,w) with
k ∈ Z gives the same output resulting in a looping ani-
mation sequence. Similar to common practice in positional
encoding [37], we observe that using multiples of the data
frequency (ω = 2πn/T ) helps to learn higher frequency
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Figure 3. Cyclic wind-conditioned UNet. Given an input normal map Nt, a delta time increment ∆t, and a wind direction w; we extend
the standard UNet architecture to give it a cyclic behaviour. We encode the time using a cylic positional encoding and concatenate with the
wind direction. We pass the concatenated features through different fully convolutional layers to extract features of varying dimensions.
The resulting features are provided as skip connections to the UNet architecture which synthesizes the final normal map Nt+∆t.

motions while still enforcing a global cyclic behaviour with
period T . Note then how the time encoding x∆t consists of
multiple circumferences parameterized by ∆t.

We represent the wind direction as a unit vector as
w in the image plane. We concatenate w with x∆t re-
sulting in the final conditioning code x := x∆t∥w =
(x∆t,0, x∆t,1, ..., x∆t,2n, wx, wy). We condition the UNet
by introducing x at each feature map extracted by the en-
coder at different scales. To do so, we first linearly trans-
form x to the corresponding feature map dimensionality
with learnable weights {Wi ∈ RFi×D}, where Fi is the
number of channels of the i-th feature map and D is the
dimensionality of x. We apply 1 × 1 conovolutions to the
feature maps before and after combining them with x.

3.2. Normal Guided Synthesis

The final stage of our approach focuses on computing
the final cinemagraph V given the original input RGB im-
age I and the predicted normal map sequence V w

N . To
this end, we rely on the concept of intrinsic image de-
composition, which decomposes images into two layers
I = SR: (i) the reflectance R ∈ RW×H×3, which de-
notes the albedo invariant color of the materials, and (ii) the
shading S ∈ RW×H which is the result of the interaction
of the light with the underlying geometry of the garment. In
particular, the shading layer is crucial in how we perceive
the changes in the fold and wrinkle patterns of the garment
as it is animated. Given this observation, we synthesize a
new shading layer that is consistent with the animated sur-
face normal maps. Then, when composed with the original
reflectance map reflects it generates the intended animation.

Given the input image I , we first run an off-the-shelf
intrinsic image decomposition method [5] to obtain the re-
flectance map R and the shading map S. Assuming a sim-
ple lighting model composed of a directional and ambient

light, we optimize for the light parameters using the pre-
dicted surface normal map from the input image:

S = max(0,−Nl) + δ, (2)

where l ∈ R3 is the light direction and δ ∈ R+ is the
ambient light. Given the predicted animated surface nor-
mal map sequence V̂N , we generate a new shading map se-
quence and composite it with the original reflectance map R
to obtain the final RGB sequence V̂ . At inference time, the
user is required to provide a mask to denote the region of in-
terest where motion is desired to be synthesized. Hence, we
composite the original image and the synthesized RGB im-
ages based on this mask to provide the final output. While
this approach changes only the shading without actually
warping the texture of the garment, it is sufficient to pro-
vide the perception of a plausible animation.

Local vs Global. We design this methodology so it leans
towards a local solution. The reasons for this are as follows.
On one hand, cinemegraphs are characterized by subtle mo-
tions (local). On the other hand, local solutions generalize
better, which is specially important for our approach to han-
dle real test samples from a synthetic training set.

4. Experiments
In the following section, we describe the experimental

setup and the qualitative and quantitative results. We detail
the data used for training and evaluation, define the metrics,
and briefly introduce the state-of-the-art baselines used for
comparison. Finally, we provide a discussion of the results.

Datasets. In order to train our network, we generate
a synthetic dataset that consists of different type of gar-
ments draped on human bodies with varying shape and
pose. Specifically, we sample human body and garment
pairs from the Cloth3D dataset [6], which is a large-scale
dataset of clothed 3D humans. We select 1500 samples with
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Figure 4. We train ours on a synthetic dataset that consists of
different garment types draped on bodies with varying shape and
poses acquired from the Cloth3D dataset [6]. We simulate the ef-
fect of wind and render the corresponding RGB and surface nor-
mal images.

