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Abstract

While the evaluation of explanations is an important step
towards trustworthy models, it needs to be done carefully,
and the employed metrics need to be well-understood. Specif-
ically model randomization testing can be overinterpreted
if regarded as a primary criterion for selecting or discard-
ing explanation methods. To address shortcomings of this
test, we start by observing an experimental gap in the rank-
ing of explanation methods between randomization-based
sanity checks [1] and model output faithfulness measures
(e.g. [20]). We identify limitations of model-randomization-
based sanity checks for the purpose of evaluating explana-
tions. Firstly, we show that uninformative attribution maps
created with zero pixel-wise covariance easily achieve high
scores in this type of checks. Secondly, we show that top-
down model randomization preserves scales of forward pass
activations with high probability. That is, channels with
large activations have a high probility to contribute strongly
to the output, even after randomization of the network on
top of them. Hence, explanations after randomization can
only be expected to differ to a certain extent. This explains
the observed experimental gap. In summary, these results
demonstrate the inadequacy of model-randomization-based
sanity checks as a criterion to rank attribution methods.

1. Introduction

Parallel to the progressively astounding performances
of machine learning techniques, especially deep learning
methods, in solving even the most complex tasks, the trans-
parency, trustworthiness, and lack of interpretability of
these techniques has increasingly been called into ques-
tion [11, 14, 15]. As potential solutions to these issues, a
vast number of XAI methods have been developed in re-
cent years [21], that aim to explain a model’s behavior, for
instance, by (locally) attributing importance scores to fea-
tures of singular input samples, indicating how (much) these

features influence a specific model decision [6, 22, 25, 27].
However, the scores obtained for different attribution map
methods tend to differ significantly, and the question arises
how well each explains model decisions. This is generally
not answered easily, as there are a number of desirable prop-
erties proposed to be fulfilled by these attributions, such
as localization on relevant objects [4, 5, 30] or faithfulness
to the model output [2, 8, 20], among others, with several
quantitative tests having been proposed for each.

In parallel to these empirical evaluations, several works
have proposed that explanations should fulfill a certain num-
ber of ‘axioms’ or ‘unit tests’ [1, 12, 16, 27], which need to
hold universally for a method to be considered good or valid.
We place our focus on the model-randomization-based sanity
checks [1], which state that the explanation should be sensi-
tive to a random permutation of parameters at one or more
layers in the network. Specifically, the authors proposed to
apply measures such as Structural Similarity Index Measure
(SSIM) [28] between attribution maps obtained from the
original model and a derived model for which the top-layers
are randomized. The idea is to require that methods used
to compute attribution maps should exhibit a large change
when the neural network model — i.e., its defining/learned
parameter set — is randomized from the top. The authors
of [1,23] suggested to discard attribution map methods which
perform poorly under this test — i.e., have a high SSIM mea-
sure between attributions obtained with the original and the
randomized model — under the assumption that those XAI
methods are not affected by the model’s learned parameters.

However, we observe a significant experimental gap be-
tween top-down randomization checks when used as an eval-
uation measure, and occlusion-based evaluations of model
faithfulness such as region perturbation [20]. Concretely,
Guided Backpropagation (GB) [25] and Layer-wise Rel-
evance Propagation (LRP) [6] exhibit low randomization
scores under the first type of measure and yet clearly out-
perform several gradient-based methods in occlusion-based
evaluations. We are interested to resolve this discrepancy.

We identify two shortcomings of top-down randomiza-
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tion checks when used as a measure of explanation quality.
Firstly, we show that uninformative attribution maps created
with zero pixel-wise covariance — e.g., attribution maps gen-
erated from random noise — easily achieve high scores in
top-down randomization checks. Effectively, this makes top-
down randomization checks favor attribution maps which
are affected by gradient shattering noise [7].

Secondly, we argue that the randomization-based sanity
checks may always reward explanations that change under
randomization, even when such randomizations do not affect
the output of the model (and its invariances) significantly.
Such invariance to randomization may result, e.g., from the
presence of skip connections in the model, but also due to
the fact that randomization may be insufficient to strongly
alter the spatial distribution of activations in adjacent layers,
something that we explain by the multiplicity and redun-
dancy of positive activation paths between adjacent layers
in ReLU networks. In setups which optimize parameters of
attribution methods while measuring top-down randomiza-
tion this might lead to the selection of explainers with higher
noise.

