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Abstract

Transformers are powerful visual learners, in large part
due to their conspicuous lack of manually-specified pri-
ors. This flexibility can be problematic in tasks that in-
volve multiple-view geometry, due to the near-infinite possi-
ble variations in 3D shapes and viewpoints (requiring flexi-
bility), and the precise nature of projective geometry (obey-
ing rigid laws). To resolve this conundrum, we propose
a “light touch” approach, guiding visual Transformers to
learn multiple-view geometry but allowing them to break
free when needed. We achieve this by using epipolar lines to
guide the Transformer’s cross-attention maps during train-
ing, penalizing attention values outside the epipolar lines
and encouraging higher attention along these lines since
they contain geometrically plausible matches. Unlike pre-
vious methods, our proposal does not require any camera
pose information at test-time. We focus on pose-invariant
object instance retrieval, where standard Transformer net-
works struggle, due to the large differences in viewpoint
between query and retrieved images. Experimentally, our
method outperforms state-of-the-art approaches at object
retrieval, without needing pose information at test-time.

1. Introduction
Recent advances in computer vision have been charac-

terized by using increasingly generic models fitted with
large amounts of data, with attention-based models (e.g.
Transformers) at one extreme [12, 13, 20, 24, 34, 41]. There
are many such recent examples, where shedding priors in
favour of learning from more data has proven to be a suc-
cessful strategy, from image classification [1,13,20,29,90],
action recognition [7, 23, 27, 50, 58], to text-image match-
ing [36, 45, 62, 71] and 3D recognition [40, 91]. One area
where this strategy has proven more difficult to apply is
solving tasks that involve reasoning about multiple-view ge-
ometry, such as object retrieval – i.e. finding all instances of
an object in a database given a single query image. This has
applications in image search [37, 39, 51, 82, 92], including

Figure 1. Top-4 retrieved images with (1) global retrieval (left
column), (2) Reranking Transformer (RRT) [74] (middle), and (3)
RRT trained with our proposed Epipolar Loss (right column). Cor-
rect retrievals are green, incorrect ones are red. The Epipolar Loss
imbues RRT with an implicit geometric understanding, allowing it
to match images from extremely diverse viewpoints.

identifying landmarks from images [53, 61, 85], recogniz-
ing artworks in images [80], retrieving relevant product im-
ages in e-commerce databases [14,55] or retrieving specific
objects from a scene [3, 38, 46, 60].

The main challenges in object retrieval include over-
coming variations in viewpoint and scale. The difficulty
in viewpoint-invariant object retrieval can be partially ex-
plained by the fact that it requires disambiguating similar
objects by small differences in their unique details, which
can have a smaller impact on an image than a large varia-
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tion in viewpoint. For this reason, several works have em-
phasized geometric priors in deep networks that deal with
multiple-view geometry [22,88]. It is natural to ask whether
these priors are too restrictive, and harm a network’s ability
to model the data when it deviates from the geometric as-
sumptions. As a step in this direction, we explore how to
“guide” attention-based networks with soft guardrails that
encourage them to respect multi-view geometry, without
constraining them with any rigid mechanism to do so.

In this work, we focus on post-retrieval reranking meth-
ods, wherein an initial ranking is obtained using global
(image-level) representations and then local (region- or
patch-level) representations are used to rerank the top-
ranked images either with the classic Geometric Verifica-
tion [57], or by directly predicting similarity scores of im-
age pairs using a trained deep network [31, 74]. Rerank-
ing can be easily combined with any other retrieval method
while significantly boosting the precision of the underly-
ing retrieval algorithm. Recently, PatchNetVLAD [31],
DELG [11], and Reranking Transformers [74] have shown
that learned reranking can achieve state-of-the-art perfor-
mance on object retrieval. We show that the performance of
such reranking methods can be further improved by implic-
itly inducing geometric knowledge, specifically the epipo-
lar relations between two images arising from relative pose,
into the underlying image similarity computation.