Figure 5. We capture a small real dataset where the subject keeps
a still pose during the sequence while a fan generates wind. Dif-
ferent garment types show different dynamics.

skirt and dresses and 500 samples with other clothing types
(e.g., trousers, tshirts). Each sample in the original Cloth
3D dataset is a motion sequence. We randomly choose one
of the frames in each sequence as a random human body
pose. The chosen frame, body and outfit, defines the initial
conditions of our cloth simulation. We use Blender [13] to
run the simulations. To this end, we choose a random wind
direction in the image plane with constant wind force, and
simulate the cloth dynamics while the underlying body re-
mains still. Each simulation output is rendered from a fixed

viewpoint with a predefined lighting setup. We apply ran-
dom checkerboard texture patterns to some garments and
assign a uniform color material to others. In addition to
RGB output, we also render the corresponding surface nor-
mal maps and segmentation masks (body, cloth and back-
ground). Figure 4 shows examples from our dataset. We
simulate each sample for 250 frames at 30 fps. We observe
that the garment drapes on the body in roughly the first 50
frames of the sequence and later starts blowing in the wind.
It is not trivial to guarantee the resulting garment animation
is cyclic in such a physically based simulation setup. Hence,
we process the resulting animations with the method of Liao
et al. [23] which detects loops in an input video. After this
step, we obtain animation sequences of length 150 frames
which we use as the duration of loops, i.e., T = 150.

In addition to synthetic data, we test our method on real
samples from the Deep Fashion dataset [25] as well as addi-
tional stock images to test generalization. To evaluate if the
predictions obtained on real samples contain plausible cloth
dynamics, we capture a small set of real examples. Specifi-
cally, we ask a human subject wearing different types of gar-
ments to hold a still pose next to an oscillating fan while we
record a short video sequence with a fixed camera mounted
on a tripod. We record 50 such videos demonstrating 8 dif-
ferent outfit types. Similar to synthetic data, we process
each video with the method of Liao et al. [23] to obtain
looped animations. Figure 5 shows some real samples.

Evaluation Metrics. We evaluate our method and base-
lines on synthetic data where we can access ground truth
image and animation pairs. First, we adopt metrics that
focus on pixel-level similarity. Specifically, we report
per-pixel mean average error (MAE), mean squared er-
ror (MSE), root of mean squared error (RMSE), and PSNR.
In addition we report metrics that focus on more structural
(SSIM [39]) and perceptual similarities (LPIPS [45]). For
DeepFashion samples we do not have ground truth video
data. Hence, in order to evaluate the plausibility of the
generated animated sequences we use Frechet Video Dis-
tance (FVD [36]) against the real data we have captured.

Baselines. We compare our method to two base-
lines. First, we compare with the work of Mahapatra et
al. [27], which extends the original Eulerian motion fields
approach [20] to a controllable setup. Since this method is
a flow based approach and uses optical flow information to
be provided in the dataset, we train it with the looped RGB
videos in our synthetic dataset where optical flow can be
more reliably estimated using off-the-shelf methods [34].
For each looped sequence, we extract a mask denoting the
region where motion is observed and a sparse set of motion
directions from the estimated optical flow. We also com-
pare our method to LIA [38], a state-of-the-art single image-
based controllable video generation framework. Since LIA
requires a target video sequence to specify the desired ani-

463



mation, we provide the ground truth animation sequences as
targets both during training and testing. While it is not pos-
sible to use this configuration in a real setup, it provides the
best possible results. Outperforming LIA under this config-
uration means outperforming it under any other.
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Figure 6. Ablation study. We evaluate qualitatively the image
synthesis capacity of each methodology in our synthetic dataset,
namely the state-of-the-art baselines LIA [38] and the work on
controllable animations of [27] and the different variations of our
approach, trained on different data modalities. Normal-based so-
lutions require a re-shading step (Sec. 3.2). We observe SOTA
solutions (warping-based) are sub-optimal for our setting. Ours is
able to generate consistent images with plausible wrinkles.

