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Figure 1. FlexiViT is a standard ViT model that sees randomized
patch sizes, hence sequence lengths, during training. The patch
embedding weights are resized adaptively for each patch size and
the model weights are shared as-is across all patch sizes.

Abstract

Vision Transformers convert images to sequences by slic-
ing them into patches. The size of these patches controls
a speed/accuracy tradeoff, with smaller patches leading to
higher accuracy at greater computational cost, but chang-
ing the patch size typically requires retraining the model.
In this paper, we demonstrate that simply randomizing the
patch size at training time leads to a single set of weights
that performs well across a wide range of patch sizes, mak-
ing it possible to tailor the model to different compute bud-
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Figure 2. FlexiViT results on ImageNet-1k. We train three Flexi-
ViTs based on DeiT III on ImageNet-1k and show their speed-
accuracy tradeoff when evaluated at various patch sizes. Each
curve corresponds to a single model with a single set of weights
run with different patch sizes. We also evaluate DeiT III at vari-
ous patch sizes to show ViT’s natural inflexibility. EfficientNet-
v2 numbers from [52] and ResNet50 numbers from [5], the latter
distills from an ImageNet-21k pretrained teacher. FlexiViT was
trained for 1000 epochs, but runs for 600, 300, and 90 epochs
shown as shaded curves indicate that long training mostly benefits
the short-sequence setting and is not strictly necessary.

gets at deployment time. We extensively evaluate the re-
sulting model, which we call FlexiViT, on a wide range of
tasks, including classification, image-text retrieval, open-
world detection, panoptic segmentation, and semantic seg-
mentation, concluding that it usually matches, and some-
times outperforms, standard ViT models trained at a single
patch size in an otherwise identical setup. Hence, FlexiViT
training is a simple drop-in improvement for ViT that makes
it easy to add compute-adaptive capabilities to most mod-
els relying on a ViT backbone architecture. Code and pre-
trained models are available at github.com/google-
research/big_vision.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Vision Transformers (ViTs) cut images into non-

overlapping patches and perform all computations on to-
kens created from these patches. This “patchification” pro-
cedure represents a significant shift away from the previ-
ously dominant convolutional neural network (CNN) ap-
proach [32], where an image is processed with small lo-
cal and typically overlapping filters. Patchification has un-
locked new capabilities, such as (random) dropping of im-
age patch tokens [10, 20, 44, 53, 61], adding specialized to-
kens for new tasks [54, 56] or mixing image tokens with
tokens from other modalities [1, 38, 64].

Despite the importance of patchification for ViT mod-
els, the role of the patch size has received little attention.
While the original ViT paper [15] works with three patch
sizes (32×32, 16×16, and 14×14 pixels), many follow-up
works fix the patch size at 16×16 pixels [54,55,65]. In this
work, we show that the patch size provides a simple and
effective lever to change the compute and predictive per-
formance of a model, without changing model parametriza-
tion. For example, a ViT-B/8 model achieves 85.6% top-1
accuracy on ImageNet1k with 156 GFLOPs and 85 M pa-
rameters, while a ViT-B/32 model achieves only 79.1% ac-
curacy with 8.6 GFLOPs and 87 M parameters. Despite the
major difference in performance and compute, these models
have essentially the same parametrization. However, stan-
dard ViT models perform well only at the patch size that
they have been trained at. Tuning the patch size therefore
requires complete re-training of the model.

To overcome this limitation, we propose FlexiViT, a flex-
ible ViT which matches or outperforms standard fixed-patch
ViTs across a wide range of patch sizes with no added cost.
To train FlexiViT, we randomize the patch size during train-
ing, and resize the positional and patch embedding param-
eters adaptively for each patch size, as shown in Figure 1.
These simple modifications are already sufficient for strong
performance, but we also propose a optimized resizing op-
eration and a training procedure based on knowledge distil-
lation which achieves even better results.