Along with our contributed theoretical insights and sup-
porting experiments, the present note warns against an unre-
flected use of model-randomization-based sanity checks as
a sole criterion for selecting or dismissing a particular attri-
bution technique, and proposes several directions to enable
a more precise and informative use of randomization-based
sanity checks for assessing how XAI performs on practical
ML models.

1.1. Related work

Evaluating Attributions. Comparing different attribution
methods qualitatively is not sufficiently objective, and for
that reason, a vast number of quantitative tests have been
proposed in the past in order to measure explanation quality,
focusing on different desirable properties of attributions.
Complexity tests [8, 9, 18] advocate for sparse and easily
understandable explanations, while robustness tests [3, 8,
17] measure how much attributions change between similar
samples or with slight perturbations to the input. Under the
assumption of an available ground truth explanation (e.g.,
a segmentation mask localizing the object(s) of interest),
localization tests [4, 5, 30] ask for attributed values to be
concentrated on this ground truth area. Faithfulness tests [3,
8, 20] compare the effect of perturbing certain input features
on the model’s prediction to the values attributed to those
features, so that optimally perturbing the features with the
largest attribution values also affects the model prediction
the most. Model randomization tests [1], which are the
main focus of this work, progressively randomize the model,
stating that attributions should change significantly with
ongoing randomization.

Caveats of Model Randomization Tests. The authors
of [1] find that a large number of attribution methods seems
to be invariant to model parameters, as their explanations do
not change significantly under cascading model randomiza-
tion. However, various aspects of these sanity checks have
recently been called into question: For instance, these tests
were performed on unsigned attributions. Specifically for
Integrated Gradients (IG) [27], [26] show that if the signed
attributions are tested instead, this method suddenly passes
cascading model randomization instead of failing. This indi-
cates that some of the results obtained in [1] for attribution
methods where the sign carries meaning may be skewed due
to the employed preprocessing. Furthermore, [29] argue for
the distribution-dependence of model-randomization based
sanity checks. The authors demonstrate that some methods
seem to fail the sanity checks in [1] due to the choice of
task, rather than invariance to model parameters. A similar
observation is made by [13], who find that the same attri-
bution methods can perform very differently under model
randomization sanity checks when the model and task are
varied. Note that the underlying assumption of [1] — that
“good” attribution methods should be sensitive to model pa-
rameters — is not called into question here. Rather, we posit
that methods can fail the model randomization sanity checks
for other reasons than invariance to model parameters.

2. Observation: The Gap between
Randomization-based Sanity Checks
and Measures of Model Faithfulness

Based on the assumption that a good explanation should
attribute the highest values to the features that most affect
a model’s predictions, occlusion-type measures of model
faithfulness [2, 8, 20] aim to quantify explanation quality by
measuring the correlation between attribution map scores
and changes of the model prediction under occlusion.

As such, these tests progressively randomize the data,
and can thus be understood as complementary to model-
randomization-based sanity checks, which progressively ran-
domize the model. Consequently, model-randomization-
based sanity checks depart towards the implausible due to
partially randomized prediction models, while occlusion-
based testing departs towards the implausible due to partially
modified and outlier-like images. As both types of test apply
the same intuition of increasing randomization to different
variables (model and data) that (should) influence attribu-
tion maps, it is meaningful to compare their results, and
determine whether both tests agree in terms of explanation
quality.

In the following, we therefore empirically compare the
scores measured by randomization-based sanity checks to
the respective scores measured by faithfulness testing, for
several methods. We use a variant of occlusion in the spirit
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of [2] which replaces a region with a blurred copy to stay
closer to the data manifold. Details on our experimental
setup can be found in the Supplement (Section A.1).