This raises the question of whether multiple view rela-
tions should be incorporated into the two view architec-
ture explicitly rather than implicitly. In the explicit case,
the epipolar relations between the two images are supplied
as inputs. For example, this is the approach taken in the
Epipolar Transformers architecture [33] where candidate
correspondences are explicitly sampled along the epipolar
line, and in [88] where pixels are tagged with their epipolar
planes using a Perceiver IO architecture [34]. The disadvan-
tage of the explicit approach is that epipolar geometry must
be supplied at inference time, requiring a separate process
for its computation, and being problematic when images are
not of the same object (as the epipolar geometry is then not
defined). In contrast, in the implicit approach the epipolar
geometry is only required at training time and is applied as a
loss to encourage the model to learn to (implicitly) take ad-
vantage of epipolar constraints when determining a match.

We bring the following three contributions in this work:
First, we propose a simple but effective Epipolar Loss to in-
duce epipolar constraints into the cross-attention layer(s) of
transformer-based reranking models. We only need the rel-
ative pose (or epipolar geometry) information during train-
ing to provide the epipolar constraint. Once trained, the
reranking model develops an implicit understanding of the
relative geometry between any given image pair and can ef-
fectively match images containing an object instance from
very diverse viewpoints without any additional input. Sec-

ond, we set up an object retrieval benchmark on top of the
CO3Dv2 [63] dataset which contains ground-truth camera
poses and provide a comprehensive evaluation of the pro-
posed method, including a comparison between implicit and
explicit incorporation of epipolar constraints. The bench-
mark configuration is detailed in Sec. 4. Third, we evalu-
ate on the Stanford Online Products [55] dataset using both
zero-shot and fine-tuning, outperforming previous methods
on this standard object instance retrieval benchmark.

2. Related Work
Computing epipolar geometry. Estimating epipolar ge-
ometry given an image pair is a fairly broad problem, well-
studied in multi-view geometry and computer vision [30].
Classic techniques involve predicting interest points and
their descriptors [4, 44, 48, 66, 68] in the images and find-
ing point correspondences to estimate the relative geom-
etry [43, 52]. Several learning based methods have been
proposed to provide improved interest point detection and
features, e.g. R2D2 [64] SuperPoint [19], LIFT [87] and
MagicPoint [18]. These features along with learning based
local matching methods [69, 72, 86] and robust optimiza-
tion methods [6, 9, 25] form a powerful toolbox for relative
geometry estimation. We use a combination of LoFTR [72]
and MAGSAC++ [6] to generate pseudo-geometry informa-
tion in one of our compared methods.
Incorporating epipolar geometry in Deep Learning. Re-
cently, many works have proposed incorporating geomet-
ric priors into deep networks to deal with problems requir-
ing multi-view understanding, such as 3D pose estimation
[33, 65, 89], 3D reconstruction [79, 88] or depth estimation
[59]. Most of these approaches incorporate the epipolar ge-
ometry explicitly, e.g. Epipolar Transformers [33] compute
3D-aware features for a point by aggregating features sam-
pled on the corresponding epipolar line, which are shown to
improve multi-view 3D human-pose estimation. [88], an-
other explicit method, proposed a few ways of featuriz-
ing multi-view geometry by encoding camera parameters
or epipolar plane parameters and using them to provide geo-
metric priors at the input-level. The epipolar plane encoding
is also studied in this paper in the context of reranking trans-
formers. Works such as [65,78] propose implicitly incorpo-
rating geometric priors using multi-view consistency. Our
work also falls in the implicit category, where we use epipo-
lar constraints as a loss function applied to cross-attention
maps to induce geometric understanding.
Image representations for retrieval. Traditionally, hand-
crafted descriptors such as SIFT [44], RootSIFT [4] and
BoVW [57] were widely used for object retrieval. However,
learned image-level (global) and region-level (local) repre-
sentations [2,5,19,28,87] have shown to surpass the perfor-
mance of engineered features on large-scale datasets. Lo-
cal learned representations can also be simply extracted as
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Figure 2. Overview of the proposed method. Features from two candidate images are extracted with a Convolutional Neural Network, and
concatenated into a sequence of tokens for a Transformer. They are separated by a learned ⟨SEP⟩ token and end with a ⟨CLS⟩ token. The
model is trained with a Binary Cross Entropy (BCE) loss to predict whether the two images match. During training, epipolar lines relating
the two views (obtained with ground truth camera information) are rasterized into 4D tensors. These “epipolar guides” denote matches that
are geometrically plausible given the viewpoints, and are used to train the Transformer’s cross-attention maps using BCE losses.