We demonstrate the efficiency of FlexiViT models in
many downstream tasks, such as image classification, trans-
fer learning, panoptic and semantic segmentation, image-
text retrieval and open-world recognition, and provide a
general recipe for flexifying existing ViT-based training se-
tups. Furthermore, we show that flexibility of the back-
bone, i.e. strong performance across patch sizes, is often
preserved even after fine-tuning with a fixed patch size.
We leverage this observation to perform resource-efficient
transfer learning: we finetune the model cheaply with a
large patch size, but then deploy it with a small patch size
for strong downstream performance. We further show that
flexible patch size can be used to accelerate pre-training.

To explain the effectiveness of FlexiViT, we analyze the

model’s representations. We find that the representations
are often similar across different patch sizes, especially in
the deeper layers. Finally, we show that FlexiViT out-
performs alternative architectural ways of controlling the
performance-compute trade-off in ViT models.

2. Related work
Several recent works explore improving ViT’s efficiency

by exploiting patchification. Some suggest removing to-
kens, either in randomized [20] or structured [10] fashion
throughout training. Others aim to quantify a token’s impor-
tance and remove the least important ones, during [44, 61]
or after [53] training. [57] trained a cascade of Transform-
ers using increasing number of tokens to allow early exiting
during inference. Conversely, we always keep all tokens
and do not discard any information. It may be possible to
combine such approaches with FlexiViT in future work.

More similar to our approach, the Neural Architecture
Search (NAS) field is converging towards training one “su-
pernet” from which individual, differently-shaped “sub-
nets” can be extracted [8, 18, 63]. Since these works aim
for changes in most or all model dimensions, they usually
involve multiple specialized architectural additions. Super-
ViT [34] is most related to FlexiViT as it patchifies an im-
age at multiple scales, passes all these patches to ViT, while
dropping random tokens [20] to reduce the sequence length.
In contrast to the aforementioned works, our sharpened fo-
cus on ViT’s patch size only, allows benefiting from existing
pretrained models, future ViT improvements, and is an easy
drop-in to any existing training procedure.

Matryoshka representation learning [31] proposes train-
ing models whose output vector contains meaningful sub-
vectors. This can be seen as the complement of FlexiViT.

3. Making ViT flexible
In this section we show that standard ViT models are

not flexible, and introduce the FlexiViT model and train-
ing procedure in the supervised image classification setting.
We perform all experiments in this section on the public
ImageNet-21k dataset [46]. We use the base (ViT-B) scale
model and unregularized light2 setting from [50], and train
the models for 90 epochs following [36].

3.1. Background and notation

FlexiViT is based on the Vision Transformer (ViT) archi-
tecture [15]. Here, we briefly describe the ViT architecture
and introduce the necessary notation.

Consider an image x ∈ Rh×w×c, where (h,w, c) are
the width, height and number of channels respectively. ViT
first tokenizes the input image into a sequence of s patches
xi ∈ Rp×p×c, where i ∈ {1, . . . , s}. We refer to this
procedure as patchification and illustrate it in Figure 1.
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Figure 3. Standard ViTs are not flexible in patch size. However,
FlexiViT can train them to be flexible without loss of performance.

The sequence length s = bh/pc · bw/pc is the number
of patches (or tokens) after patchification and controls the
amount of compute used by the ViT: self-attention scales
as O(s2) = O(h4) = O(w4), i.e. quartically in terms of
image height (or width).

Next, we compute patch embeddings ei = (eki )dk=1 ∈
Rd for each patch xi: eki = 〈xi, ωk〉 = vec(xi)

T vec(ωk),
where ωk ∈ Rp×p×c are the patch embedding weights, 〈·, ·〉
denotes the dot product, and vec is the operation flattening a
multi-dimensional array to a vector. Finally, we add learned
position embeddings πi ∈ Rd to the patch embeddings ti =
ei + πi. We then pass the sequence of s tokens ti as input
to the Transformer encoder, as illustrated in Figure 1.