As already known from [1], Guided Backpropagation [25]
performs poorly under model randomization-based sanity
checks when compared to three gradient-based attribution
methods, namely the Gradient itself, Gradient × Input (GI)
and IG. However, when measuring model faithfulness by
a modified iterative occlusion test similar to [20] on the
attribution maps, we find that the same GB, and also several
LRP variants outperform the Gradient, Gradient × Input and
Integrated Gradient substantially, as can be seen in Figure 1
and in the Supplement in Section A.3.

Due to the conceptual parallels between both tests dis-
cussed above, we find this extreme divergence surprising,
and are interested in resolving this gap. Therefore, we will
investigate the underlying reasons for this theoretically and
experimentally in the following sections.

3. The Sensitivity of SSIM Minimization To-
wards Noise

The model-randomization-based sanity checks proposed
by [1] use SSIM as a measure of distance between attribution
maps. As we will demonstrate in this section, SSIM (and,
by extension, several other distance measures, see Supple-
ment Sections C and D) may be flawed in this application,
with randomly generated attributions scoring optimally. We
consider a setup where we use two different models, yield-
ing two different attribution maps A and B. The following
considerations apply to patches of the two attribution maps
or whole attribution maps.

We can identify a fundamental issue: The SSIM between
any two attribution maps can be minimized by a statistically
uncorrelated random attribution process. This is due to the
reason that the SSIM contains a product where one term
relies on a covariance between two patches, see e.g. Equation
6 in [19], which is reproduced here:

2µAµB + C1

µ2
A + µ2

B + C1

2σAB + C2

σ2
A + σ2

B + C2
. (1)

In the above term, µA, µB and σ2
A, σ2

B are the per-patch
means and variances for one patch location computed for
two different input attribution maps A and B, σAB their co-
variance. C1 and C2 are constants depending on the possible
input range of A and B, e.g. [0, 1] or [0, 255].

In the following, we will consider attribution maps within
the framework of random variables. The next theorem is
applied to patches of two attribution maps A, B coming
from different prediction mappings, such as those obtained
by a model and a partially randomized model. The patches
are extracted at the same position of an image.

Theorem 1. Consider the set of all random variables with
expected means µA, µB for each image patch being fixed
and with non-negative expected covariance for each patch
σAB ≥ 0.

Then the expected SSIM absolute value is minimized by
a random variable with zero covariance. In particular, an
upper bound on the minimum is given by

C2

σ2
A + σ2

B + C2
. (2)

The proof is in the Supplement in Section B. This theorem
has two consequences.

Firstly, even if we question the requirements of the the-
orem and thus allow negative patch correlations σAB < 0,
the observation remains valid that we can obtain very small
expected absolute values of the SSIM measure by using
any randomized attribution map which is statistically in-
dependent over pixels of input images and therefore not
informative.

Secondly, the proof of Theorem 1 is not affected by di-
vision of the term σAB by constants. Consequently, when
using normalization on the attribution maps, the result from
Theorem 1 still holds that attributions with zero patch-wise
correlation attain very low scores among all normalized at-
tribution maps.

Interestingly, this explains why certain gradient-based
methods with rather noisy attribution maps pass this type
of model randomization-based sanity checks with the best
scores in the sense of lowest SSIM values. Gradients are
known for ReLU-networks to have statistics which resemble
noise processes, as has been shown in [7]. This carries
over to Gradient × Input and to a lesser degree to smoothed
versions like Integrated Gradient [27] and SmoothGrad [24].

Theorem 1 has one important consequence: One cannot
disentangle the effects of model randomization from the
amount of noise in an attribution process in model random-
ization sanity checks. Therefore it is problematic to use this
type of model-randomization-based sanity check to compare
or rank different attribution maps against each other.

4. Randomization Leaves the Model and Expla-
nations Partly Unchanged

The section above has highlighted that explanations may
score highly in the sanity check due to including further ran-
dom factors in the explanation, which contradicts the princi-
ple that an explanation should faithfully depict the function
to explain and not a random component. This concerns the
measurement process after randomization.