feature volumes from convolution neural networks or trans-
former backbones. Global representations are obtained by
a combination of (1) downsampling/pooling operations in-
side a deep network, (2) learned clustering-based pooling
operations [2] and/or specialized pooling operations such as
R-MAC [76]. Hybrid approaches that combine global and
local features have also recently been proposed [11, 31].
Post-retrieval reranking. Early reranking methods, such
as [35,57], used Geometric Verification (GV) with local fea-
tures to compute geometric consistency between the query
and reference images. This improved the precision of the
top-ranked retrievals. Query Expansion (QE) was used to
improve the recall. Popular QE variants such as average-
QE and α-QE compute an updated query descriptor from
the global descriptors of the top retrieved images [15,16,75]
and use it to retrieve a new set of top-ranked images. GV
can be combined with many deep learning based retrieval
methods used today, e.g. [11] uses RANSAC based GV on
local features from its backbone model. Since RANSAC-
based GV can be prohibitively slow for practical applica-
tions, [31] proposes a rapid spatial scoring technique as an
efficient alternative. Recently, transformer based methods
[21, 74] have been introduced for retrieval and reranking.
Our work builds on top of Reranking Transformers [74].
Retrieval with 3D information. Recently, methods using
3D data [42, 81], structural cues [54] or view synthesis [73]
have been proposed. Our goal in this work is to build image
representations that capture 3D priors and can be used to
retrieve images with large variations in pose or scale.

3. Method
We describe two variants of our method that implicitly

or explicitly encourage Transformers to use geometric con-

straints in their predictions. Our work is built on top of
Reranking Transformers (RRT) [74], a state-of-the-art ap-
proach for object retrieval with reranking. The explicit ver-
sion, inspired by recent work [88], serves both as a baseline
and as a contrast to our proposed implicit approach. We
first provide a brief review of RRTs for the reader (Sec. 3.1)
and then describe our proposed Epipolar Loss (Sec. 3.3), as
well as Epipolar Positional Encodings (Sec. 3.4). The im-
plementation details are given in Sec. 5.2.

3.1. Review of Reranking Transformers

Post-retrieval reranking is a popular technique used to
boost the precision of object retrieval methods, wherein
an initial ranking is obtained using global (image-level)
descriptors and then local (region-level) descriptors along
with the global ones are used to rerank the top-ranked
images. In [74], each image (I) is processed through a
ResNet-50 [32] model to extract local features from the last
convolution layer, with size s × s × c (s = 7, c = 2048).
Each of the s2 local feature vectors is linearly projected
from size c to a smaller size m = 128. Let these be denoted
by xl ∈ Rs2×m and their 2D positions in the feature volume
by pi ∈ R2. The global features, computed as the mean of
the local features, are used for initial ranking. Then, a light-
weight transformer model (4 self-attention heads, 6 layers)
is used to rerank these top predictions. With I as the query
and Ī as a reference image from the top predictions, as well
as class ⟨CLS⟩ and separator ⟨SEP⟩ tokens (consisting of
learnable embeddings), the input to the transformer model
is constructed as the concatenation of tokens:

X(I, Ī) = [⟨CLS⟩, f(xl1), . . . f(xl
s2),

⟨SEP⟩, f̄(x̄l1), . . . f̄(x̄l
s2)]
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where f(xli) = xl
i + ψ(pi) + β, f̄(x̄l

i) = x̄li + ψ(p̄i) + β̄,
ψ(.) is the frequency position encoding [83] and β, β̄ are
learnable embeddings that differentiate descriptors of I, Ī.
Sec. 5.2 provides training details for the reranking model.