In summary, for a given image size h × w, the patch
size p determines the length s of the input sequence to
the Transformer model: smaller patch sizes correspond to
longer input sequences and slower, more expressive models.
Following [15], we denote ViT models as ViT-S/p, where
S ∈ {S, M, B, L, . . .} is the model scale (small, medium,
base, large, . . . ) and p is the patch size. Note that there
are only two parts of the model where the parameter vec-
tors depend on the patch size: the patch embedding weights
ωk and the position embedding π. In the following sections,
we will develop a flexible ViT model which works simulta-
neously for any patch size.

3.2. Standard ViTs are not flexible

We first show that evaluating a standard pre-trained ViT
model at different patch sizes yields poor performance. In
order to change the patch size, we simply resize the patch
embedding weights ω and the position embeddings π with
bilinear interpolation. For the position embeddings, this re-
size approach was already proposed in the original ViT pa-
per [15] to fine-tune at higher resolution.

The result is shown in Figure 3, where we see that the
performance of standard ViT models (dashed and dotted
lines) rapidly degrades as the inference-time patch size de-
parts from the one used during training.

Algorithm 1 Minimal FlexiViT pseudo-implementation.
1 model = ViT(...)
2 for batch in data:
3 ps = np.random.choice([8, 10, ..., 40, 48])
4 logits = model(batch["images"], (ps, ps))
5 # [...] backprop and optimize as usual
6
7 class ViT(nn.Module):
8 def __call__(self, image, patchhw):
9 # Patchify, flexibly:

10 w = self.param("w_emb", (32, 32, 3, d))
11 b = self.param("b_emb", d)
12 w = resize(w, (*patchhw, 3, d))
13 x = conv(image, w, strides=patchhw) + b
14 # Add flexible position embeddings:
15 pe = self.param("posemb", (7, 7, d))
16 pe = resize(pe, (*x.shape[1:3], d))
17 return TransformerEncoder(...)(x + pe)

Notes: Changes to existing code highlighted via violet background.

3.3. Training flexible ViTs

In Figure 3 we also show the performance of our
FlexiViT-B model (solid line), which matches both ViT-
B/16 and ViT-B/30 when evaluated at their training patch
sizes, and significantly outperforms them for all other patch
sizes. This model was trained in the same setting as the ViT-
B/16 and ViT-B/30 models, except that at each step of train-
ing, the patch size was chosen uniformly at random from a
set of pre-defined patch sizes.2 In order to do so, two small
changes to the model and training code are necessary.

First, the model needs to define an underlying parameter
shape for ω and π. The learnable parameters are of that
shape, and resized on-the-fly as part of the model’s forward
pass. We show in Appendix B that the exact shape of these
underlying learnable parameters does not matter much, and
we use an underlying size of 32× 32 for patches and 7× 7
for position embeddings in all experiments.

Second, to have a large variety of patch sizes that per-
fectly tile the image, we use an image resolution of 240² px,
which allows for patch sizes p ∈ {240, 120, 60, 48, 40, 30,
24, 20, 16, 15, 12, 10, 8, 6, 5, 4, 2, 1}, of which we use all
between 48 and 8, inclusive.3 At each iteration we sample
p from the uniform distribution P over these patch sizes.

These are all the changes necessary to flexify an existing
ViT training procedure. Algorithm 1 summarizes them.

Note that changing the patch size is related to, but not
identical to, changing the image size. The patch size is
purely a change to the model while changing the image size
may drastically reduce the available information. This dis-
tinction is further explored in Section 3.4.

We explore two alternative ways to flexify ViTs in Sec-

2We sample patch sizes uniformly in most experiments. Some early
runs used a distribution which slightly favors intermediate patch sizes.
Later experiments showed that the distribution makes little difference (Ap-
pendix C). We therefore did not re-run the early experiments.