In this section, we review the top-down randomization
process itself. We will explain why it actually makes sense
to underperform in model-based randomization checks, con-
trary to a first glance intuition.
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Figure 1. Results of model faithfulness via occlusion testing, by measuring the correlation to iterative occlusion with a kernel size of 15.
Softmax scores are shown for Gradient, Gradient × Input, Integrated Gradients, Guided Backpropagation and several variants of LRP. The
occlusion is performed by taking patches from a blurred copy of the original image. Legend is given in Figure 2. Lower is better.
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Figure 2. Results of top-down model randomization-based sanity checks with SSIM after normalization of attribution maps by their second
moment. Lower is better.

Specifically, we will show that certain activation statis-
tics of the network are only mildly affected by top-down
randomization and thus cause low-noise explanations before
and after randomization to retain some similarity.

4.1. Preservation of Irrelevance in Explanations

We first start with an empirical observation that features
found to be irrelevant for a given task tend to remain ir-
relevant after randomization. Our experiment is based on
torchvision’s VGG-16 pretrained model, where we keep the
mapping from the input to layer 12 unchanged and random-
ize the remaining layers. We apply LRP with the zB-rule in
the first layer, redistribution in proportion to squared activa-
tions in the pooling layers, LRP-γ in the convolution layers
with layer-wise exponential decay from γ = 1.0 to γ = 0.01,
and LRP-0 in the dense layers. We inspect in Fig. 4 (right)
explanations produced before and after randomization.

We observe that many spatial structures are retained be-
fore and after randomization, specifically, relevant or nega-
tively contributing pixels are found before and after random-
ization on the facial and hat features, on the outline of the
fish, on the finger contours, on the flagstick, on the ball, on
the hole, etc. Conversely, some features remain irrelevant
before and after randomization, e.g. the lake surface, the skin
and the grass. Such similarities lead to similarity scores be-
fore and after randomization that remain significantly above

randomized layers

Figure 3. Diagram of a neural network where the top few layers
have been randomized (shown in brown).

zero, especially if considering heatmaps absolute scores.
We now provide a formal argument showing that for an

explanation to be faithful, some irrelevant features must nec-
essarily remain irrelevant after randomization, thereby rais-
ing the similarity score. Let us denote by θR the parameters
that are randomized and write the model as a composition of
the non-randomized and the randomized part:

f(x, θR) = g(ϕ(x), θR) . (3)

The function is depicted in Figure 3. The first part ϕ contains
the non-randomized layers (and can be understood as a fea-
ture extractor). The second part g contains the randomized
layers (and can be interpreted as the classifier). We make the
following two observations:

1. If the function ϕ is does not respond to some input
feature xi, then g ◦ ϕ also should not respond to xi
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image 1 image 2 image 3
explanation of logit
"tench" for image 1

explanation of logit
"golf ball" for image 2

explanation of logit
"church" for image 3

Figure 4. Experiment where one randomizes parameters of torchvision’s VGG-16 pretrained model between layer 12 and the model
output, and compute LRP explanations (results shown for 5 different seeds). Explanations of the neural network output before and after
randomization for the true class are shown on the right. Explanation of activations at layer 12 are shown on the bottom left.

(no matter whether the function g is the classifier or its
randomized variant),

2. If g ◦ ϕ does not respond to xi then an attribution tech-
nique should reflect this lack of response by assigning
a score 0 to that feature. We note that this property of
attributing low relevance input features to which the
model does not respond is present in common explana-
tion methods, for example, methods such as IG, where
the gradient occurs as a multiplicative factor, LRP-type
explanations, where relevance propagates mostly along
connections with non-zero weights, or explanations de-
rived from axioms such as the Shapley value whose
‘null-player’ axiom also relates explanation properties
to model unresponsiveness.

These two observations can be summarized in the following
logical clause:

ϕ(x) unresponsive to xi

⇒ ∀g : g ◦ ϕ(x) unresponsive to xi

⇒ ∀g : Ei{g ◦ ϕ(x)} small, (4)

where Ei{·} denotes the relevance of feature xi for explain-
ing the prediction given as argument. In other words, one
should expect that any function g (randomized or not) built
on ϕ shares a similar pattern of low relevances, and such
a pattern originates from the lack of response of ϕ to cer-
tain input features. Therefore, we conclude that a top-down
randomization process as performed in [1] can only alter
explanations to a limited extent, and only a less faithful (e.g.
noisy) explanation would enable further improvement w.r.t.
the top-down randomization metric.