3.2. Review of Epipolar Geometry

Epipolar geometry limits the possible image correspon-
dences for projections of an observed 3D point from dif-
ferent viewpoints. A central concept is the epipolar line.
Consider a 2D point x in one image. It may correspond
to an infinity of 3D points – one for each possible depth –
which lie on a 3D line that extends from the camera cen-
ter and passes through x in the image plane. This 3D line,
when projected into a second image captured from another
viewpoint, is an epipolar line of x. This mapping from a
point in one image to its epipolar line in another image can
be seen in Fig. 2 (right). Epipolar geometry can be used
to effectively constrain matches across viewpoints: start-
ing from a point in one image, it can only match points in
another image that lie along its epipolar line. Epipolar ge-
ometry can be computed directly from two images, either
from their relative pose or from correspondences, without
requiring any information about depth or 3D geometry of
the observed scene. Mathematically it is represented by a
3 × 3 fundamental matrix. For a more detailed exposition,
please refer to [30].

3.3. Epipolar Loss

Given the feature volumes xl, x̄l ∈ Rs2×m as input to-
kens (in addition to ⟨CLS⟩, ⟨SEP⟩), let yL−1, ȳL−1 denote
the corresponding inputs to the last transformer layer in the
RRT model. The raw cross-attention between these outputs
can be computed as A12 = QK

T
and A21 =QKT , where

WQ,WK are query and key projection matrices and Q =
WQyL−1, K =WKyL−1,Q=WQȳL−1,K =WK ȳL−1.

Next, given the epipolar geometry between the input im-
ages, for every location i ∈ {1, . . . , s2} in xl, we can find
the set of locations ēi in x̄l that lie on the corresponding
epipolar line. Similarly, for each location i ∈ {1, . . . , s2}
in x̄l, we can find the corresponding set of locations ei in
xl. We want to encourage the network, for a given position
in the first volume, to only attend to corresponding epipolar
positions in the other volume. This is done by penalizing
attention values that have high values outside the epipolar
lines, and encouraging the attention along epipolar lines to
be high. This is achieved by using a Binary Cross Entropy
(BCE) loss on the raw cross-attention maps {A12, A21}:

L12(i, j) = BCE(σ(A12(i, j)),1(i, j))

L21(i, j) = BCE(σ(A21(i, j)),1(i, j))

LEPI =

s2∑
i=1

s2∑
j=1

L12(i, j) + L21(i, j) (1)

where σ is a sigmoid function, and 1(i, j) is a special indi-
cator function that is 1 when location j in the other feature
map lies on the epipolar line corresponding to location i in
the current map. The training process is illustrated in Fig. 2.

Max-Epipolar Loss. In the Epipolar Loss proposed
above, every point on the corresponding epipolar line is
encouraged to have high attention even if it is not the ac-
tual matching point in 3D. We also propose a variant called
Max-Epipolar Loss, wherein we select only the point on the
epipolar line with the maximum predicted cross-attention
value and encourage the attention for that point to be high.

LMaxEPI = Lzero + Lmax (2)

where

Lmax =
∑
i

BCE
(
max
j∈ei

σ(A(i, j)), 1

)
Lzero =

∑
∀i,j,1(i,j)=0

BCE(σ(A(i, j)), 0)

where ei is the set of locations in the other feature map that
lie on the epipolar line corresponding to location i in the
current map. Lzero, Lmax are applied to both A12 and A21.

Note that the epipolar loss is applied at training time,
so epipolar geometry is required only during training. The
epipolar geometry can be obtained from the relative pose
between the images, or from the images directly. However,
as will be shown in Sec. 5.6, once trained with our proposed
LEPI , the attention map extracted from the trained RRT
model for a previously unseen pair of images shows patterns
corresponding to the actual epipolar lines (without any in-
put epipolar geometry information). This demonstrates that
the model’s predictions are epipolar-geometry-aware, and
at test time this leads to improved reranking performance as
erroneous point matches can be avoided.