3Perfect tiling may not be strictly necessary, and it may be fine to use
arbitrary patch sizes and ignore a small border of the image. For simplicity,
we focus on the perfect tiling setting.
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Figure 4. Various ways of “resizing” ViTs. We load a ViT-B/8
from [50] trained on 2242 px, resize patch-embeddings and input
images by the same factor, and compute validation accuracy. PI-
resize is the only method that stays accurate when upscaling.

tion 7: flexible depth and flexible patch stride. Both of them
have merits, but patch size works best.

3.4. How to resize patch embeddings

Consider a patch x ∈ Rp×p of the input image, and
the patch embedding weights ω ∈ Rp×p and let’s assume
a simple scenario when we are dealing with non-negative
values. If we resize both the patch and the embedding
weights with bilinear interpolation, the magnitude of the
resulting tokens will differ greatly; for example 〈x, ω〉 ≈
1
4 〈resize2p

p (x), resize2p
p (ω)〉. We hypothesize that this dra-

matic change in token norm is part of the reason of ViT’s
inflexibility, and an inductive bias that hinders learning of a
single FlexiViT. Ideally, as long as there is no loss of infor-
mation during resizing, the patch embeddings ei = 〈x, ω〉
after resizing both the input x and the embedding ω should
remain the same.

One way to achieve this equality is to normalize the to-
kens right after their embedding, either explicitly or by us-
ing a LayerNorm [2] module. However, this approach re-
quires changing the model architecture and is not compati-
ble with existing pre-trained ViTs. Further, it does not ex-
actly preserve the patch embeddings. As we will show, there
is a more principled way of achieving this goal, which is
compatible with existing pre-trained models and does not
require any architectural change.

First, we note that the linear resize operation introduced
in Section 3.2 can be represented by a linear transformation:

resizep∗
p (o) = Bp∗

p vec(o), (1)

where o ∈ Rp×p is any input, and Bp∗
p ∈ Rp∗

2×p2

. We
resize channels of multi-channel inputs o independently.

Intuitively, we would like to find a new set of patch-
embedding weights ω̂ such that the tokens of the resized

patch match the tokens of the original patch. Formally, we
want to solve the optimization problem:

ω̂ ∈ arg min
ω̂

Ex∼X
[
(〈x, ω〉 − 〈Bx, ω̂〉)2

]
, (2)

where B = Bp∗
p and X is some distribution over the

patches. In case when we are increasing the patch size, i.e.
p∗ ≥ p, we can use ω̂ = Pω where P = B(BTB)−1 =
(BT )+ is the pseudoinverse of BT :

〈Bx, ω̂〉 = xTBTB(BTB)−1w = xTw = 〈x,w〉. (3)

This way we match the patch embeddings exactly for all x.
In the case of downsampling, i.e. when p∗ < p, the so-

lution to the optimization problem in Eq. (2) will in general
depend on the patch distribution X . In Appendix A.2, we
show that for X = N (0, I), we recover the pseudoinverse
ω̂ = Pω = (BT )+ω as the optimal solution4. To sum up,
we define PI-resize (pseudoinverse resize) as:

PI-resizep∗
p (w) =

(
(Bp∗

p )T
)+

vec(ω) = P p∗
p vec(ω), (4)

where P p∗
p ∈ Rp∗

2×p2

is the matrix corresponding to the
PI-resize transformation. The PI-resize operation resizes
the patch embedding weights, serving as an inverse of the
bilinear resize operation.

To experimentally validate the effectiveness of PI-resize
and compare it to several alternative heuristics, including
standard linear resize, we load a pre-trained ViT-B/8 model
from [50] and evaluate it after resizing both the image
and the model, thus preserving its sequence length s =
(224/8)2 = 784. The results, shown in Figure 4, demon-
strate that PI-resize maintains nearly constant performance
when upsampled, and degrades gracefully when downsam-
pling. None of the heuristics works as well as thoughtful
PI-resize across the board.