To verify that the explanation structure is indeed to some
extent controlled by ϕ, we compute explanations directly

at the output of the function ϕ (sum of activations) and
show the results in Figure 4 (bottom left). We observe a
correlation between feature relevance w.r.t. those activations
and feature relevance w.r.t. the model output. For example,
the lake, the grass, or more generally uniform surfaces are
already less relevant at the output of ϕ, and continue to be
so when considering the output of g. This is consistent with
our theoretical argument that feature irrelevance of some
features to classifier output g is inherited to a significant
degree from the feature map ϕ.

4.2. Preservation of a Baseline Explanation

We show that for certain neural network architectures,
specifically architectures that contain skip connections, a
faithful explanation must further retain an additive base-
line component before and after randomizations. We first
demonstrate the presence of such additive component on the
popular ResNet [10] model and then propose an explanation
for its necessity. The ResNet is structured as a sequence
of multiple modules where each module is structured as a
sequence of parameterized layers, equipped with skip con-
nections. The skip connections enable to better propagate
the forward and backward signal as they simply replicate the
activation and gradients from layer to layer.

Fig. 5 shows for a ResNet-34 model and the same images
as before how randomizing weights at some layer affects
logit scores before and after randomization. Each point in
the scatter plot is one of the 1000 class logits. We observe
significant correlation between the logit before and after ran-
domization. This suggests that the model remains unchanged
to a large extent and a faithful explanation should reflect such
lack of change by producing a similar explanation.

Corresponding explanations are shown in Figure 7 for
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model.layer1[2].conv2 model.layer2[2].conv2 model.layer3[2].conv2input image model.layer4[2].conv2

Figure 5. Effect of randomization on output logits on a ResNet-34 model for three images from ImageNet. Each point in the scatter plot is a
logit for a particular class before and after randomization. Columns correspond to different layers being randomized.

the logit associated to the true class: When randomizing
“layer4.2.conv2” of ResNet-34, the explanation re-
mains largely the same (cf. column 2 and 5). The LRP
explanation technique enables to assess contribution of dif-
ferent components of the neural network, and in our case, we
can identify the role of the skip connection and the weighted
path (cf. columns 3, 4, 6, 7). Interestingly, the explanation
component that passes through the skip connection remains
practically unchanged after randomization, thereby faithfully
reflecting the lack of change at the output of the network (cf.
Figure 5). The (weaker) contribution of the weighted path is
strongly affected by randomization but its addition does not
affect the overall explanation significantly.

We propose a formal argument that predicts the presence
(and necessity) of an additive component for a broader range
of faithful explanation methods, beyond LRP. Consider the
simple architecture drawn in Fig. 6 (top) that mimics parts
of a ResNet: a feature extractor, a skip connection layer, and
a few top-layers. Locally approximating the top layers as a
linear model (and verifying that the approximation holds un-
der a sufficient set of perturbations of the input x), then one
can decompose this approximated model in two terms, one
that depends on the randomized parameter θR, and another
term that is constant w.r.t. θR.

f̂(x; θR) = A(x; θR) +B(x) (5)

(cf. Fig. 6, bottom). In this model, randomization only af-
fects the first component and thus preserves some of the
original logit information. This is what we observe empiri-
cally in Fig. 5 through high correlation scores of logit before
and after randomization. If we further assume usage of an

randomized layer

locally additive surrogate

Figure 6. Top: ResNet-like structure where only one branch con-
tains (randomizable) parameters at a particular layer. Bottom: Ad-
ditive surrogate of the original model.

explanation technique satisfying the linearity property, then
the explanation of the surrogate f̂ decomposes as:

E{f̂(x; θR)} = E{A(x; θR)}+ E{B(x)} (6)

i.e. an explanation component that is affected by randomiza-
tion and another explanation component that remains con-
stant. This constancy under randomization prevents that op-
timal scores in terms of a single-layer randomization-based
sanity check metric are achieved. Hence, our analysis pre-
dicts that attempts to score higher in the sanity check metric
would require degrading the faithfulness of the explanation
(e.g. by introduction of noise in the explanation, or by spuri-
ously removing the additive component).