3.4. Epipolar Positional Encoding

In contrast to Epipolar Loss where we implicitly induce
awareness of epipolar line correspondence into the model,
epipolar constraints can be encoded explicitly by annotat-
ing each pixel with an encoding that uniquely identifies
its epipolar plane. The family of epipolar planes “rotates”
about the line joining the two camera centers, hence it can
be parameterized by a scalar angle of rotation. Inspired
by [88], we introduce a baseline wherein we encode the
epipolar plane angle for each token and add the encoding
to the input tokens of the transformer. A random epipolar
plane corresponding to a randomly chosen pixel location is
used as reference to calculate the plane angle. We encode
the angle with the frequency positional encoding [49, 83].

The drawback of the explicit method is that it requires
the epipolar geometry (or relative pose) information during
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inference. In the scenario when this information is not avail-
able, we have to rely on other ways to obtain the epipolar
geometry or relative pose which may not be entirely accu-
rate and leads to loss in performance, as will be shown in
Sec. 5.3. In fact, determining whether epipolar geometry
can be established between two views is essentially replac-
ing the job of the reranking transformer in determining if
two images contain the same object.

4. CO3D-Retrieve benchmark
We now describe how we repurpose the CO3Dv2 [63]

dataset to create a large-scale object instance retrieval
benchmark with multiple views of real objects. CO3Dv2
is a dataset of multi-view images of common object cate-
gories, consisting of 36,506 videos of object instances (one
video per object instance), taken from distant viewpoints
spanning all 360 degrees, and covering 51 common object
categories. The dataset also contains the ground-truth cam-
era poses for the video frames and foreground segmentation
masks for the object in each image.

For the CO3D-Retrieve dataset, we extract 5 frames per
video so that each frame is separated from the next by ap-
proximately 72◦ of rotation around the object. In total,
CO3D-Retrieve contains 181,857 images of 36,506 object
instances. We split the dataset into two halves for training
and testing: the training dataset contains 91,106 images of
18,241 object instances, and the testing datasets contains
90,751 images from 18,265 object instances. The set of ob-
ject instances seen during training and testing are disjoint
and so have zero overlap with each other. For benchmarking
object retrieval on CO3D-Retrieve, we evaluate with each
image as the query, the other images from the same object
as the query are treated as positives, and all the images not
corresponding to the query object are treated as negatives.
Fig. 3 shows example object images from the benchmark.

5. Experiments
In this section, we evaluate the epipolar-geometry aware

Reranking Transformer on two datasets: our CO3D-
Retrieve benchmark, and the Stanford Online Products
(SOP) benchmark [55]. SOP is a popular benchmark for
object retrieval containing 120,053 images of 22,634 object
instances from 12 object categories. We use the standard
train-test split used by all the baselines we compare with,
where 59,551 images are used for training and 60,502 for
testing. In Sec. 5.6, we provide a discussion on the merits of
the implicit approach to incorporating epipolar constraints
and explore its properties.

5.1. Baselines and metrics

Pretrained descriptors. Deep networks pretrained on large
scale image datasets learn powerful image representations

that can be used for retrieval. Evaluating such pretrained
models without fine-tuning gives us a lower bound on the
performance that a model trained on our dataset should
achieve. We compare with VGG16 [70] and ResNet50
(R50) [32] models pretrained on ImageNet [17], i.e. trained
for classification, not retrieval. We also compare to a
NetVLAD [2] model (i.e. VGG16 backbone + NetVLAD
pooling) pretrained for retrieval on Pittsburgh250k [77].

Reranking Transformers (RRT). Reranking Tranformers
(RRT) [74] is a state-of-the-art method that our works builds
on. We compare with different versions of the RRT method:
1. R50 (trained): this baseline performs global retrieval (no

reranking) and does not use RRT, but works as a foun-
dation for subsequent baselines. The model is trained
using a batch-wise contrastive loss on CO3D-Retrieve or
SOP [55], for the respective experiments.

2. R50 (frozen) + RRT: we start from a trained R50 (i.e.
baseline (1)), freeze its weights and train a RRT on top
of it for reranking.

3. R50 (finetune) + RRT: we start from a trained R50 (i.e.
baseline (1)) and we finetune the R50 backbone along
with the RRT.