For completeness, in Appendix A.1 we experimentally
compare the remaining ways of dealing with variable patch
sizes when one does not care about maintaining model com-
patibility. These methods include fixed normalization, Lay-
erNorm, and learning separate parameters ω for each patch
size. Adding a LayerNorm works best, but otherwise, PI-
resize and bilinear resize are among the best techniques.

3.5. Connection to knowledge distillation

Knowledge distillation [23] is a popular technique,
where a typically smaller student model is trained to mimic
the predictions of a typically larger teacher model. This can
significantly improve the performance of the student model
compared to standard label-supervised training [5, 12, 60].

4We can also target the patch distribution in the data in place of X ,
producing a resize operation which depends on the data. In our preliminary
experiments, we did not observe significant benefits from this approach.
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Figure 5. The effect of initialization when distilling to FlexiViT.

It was recently shown that knowledge distillation corre-
sponds to a much more challenging optimization problem
than standard supervised training [5, 49], and that initial-
izing the student close to the teacher simplifies alleviates
this [49]. Unfortunately, this solution is impractical since
the teacher usually has a different (larger) architecture than
the student [5]. However, with FlexiViT, we can initialize a
student FlexiViT with the weights of a powerful ViT teacher
and significantly improve distillation performance.

Unless otherwise stated, the model we use for the re-
maining experiments in this paper is a FlexiViT-B initial-
ized and distilled from the powerful ViT-B/8 model of [50].
At initialization, we PI-resize the teacher’s patch embed-
ding weights to 32 × 32, and bilinearly resample its posi-
tion embeddings to 7 × 7. We then train the student model
following the FunMatch [5] approach, minimizing the KL-
divergence between the predictions of the teacher and the
student FlexiViT with a randomized patch size:

Ex∈DEp∼P KL (fFlexiViT(x, p)||fViT-B/8(x)) , (5)

where fFlexiViT(x, p) is the distribution over classes for the
FlexiViT model on an input x with patch size p, fViT-B/8(x)
is the predictive distribution of the teacher on the exact same
input, D is the training data distribution with random flips,
crops, and mixup, and P is the distribution over patch sizes
used for training the FlexiViT model.

Figure 5 compares the effect of distilling using teacher
initialization to random initialization and to supervised
training from labels. The comparison was performed for
90 epochs and shows considerable benefits of this unique
initialization capability of FlexiViT. Since distillation needs
patience [5, 54], we additionally run for 300 and 1000
epochs, shown as pale green curves in the figure. FlexiViT
matches the teacher’s performance at small patch sizes, and
teacher initialization provide a large improvement in accu-
racy at the largest patch sizes. In the following sections,
we use the FlexiViT that was trained for 300 epochs and
train two fixed ViT-B/30 and ViT-B/16 models in the same
setting (including the initialization) as baselines.

CKA between feature maps Block 0 self-att.
Block 0 MLP
Block 1 self-att.
Block 1 MLP
Block 2 self-att.
Block 2 MLP
Block 3 self-att.
Block 3 MLP
Block 4 self-att.
Block 4 MLP
Block 5 self-att.
Block 5 MLP
Block 6 self-att.
Block 6 MLP
Block 7 self-att.
Block 7 MLP
Block 8 self-att.
Block 8 MLP
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Block 9 MLP
Block 10 self-att.
Block 10 MLP
Block 11 self-att.
Block 11 MLP
Pre-logits
Grid size 5

Grid size 30

Cosine similarity between CLS tokens

Figure 6. t-SNE visualizations of intermediate representations of
network layers across different grid sizes. Colors reflect different
layers; dot sizes reflect different grid sizes.

3.6. FlexiViT’s internal representation

Does FlexiViT process inputs with different patch sizes
in similar ways? We investigate this by analyzing the
model’s internal representations. We apply minibatch cen-
tered kernel alignment (CKA) [14, 28, 39], a widely-used
approach for comparing representations within and across
neural networks. For visualization purposes, we apply an
arccosine transform to transform CKA/cosine similarity to
proper metrics [58] and then perform t-SNE.