4.3. Probabilistic Preservation of Highly Activated
Features in the Unrandomized Feature Layers

In this section we show that with high probability over
draws of random parameters θR in Equation (3), regions
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Input

Pretrained Block-Parameters ("layer4.2")

All Paths
Explanation Backpropagated Through...

Skip-Connection
Only

Weighted Path
Only

Random Block-Parameters ("layer4.2")

All Paths
Explanation Backpropagated Through...

Skip-Connection
Only

Weighted Path
Only

Figure 7. Effect of parameter randomization of "layer4.2.conv2" on ResNet-34 Explanations. To generate explanations, LRP-β was applied
in convolution layers, and LRP-ε in dense layers. Despite random parameter re-initialization, only the part of the explanation that is
propagated through the weighted path changes significantly. Due to the skip connections being unaffected, the total explanations barely
change despite randomization.

of ϕ(x) with high activations will contribute highly to the
output f , even when its value changes due to randomization
in g. Unlike in the previous section, this holds for any ReLU
network.

This observation can be explained when considering how
activations are propagated to the next layer in a randomized
network. One can show that small activations have a rather
low probability to obtain the same average contribution to the
output of a neuron as large activations, when being weighted
in a linear combination with zero-mean normal weights. This
statement is formulated for a single neuron in Theorem 2.

Theorem 2 (Low probability for small activations to achieve
the same average contribution to the output as large activa-
tions). Suppose we have two sets of non-negative activations,
XL and XS such that the activations of one set are by a fac-
tor of at least K larger than of the other set:

min
xl∈XL

xl ≥ K max
xs∈XS

xs (7)

Then the probability under draws of zero-mean normal
weights w ∼ N(0, σ2) that the summed contribution of neu-
rons in XS surpasses the summed contribution of neurons in
XL, that is

0 <
∑

xl∈XL

wlxl ≤
∑

xs∈XS

wsxs , (8)

is the tail-CDF P (Z ≥ K) of a Cauchy-distribution with

parameter γ =
√

|XS |
|XL| and input value of at least K.

The proof of Theorem 2 is in Supplement Section E. For
probability estimates based on activation statistics of trained
networks see Section I of the supplement.

To note, Theorem 2 is independent of any explanation
method used. It is a statement about the preservation of
relative scales of forward pass activations. It says that even
though the function output value itself changes substantially
under randomization, channels with large activation values
still contribute highly to the output.

This effect has an impact on explanation value scales:
In ReLU networks, with neurons being modeled as y =
max(0,

∑
i wixi + b), the differences in contributions of

two inputs wixi to a neuron output y in many cases translate
to differences in explanation scores R(xi) which the inputs
xi will receive.

Many explanation methods R(·) satisfy for non-
decreasing activations the monotonicity property that if we
consider two inputs xi, xj which have no other connections
except to neuron y, and the network assigns positive rele-
vance R(y) > 0 to y, then

wixi ≥ wjxj > 0 implies |R(xi)| ≥ |R(xj)| . (9)

This holds for Gradient × Input, Shapley values, and β-LRP.
See Supplement Section F for a proof.

Using the monotonicity property to go from activations
to explanations, we can conclude that the probability is
low to achieve equally large absolute explanation values
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∑
xi∈XS

|R(wixi)| for inputs from the small valued set XS

in Theorem 2, when compared to
∑

xi∈XL
|R(wixi)| from

the set of large values XL.1

Therefore, with high probability, explanations are also
dominated by regions which have channels in the last unran-
domized feature map with large activation values.

Theorem 2 and the subsequent backward pass argument
hold for a single neuron. We can see that what the theoretical
result predicts for a single neuron is consistent with what we
observe empirically for the whole network exemplarily in
Figure 4 and generally in explanations computed with GB
and LRP. The above provides a theoretical justification for
the exemplary observations in Figure 4, where one can see
salient structures from the input image in the explanation
heatmaps after top-down network randomization.