RRT w/ Epipolar Positional Encoding. The R50 back-
bone along with RRT is trained with their respective
“retrieval loss” functions, and the epipolar geometry is
provided as input in the form of an Epipolar Positional
Encoding (Sec. 3.4). We will discuss the results of this
baseline in a separate Sec. 5.5.

Evaluation metrics. Given a query image and a retrieved
image, they match if they contain the same object instance.
We report two metrics to evaluate retrieval performance.
First, R@K – for a given query, if a match is within the
top K retrieved images, then the query is said to be re-
trieved. R@K is the fraction of correctly retrieved queries
for a given K. We report results for K = 1, 10 and 50.
Second, we report Mean Average Precision (mAP) – the
mean of the Average Precision [47] over all queries.

5.2. Implementation details

Extracting the epipolar geometry. For experiments with
the CO3D-Retrieve benchmark, the available ground-truth
pose information for each image is used to compute the
epipolar geometry for a matching pair of images. During
training, we use the “RandomCrop” image augmentation
which shifts the principal point location. Hence, we adjust
the Fundamental Matrix computation appropriately to ob-
tain the correct epipolar lines in the cropped images. When
pose information is not available as ground-truth, such as
in the SOP [55] dataset, we use an off-the-shelf method to
compute the epipolar geometry. Specifically, we use a lo-
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Figure 3. Example images for three object instances from the CO3D-Retrieve benchmark. The left half shows the full image, and the right
half shows the masked counterparts obtained using the object masks in CO3D [63]. The number of pixels in common between views of
the same object decreases from the top row to the bottom (computed using the 3D point-clouds, also available from CO3D).

cal image feature matching method, LoFTR [72], to extract
high-quality semi-dense matches between the image pair.
Then, we use a robust estimation method, MAGSAC++ [6]
to extract the Fundamental Matrix. The epipolar geometry
extracted with this method is not entirely accurate (espe-
cially for image pairs with extreme relative pose), but it pro-
vides us with a sufficient pseudo ground-truth epipolar ge-
ometry to train our models with Epipolar Loss. If the num-
ber of matches found ≤ 20 or number of inliers detected
≤ 0.2× number of matches, we consider the extracted
epipolar geometry unreliable and do not apply Epipolar
Loss for that image pair during training. Computing epipo-
lar geometry with this method takes ≈0.06 seconds per im-
age pair on a 8-core CPU and NVIDIA P40 GPU.
Training details. We use a ResNet50 [32] for global re-
trieval, which is trained with a batchwise contrastive loss
(batch size of 800). For an image pair{I, Ī} in the batch,
a Binary Cross-Entropy loss is used to train the reranking
model enforcing its output to be 1 if I and Ī contain the
same object and 0 otherwise.

In our proposed implicit method, the global retrieval
model and the reranking model are trained with their respec-
tive retrieval-losses plus the Epipolar Loss. If I and Ī rep-
resent the same object, then the epipolar geometry between
the image pair (which is extracted as explained above) is
used to compute the Epipolar Loss for training. If the im-
age pair is not a match, then a valid epipolar geometry does
not exist and we simply do not apply the Epipolar Loss for
that image pair.

In the explicit method, we have to include the geometry
in the input as Epipolar Positional Encodings (EPE), even
when the input pair {I, Ī} is not a match. To handle the

case when {I, Ī} is not a match during training and testing,
we use a random rank-2 matrix as the Fundamental Ma-
trix to compute the EPEs. When {I, Ī} is indeed a match,
(a) during training, we use the ground-truth or the pseudo
ground-truth (whichever is available) to compute the EPEs,
(b) during testing, we do not rely on the ground-truth geom-
etry information and always use the LoFTR/MAGSAC++
method (described above) to compute the EPEs.

The hyperparameters we use for our experiments with
SOP [55] are the same as [74], except that we use 40 epochs
(instead of 100) when training with the Epipolar Loss with
a constant learning rate of 10−4. Hyperparameters used
with CO3D-Retrieve are provided in supplementary mate-
rial. Our method is entirely implemented in PyTorch [56].