Results are shown in Figure 6. Feature map representa-
tions are similar across grid sizes from the first layer until
the MLP sublayer of block 6. At the MLP sublayer of block
6, layer representations diverge, before converging again at
the final block. By contrast, CLS token representations re-
main aligned across grid sizes. Thus, although internal rep-
resentations of a substantial portion of FlexiViT differ by
grid size, output representations are generally aligned.

4. Using pre-trained FlexiViTs

We have shown that ViTs can be trained flexibly without
significant loss of upstream performance. Next, we verify
that pre-trained FlexiViTs are still comparable to individual
fixed patch-size ViTs when transferred to other tasks. We
check this by transferring the single pre-trained FlexiViT
with its patch size fixed to either 162 or to 302 during trans-
fer. We compare FlexiViT to ViT-B/16 and a ViT-B/30 mod-
els that were pre-trained using the same distillation setup as
FlexiViT (Section 3.5), but with a fixed patch size. We per-
form this transfer on the following set of diverse tasks.

For each task, we provide more details along with many
more results, all with the same take-away, in Appendix E.
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Figure 7. Using a pre-trained FlexiViT. We use the flexibly pre-trained FlexiViT-B model in a diverse set of downstream computer vision
tasks at two patch sizes, and verify that it performs the same or better than a plain (inflexible) ViT model pre-trained at that patch size.
These results indicate that flexibly pre-training a single ViT may be preferrable than pre-training several fixed ViTs.

Classification We fine-tune on small- (Pet [41], Flow-
ers [40]) and medium-scale (CIFAR10, CIFAR100 [30],
Food101 [7], SUN397 [59]) classification datasets follow-
ing the setup of [15] at 2402 px resolution.

Locked-image Tuning (LiT) We follow [66] to train a text
model contrastively [24, 43] for the frozen FlexiViT, which
we evaluate in terms of 0-shot classification and retrieval.

Open-vocabulary detection We test the transferability
of FlexiViT to object detection using OWL-ViT [37], an
open-vocabulary object detector based on image-text mod-
els such as LiT or CLIP [43]. We evaluate its zero-shot
open-vocabulary detection performance on LVIS [19].

Panoptic segmentation The Universal Vision Model
(UViM) is a general-purpose modeling approach for vi-
sion [27]. We train UViM on the COCO panoptic segmen-
tation dataset [25, 35] and use FlexiViT as initialization for
the image encoder in UViM.

Semantic segmentation We transfer to semantic segmen-
tation following Segmenter’s linear decoder setup [51]. We
report mean IoU for single scale evaluation and evaluate on
Cityscapes [13] and ADE-20k [67].

4.1. Results

The results of these transfer experiments are summa-
rized in Figure 7. Across the diverse set of tasks, a single
FlexiViT model roughly matches the two fixed ViT models,
barely lagging behind at large patch size and leading to a
small or significant improvement at smaller patch size.

These results confirm that there is no significant down-
side in using a pre-trained FlexiViT, as opposed to pre-
training multiple ViTs for different patch sizes.

4.2. Resource-efficient transfer via flexibility

FlexiViT enables a new way of making transfer learn-
ing more resource efficient, saving accelerator memory and
compute. This is possible because, surprisingly, flexibility is
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Figure 8. Fast transfer. FlexiViT can be cheaply finetuned at
small sequence length and used at test time with much longer se-
quence to achieve higher performance. (left) FlexiViT-B and ViT-
B/30 models finetuned at grid size 8x8 (indicated by dots) and
evaluated at other grid sizes. The standard ViT model’s accuracy
quickly deteriorates, while FlexiViT demonstrates large perfor-
mance boost with increased grid size. (right) A single FlexiViT-B
model finetuned at three different grid sizes (indicated by dots) and
evaluated at various grid sizes.