Ablation. To analyze the effectiveness of the design
choices, we test additional baselines which are variants of
our method. On one hand, we train our CycleNet using
RGB data directly, as opposed to the proposed pipeline in
which we operate in the normal space. Next, we analyze
the performance of the proposed methodology trained using
ground truth normal maps. Nonetheless, there is still a do-
main gap between synthetic normal maps and normal maps
estimated from real data. For this reason, we also train our
method using normal maps estimated from synthetic RGB

data as input, while using ground truth normal maps as la-
bels. Since our eventual goal is to generate cinemagraphs
from real images, we also assess the effectiveness of each
approach on real data. Finally, we add as a reference, a Toy
baseline, in which we generate the output cinemagraph V
for a given input image I as V = {I, I, ..., I}. This base-
line generates high quality videos since it uses the original
image but lacks any motion. This baseline evaluates how
informative the different metrics we use are for our task.

Tab. 1 shows the quantitative evaluation of the different
baselines. Supervised metrics are computed using the test
split of our synthetic dataset. Then, to measure quantita-
tively the capacity to generalize to real data, we test using
DeepFashion samples as input and compare to the small set
of real samples we have captured using FVD [36]. We show
qualitative results of each approach in Fig. 6 and 7. LIA [38]
is a solution tailored for human face animation, which ex-
ploits some characteristics of the domain, such as the struc-
tural and motion similarities of different faces performing
the same action/expression (e.g., smiling, talking, etc.). Due
to domain differences, we observe its performance is poor
when trained on our task. It is unable to produce meaning-
ful motions and often generates an average image for each
synthetic animation sequence (best seen in the 2nd and 3rd
column in Fig. 6). This is reflected in the quantitative met-
rics as well. The work of [27] is designed to work for im-
ages of fluids, under the simplifying assumption that a video
sequence has a constant flow. While this assumption works
well for natural images of fluids, it does not hold for the
domain of garments. This method can generate consistent
images, but with unrealistic motion and artifacts due to its
warping based architecture. We see this in the second sam-
ple of Fig. 6. Furthermore, as expected, when trained with
only synthetic data, neither of these solutions are able to
generalize to real data.

Synthetic Data Real Data
Experiment MAE MSE RMSE SSIM PSNR Perceptual FVD

LIA [38] 23.77 1131.62 32.45 0.11 25.50 400.26 873.86
Controllable
Anim. [27] 9.37 302.26 15.89 0.48 34.49 220.86 625.45

Toy 6.52 197.73 12.36 0.61 40.76 218.39 643.42
RGB 7.64 175.24 12.21 0.56 37.64 230.40 623.32
Normals 15.75 563.76 22.63 0.41 32.11 231.29 633.12
Estimated
normals 17.32 674.62 24.31 0.34 31.81 231.74 613.26

Table 1. Quantitative evaluation of the different methods tested
including state-of-the-art baselines, LIA [38] and controllable an-
imations [27], and the different variants of our method trained us-
ing different data modalities. Normal-based solutions require a
re-shading step (Sec. 3.2)
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(a) Contr. Anim. [27] (b) RGB (c) Normals (d) Estimated Normals (e) Input

Figure 7. We analyze the behaviour of each model during generalization using real samples from DeepFashion [25]. As can be seen, the
work of [27] shows color artifacts. Then, our model shows a tradeoff between reconstruction fidelity and wrinkle generation. The RGB
solution generates images where color is faithfully maintained, but shows no wrinkles or motion except for very few specific samples.
On the other hand, normal-based solutions are not always able to generate the same color distribution due to limitations in the re-shading
algorithm (Sec. 3.2). Additionally, we observe only the model trained on estimated normals is able to generalize properly to real samples.
We omit LIA [38] from this comparison as it is unable to generalize at all to real samples.