5.3. Results on CO3D-Retrieve

We evaluate on CO3D-Retrieve in two settings: with and
without masking the background in the object images. This
is because the background also provides useful visual cues
for image matching and it is essential to see how the meth-
ods perform without any such extra information. Figure 3
shows examples with and without masking the background.

Table 1 shows the detailed results. We observe that pre-
trained models (VGG16 and R50 on ImageNet, NetVLAD
on Pittsburgh250k) achieve a reasonable performance with-
out any finetuning. However, their performance is not com-
petitive compared with baselines specialized for CO3D-
Retrieve. It’s interesting to note that a simple ResNet50-
based global retrieval baseline trained with batch-wise con-
trastive loss (i.e. the “R50 (trained)” baseline) already
achieves a high R@1 of 86.06% on the unmasked images.
Our method, which uses the Epipolar Loss to induce multi-
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Table 1. Evaluation on CO3D-Retrieve benchmark. Description of all compared methods in Sec. 5.1. Baselines shown above dashed line
are pretrained models and below are trained on CO3D-Retrieve. EPE=Epipolar Positional Encoding

Method Full images With masked backgrounds

R@1 R@10 R@50 mAP R@1 R@10 R@50 mAP

Pretrained Models
VGG16 [70] 66.21 85.18 91.66 22.51 63.56 81.11 89.24 16.73
R50 [32] 66.48 85.34 91.74 22.79 63.81 80.30 89.37 16.79
NetVLAD [2] 67.01 85.17 91.72 22.63 63.19 80.84 89.27 16.61

R50 (trained) 86.06 95.62 97.65 45.34 78.82 91.30 94.72 24.85
RRT [74] + R50 (frozen) 88.07 96.29 97.75 47.60 82.45 91.89 94.85 26.16
RRT + R50 (finetune) (SOTA) 89.20 96.85 97.89 48.81 83.28 92.13 95.05 27.33
RRT + R50 w/ EPE 88.53 96.41 97.83 47.99 82.79 91.96 94.99 26.58
RRT + R50 w/ LEPI (Ours) 90.57 97.33 98.10 49.52 85.07 92.42 95.11 28.07
RRT + R50 w/ LMaxEPI (Ours) 90.69 97.38 98.10 49.60 85.17 92.46 95.14 28.21

Table 2. Evaluation on Stanford Online Products [55]. Baselines
shown above the dashed line are pretrained models and below the
dashed line are trained on SOP. More details in Sec. 5.1. Key:
*=results obtained using checkpoints from [74]; **=results reported in [74]

Method R@1 R@10 R@50 mAP

Pretrained Models
VGG16 [70] 55.75 70.86 79.65 11.93
R50 [32] 55.89 71.32 79.69 12.09
NetVLAD [2] 54.16 70.85 79.62 11.90

R50 (trained)* 80.74 91.87 95.54 32.90
RRT [74] + R50 (frozen)* 81.80 92.35 95.78 34.91
RRT + R50 (finetune)* (SOTA) 84.46 93.21 96.04 37.14
RRT + R50 w/ EPE 82.57 92.69 95.89 35.38
RRT + R50 w/ LEPI (Ours) 84.74 93.29 96.04 37.25
RRT + R50 w/ LMaxEPI (Ours) 84.53 93.27 96.04 37.19

Other Metric Learning methods**
Margin-based [67] 76.1 88.4 - -
FastAP [10] 73.8 88.0 - -
XBM [84] 80.6 91.6 - -
Cross-Entropy based [8] 81.1 91.7 - -

view geometric understanding in to the Reranking Trans-
former model, outperforms the state-of-the-art approach
(RRT + R50 (finetune)) in both masked and unmasked set-
tings. The margin with which the Epipolar Loss baseline
outperforms “RRT + R50 (finetune)” is greater in the case
of images with masked background, as this is a harder task.
It can be seen that the Max-Epipolar variant of the Epipolar
loss consistently gives a slight improvement.