largely retained even after transfer at a fixed patch size. We
can therefore perform transfer training cheaply with large
input patches (small input grid), but later deploy the result-
ing model using small patch sizes (large input grid). We pre-
form experiments by transferring a FlexiViT-B model (pre-
trained on ImageNet-21k with distillation) to the ImageNet-
1k dataset, and use a similarly pretrained fixed ViT-B/30
model as the baseline. The pretrained FlexiViT works well
at larger grid sizes even after fixed-size transfer. For exam-
ple, we can perform relatively cheap finetuning at 8×8 grid
size. When evaluated at 8× 8 grid size, the model achieves
81.8% accuracy, but when evaluated at the 24×24 grid size,
it achieves 85.3% top-1 accuracy gaining 3.5% accuracy at
no additional training cost (Figure 8). More details on the
finetuning setup can be found in the Appendix D.
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5. Flexifying existing training setups
So far, we have focused on flexifying models during pre-

training. We now show that existing pre-trained models can
also be flexified during transfer to downstream tasks. Be-
low, we flexify a diverse set of existing training setups.

5.1. Transfer learning

We use the same set of 6 transfer datasets from Sec-
tion 4, with the same settings. We again show the results for
SUN397 in Figure 9 and all other datasets in Appendix E.
The difference is that we now also randomize the patch size
during transfer, and evaluate the single resulting model at
different patch sizes (x-axis, three groups of bars).

Flexible transfer of FlexiViT works best, but flexifying a
fixed model during transfer also works surprisingly well,
considering the very short training and low learning rate
used for transfer. The baseline of a fixed-size model trans-
ferred at a fixed patch size and evaluated at that same size is
indicated by a small horizontal line.

5.2. Multimodal image-text training

Next, we discuss two ways to flexify multimodal image-
text training: FlexiLiT and FlexiCLIP. In FlexiLiT, we train
a text tower to produce text embeddings that align well
with visual embeddings from various patch sizes (B/flexi).
LiT baselines with direct use of either FlexiViT models
at fixed resolutions, or ViT models are provided. Fig-
ure 10 shows zero-shot image to text retrieval results on the
Flickr30k [42] dataset. FlexiLiT-B/flexi performs the best
on average, while LiT with FlexiViT-B/30 and FlexiViT-
B/16 both get very close results. Flexification additionally
provides the possibility of fast transfer as discussed in Sec-
tion 4.2. The LiT-ViT baselines shown in Figure 10 match
FlexiLiT on the sequence length it has been trained for, but

performance drops quickly when using a different sequence
length during inference. We observe similar conclusions
with a from-scratch image-text training setup, i.e. Flexi-
CLIP (see Appendix G for more results).

5.3. Open-vocabulary detection

Beyond image-level tasks, we find that flexification also
works for object detection training. We modify the training
of OWL-ViT to introduce flexible patch sizes as described
in Algorithm 1. Similar to classification, flexible OWL-ViT
detection models perform close to or better than fixed-size
models at any patch size during inference (Figure 11). In
addition, we find that for detection, the optimal patch size
is not necessarily the smallest. When evaluated on a set
of 35 detection datasets [33], inference-time tuning of the
patch size leads to improved results over evaluation at the
smallest patch size (Appendix E). This makes flexification
especially valuable for detection.

5.4. Training times and flexification

Besides having a flexible model, one can use FlexiViT’s
machinery to pre-train fixed ViTs faster. In this case, we
specify a curriculum: a sequence (pk)Kk=1 of probability
distributions over the patch sizes along with a mapping
c : N → [K] that identifies which distribution pk to use
at training step t. For example, if the desired patch size is
16× 16, the last probability distribution in the sequence pK
would place its entire mass on said patch size. A multitude
of curricula can be designed, see Appendix H. In Figure 12
we show that in general training with a patch size curricu-
lum leads to better performance per compute budget than
standard training as we vary the training length.
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Figure 13. Analysis of FlexiViT attention and token represen-
tations across scales. Top: Attention relevance (as in [9]) can sig-
nificantly change at different patch sizes. For example, FlexiViT-
B/48 and FlexiViT-B/8 consider different areas of the input most
relevant for class ’fork’. See Appendix L for more examples. Bot-
tom: Cosine similarity between a seed token representation at the
center of the feature map of FlexiViT-B at patch size 16 and rep-
resentations of tokens at other patch sizes. Representations are
taken from block 6 and averaged across our I21K validation set.
See Appendix I for similar plots for other blocks and patch sizes.