In brief, explanation heatmaps will be dominated with
high probability by regions with high activations irrespective
of randomization on top, thus showing limited variability
under randomization. This has implications regarding the
usage of top-down randomization tests to compare attribu-
tion methods: a higher variability does not imply a better
explanation, when it is beyond what can be expected from
the dominating high activations in the forward pass.

A further property which is preserved is shown in the Sup-
plement Section G. The randomization-based sanity check
fails to account for these necessary invariances of the model
and explanation under randomization. This misalignment is
particularly strong if testing the effect of randomization on
the absolute attribution scores instead of the signed attribu-
tion scores. The necessity to use signed scores rather than
absolute ones, as well as the limited change to the explana-
tion one can expect under randomization of parameters was
also emphasized in [26].

Given the discrepancy between model faithfulness mea-
sures and top-down model-based randomization checks, we
remark that model faithfulness testing changes an input sam-
ple towards a partially implausible sample. Therefore it is not
a perfect criterion. Another drawback is the non-uniqueness
of local modifications. Different choices of local modifica-
tions will yield different measurements. However, model
faithfulness testing assesses a property of explanations for a
given trained model. Model randomization changes a trained
model into a predominantly implausible model given the
training data. Therefore it is not clear what practical aspect
of a given realistically trained model top-down model ran-
domization intends to measure. It seems to be unrelated
to any use-case in the deployment of a fixed well-trained
model.

1If we intend to achieve equal averaged (instead of summed) absolute
explanation values 1

|XS/L|
∑

xi∈XS/L
|R(wixi)|, corresponding to two

regions XS and XL with equal explanation scores, then a version of Theo-

rem 2 holds in which γ∗ =
√

|XL|
|XS | is inverted. See Supplement Section E

for a proof.

If aiming at showing sensitivity to randomization, bottom-
up randomization could exhibit different (and ecologically
valid) properties, because it removes strongly activated fea-
tures from a model, which were the starting point in Theorem
2.

5. Conclusion and Outlook

In this paper we caution against the use of any singular
method as a sole criterion to evaluate explanations, and sug-
gest to rely on a combination of different methods for a more
robust evaluation. Our study is motivated by a substantial
empirical discrepancy between the scores produced by the
randomization approach, and occlusion-based methods for
evaluating faithfulness, in particular region perturbation [20].

Note that our theoretical and empirical results do not
contradict the overall claim of [1] that a perturbation of the
parameters of the model should induce a perturbation of
its prediction behavior, which in turn should also perturb
the explanation. The issue is rather that the similarity score
should only be used as a binary test to support the presence
or absence of an effect of randomization on the explanation,
but not to discriminate between methods.

We have presented two main factors that explain the dis-
crepancy between randomization-based similarity scores and
the outcome of input perturbation tests: Firstly, the similar-
ity scores used to measure the effect of randomization can
be decreased artificially (and significantly) by introducing
noise in the explanation. Such noise can be inherited from
the gradient, which is typically highly varying and largely
decoupled from the actual prediction for deep architectures.

Secondly, model randomization only alters the prediction
behavior to a certain extent, often due to fixed elements in
the model such as skip connections or invariances inherited
from the lower layers. Hence, a maximally dissimilar expla-
nation after randomization may not account for the partly
unchanged prediction behavior of the randomized model.

These factors suggest directions for achieving a better
correlation between similarity scores after randomization
and evaluations of explanation faithfulness. These include
(1) to only measure change w.r.t. input features to which the
model is not invariant to (such features can be identified by
attributing intermediate-layer activations to the input layer
and retaining only input features with non-zero attribution
scores), and (2) to identify the non-baseline component of
the function, and only assess whether the explanation of
that non-baseline component has been randomized (e.g. to
exclude from the explanation what passes through the skip
connections). Bottom-up randomization might be partially
addressing the issue of large activations of (1).

Nevertheless, these possible refinements must address
the specificity of individual architectures, thereby losing the
universality of the original randomization test.
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