5.4. Results on Stanford Online Products

The Stanford Online Products (SOP) dataset [55] does
not contain ground-truth pose information for the object im-
ages. As detailed in Sec. 5.2, we obtain the pseudo ground-
truth geometry information using LoFTR [72] for match-

Table 3. Zero-shot evaluation on Stanford Online Products [55]
with models trained on CO3D-Retrieve.

Method R@1 R@10 R@50 mAP

RRT + R50 (frozen) 75.53 89.43 95.01 29.27
RRT + R50 (finetune) 76.32 90.16 95.21 30.19
RRT + R50 w/ LEPI (Ours) 76.78 90.27 95.29 30.25

ing and MAGSAC++ [6] for robust estimation. We find
that, even though these pseudo ground-truth poses are not
entirely accurate, they are still useful for training with the
Epipolar Loss. Table 2 shows a comprehensive comparison
of our proposed methods with all the baselines. We also
include deep metric learning methods [8,10,67,84] with re-
ported numbers taken from [74] into our comparisons. Our
proposed implicit method outperforms all the baselines in-
cluding the state-of-the-art Reranking Transformers [74].

We also test zero-shot retrieval, by evaluating on SOP
models that were trained on CO3D-Retrieve. The results are
shown in Table 3, where we can observe that the differences
between all methods are reduced, but our Epipolar Loss still
confers a performance advantage.

5.5. Implicit vs Explicit methods

The transformer model trained with Epipolar Loss does
not require pose or epipolar geometry information at test
time. The explicit method, however, requires the fundamen-
tal matrix at the input (during both training and testing) to
generate the Epipolar Positional Encodings (EPE). Tables 1
and 2 show that using EPE with Reranking Transformer ad-
versely affects the performance, compared to not using the
encodings. Although reasons for this decrease are unclear,
one possibility is that the encodings leak information about
whether two images match or not, because when they do
not match, the input epipolar encodings are arbitrary. The
network may learn to rely on this signal instead of image
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matching, in a case of “shortcut learning” [26]. This issue
does not affect the implicit method as geometry informa-
tion isn ot required at test time. When training the RRT, the
Epipolar Loss is used with only those image pairs that con-
tain matching images. Hence, during inference, the Trans-
former uses implicit geometry information only when it is
valid (i.e. inherently for matching image pairs).

5.6. What does the implicit model learn?

After training with the Epipolar Loss (LEPI ), we in-
vestigate if the attention maps of the learned model show
some signs of geometric-awareness. To do this, we pick
two matching images {I, Ī} from the test set, i.e. these im-
ages were not seen during training, and extract the cross-
attention maps from the last layer of the transformer. Since
we use a 7 × 7 × 128 feature volume for each image (re-
shaped to 49× 128 for the transformer), the cross-attention
maps (from I to Ī, and Ī to I) are of size 49 × 49 which
are then reshaped back to 7×7×7×7. These 7×7×7×7
cross-attention map values indicate the attention between
each feature-pixel of the first and second feature volume.

Fig. 4 shows predicted cross-attention maps alongside
expected ground-truth maps. The latter are computed using
ground-truth pose information. We observe that the atten-
tion maps obtained with LEPI closely follow ground truth
epipolar lines, despite this instance and associated geome-
try not being seen during training. Note that the attention
maps obtained with LMaxEPI are much sparser with peaks
that lie on actual epipolar lines. In the supplementary, we
show maps obtained with a pair of mismatched images.

6. Conclusion
In this work, we aimed to teach multi-view geometry to

Transformer networks, and proposed a method to do so im-
plicitly via epipolar guides. The advantages of this implicit
approach over explicitly passing in geometric information
to a network are two-fold: (i) ground-truth epipolar geom-
etry (relative pose) between views is only needed at train-
ing time, not at inference; (ii) implicit losses are readily
applied to existing architectures, so there is no need to de-
sign specialized architectures. We demonstrated improved
performance over the state-of-the-art in object retrieval, by
reranking with our method. More generally, this approach
of implicitly incorporating knowledge into Transformers by
a suitable loss can be employed in other scenarios. Exam-
ples include learning other geometric relations, such as a
trifocal relationship over three views, as well as physical
laws such as Newton’s laws of motion.
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