6. Analyzing FlexiViTs

Attention relevance patterns across scales We find that
decreasing the patch size results in attention relevance [9] to
concentrate into a larger number of smaller areas through-
out the image. In Figure 13 (top) we observe that attention
can significantly change at different scales.

Relation of token representations across scales As we
decrease FlexiViT’s patch size, each token “splits” into mul-
tiple tokens. A natural question is how token representa-
tions at larger patch sizes relate to token representations at
smaller patch size. To answer this question, we measure co-
sine similarity between the representation of a “seed” token
at the center of a feature map at one patch size and represen-
tations of other tokens at the same and different patch sizes.
As shown in Figure 13 (bottom), we are indeed able to find
correspondences between tokens across scales.

Ensembling We explored whether it is possible to improve
prediction accuracy by ensembling the predictions of the
same FlexiViT at multiple scales. We find that, in terms of
total compute spent, it is nearly always better to run a single
FlexiViT at that compute budget than to ensemble multiple
smaller ones. Full results are provided in Appendix J.

Shape or texture bias ViT’s bias towards using shape or
texture features [17] has been shown to largely depend on
its patch size [6]. In Appendix K, we show that FlexiViT
evaluated at each patch size has a similar texture bias to a
ViT trained and evaluated at that same patch size.

Model and dataset size Throughout the paper, we fo-
cus on FlexiViT models of the base size (-B) trained on
12 M images. In order to validate that neither of these
two settings are required, we train FlexiViT-S,B,L mod-
els on ImageNet-1k (1.2 M images) using the ImageNet-1k
DeiT III model [55] as teacher. We can see in Fig 2 that a
single FlexiViT-L model matches or outperforms all three
DeiT III models and EfficientNetV2. However, there is still
a point at which it becomes more effective to change model
width than patch size. Numerical results and evaluation on
ImageNet-ReaL/v2/A/R [3, 21, 22, 45] are in Appendix F.

7. Discussion of alternatives
Changing the input patch size is not the only way to trade

off sequence length and compute in ViTs. We explore two
alternatives in our core setup: distillation on ImageNet-21k.

Varying patch embedding stride One alternative is to
fix the patch size and change its sampling stride, i.e. ex-
tract overlapping patches to increase sequence length. In-
tuitively, the advantage of this approach is that the intrin-
sic patch size is fixed and we avoid any special care when
computing patch embeddings. Results in Figure ?? suggest
varying the stride works almost as well, only slightly lag-
ging behind our baseline.

Varying model depth Another alternative is adding flexi-
bility in terms of depth, i.e. number of layers. Depth prun-
ing has been explored in the context of NLP [16, 47] and
more recently also for ViTs [62]. Depth pruning differs fun-
damentally from FlexiViT: it scales linearly in depth, uses
a subset of parameters, and allows progresively refining a
prediction. We randomize the depth by attaching the shared
head to various intermediate layers. We also tried separate
heads, which worked worse. In these experiments, Flexi-
ViT provided a significantly better compute-accuracy trade-
off than depth pruning.

8. Conclusion
FlexiViT is a simple and efficient way of trading off

compute and predictive performance with a single model,
enabled by the unique patch embedding strategy of ViTs.
FlexiViT can be used to significantly reduce pre-training
costs by only training a single model for all scales at once,
and performs well at a variety of downstream tasks. There
are many exciting directions for future work, and we hope
that our results inspire the community to explore additional
creative applications of patchification.
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