Next, we analyze the different variations of our method.
Unsurprisingly, the RGB solution is the best performing in
the synthetic dataset according to the quantitative metrics.
Predicting normal map sequences followed by a re-shading
step impacts the pixel level reconstruction accuracy. Fi-
nally, using estimated normals as input slightly hinders per-
formance w.r.t. using ground truth normals. As observed,
the Toy baseline performs very well in comparison, while
we know it is not generating any motion. This suggests the
classical metrics used for image reconstruction have limi-
tations for evaluating the solutions of our specific problem.
The motion we want to generate is localized and subtle. The
difference between a plausible motion and a static predic-
tion may be smaller than the reconstruction error of an RGB
auto-encoder. The solutions based in normal maps require
a re-shading step that might produce a slight shift in pixel
color. While this does not hurt the quality of the dynam-
ics, it increases the reconstruction error. The increase in
perceptual error from RGB to normal-based solutions is not
comparable to that of the other metrics. This suggests that
the perceived quality of the generated images is compara-

ble. Next, we evaluate the performance in real samples. For
this case, the behaviour we observe is different. While the
RGB solution is able to faithfully reproduce the input image
with a slight color shift, a large majority of predictions do
not show any motion. We observe a similar behaviour with
the model trained on ground truth synthetic normals. Due
to the domain gap, very few input normal maps produce dy-
namics in the output. This, added to the color shift due to
the re-shading step increases the value of the FVD. Finally,
we observe the model trained using predicted normals as in-
put is able to generate plausible dynamics for all the input
normals estimated from real samples resulting in the best
FVD score. Note how in this case, the Toy solution, which
generates static videos, has the worst FVD score. In, Fig. 8,
we show additional sequence results for our model trained
on estimated normals. For each sequence, we show frames
sampled uniformly every 25 frames. We also add close-up
looks of the wrinkles. Our method is able to generate visu-
ally appealing results with plausible wrinkles. Finally, we
further test the generalization of our method by testing with
an image of a hanging garment. This can be seen in Fig. 9.
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Figure 8. Qualitative results using real samples from DeepFash-
ion [25]. We obtain this results with the model corresponding to
the last row of Tab. 1. Our approach is able to generate consistent
images with plausible wrinkles. We omit LIA [38] from this com-
parison since it is unable to generalize at all.

Finally, due to the limitations of the quantitative metrics,
we complement the evaluation with a qualitative user study.
We show random samples of generated animations both on
synthetic and real data with the different methods. We ask
the users to rate if the animations are plausible or not. Vari-
ants of our method are rated as plausible more than 90%
of the time on synthetic data. For real images, our method
trained on predicted normals is rated as plausible around
60% of the time whereas our method trained on RGB and
ground truth normals is rated as plausible around 20% and
30% of the time respectively. The strongest baseline [27]

Figure 9. We further test the generalization capacity of our
methodology by testing it with an image of a hanging garment.
As observed, our approach can synthesize wrinkles on the cloth.

is not perceived as plausible neither on real nor synthetic
data. We also ask for an estimation of the perceived wind
direction (left or right). Around ∼ 70% of users correctly
identified the wind direction under which the sequence was
generated.

5. Conclusion

We introduced a method to generate human cinema-
graphs from single RGB images. Our main contribution is a
cyclic neural network that produces looping video clips. We
demonstrated it is possible to train the network with syn-
thetic data and generalize to real data. To do so, we propose
working in the image normal space to close the gap between
the different data distributions.

While generating plausible results, our method has some
limitations. Intrinsic image decomposition which we use to
synthesize back RGB images is a challenging problem and
often lacks the high-frequency texture details of the original
garments, which are lost during the re-shading step. In the
future we would like to tailor a generic solution towards the
type of fabric materials and textures that we are interested.
Further, we would like to extend our setup to jointly op-
timize for normal estimation and motion prediction steps,
in an end-to-end fashion. Finally, a challenging next step
would be to add movement on hair strands that can add sig-
nificant realism to the cinemagraphs. Since hair simulator
is far from being a solved problem, it may be worth rethink-
ing the setup to directly learn a neural (hair) simulator from
real video footage, thus closely bringing together research
in neural simulators and conditional generative models.
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