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“A horse galloping through van Gogh’s ‘Starry Night’”

“A dog wearing virtual reality goggles in sunset, 4k, high resolution”

“The Orient Express driving through a fantasy landscape, animated oil on canvas”

Figure 1. Video LDM samples. Top: Text-to-Video generation. Bottom: 512× 1024 resolution real driving scene video generation.

Abstract

Latent Diffusion Models (LDMs) enable high-quality im-
age synthesis while avoiding excessive compute demands
by training a diffusion model in a compressed lower-
dimensional latent space. Here, we apply the LDM
paradigm to high-resolution video generation, a particu-
larly resource-intensive task. We first pre-train an LDM
on images only; then, we turn the image generator into a
video generator by introducing a temporal dimension to the
latent space diffusion model and fine-tuning on encoded im-
age sequences, i.e., videos. Similarly, we temporally align
diffusion model upsamplers, turning them into temporally
consistent video super resolution models. We focus on two
relevant real-world applications: Simulation of in-the-wild
driving data and creative content creation with text-to-video
modeling. In particular, we validate our Video LDM on

real driving videos of resolution 512 × 1024, achieving
state-of-the-art performance. Furthermore, our approach
can easily leverage off-the-shelf pre-trained image LDMs,
as we only need to train a temporal alignment model in
that case. Doing so, we turn the publicly available, state-
of-the-art text-to-image LDM Stable Diffusion into an ef-
ficient and expressive text-to-video model with resolution
up to 1280 × 2048. We show that the temporal layers
trained in this way generalize to different fine-tuned text-
to-image LDMs. Utilizing this property, we show the first
results for personalized text-to-video generation, opening
exciting directions for future content creation. Project page:
https://nv-tlabs.github.io/VideoLDM/
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Figure 2. Temporal Video Fine-Tuning.
We turn pre-trained image diffusion mod-
els into temporally consistent video gener-
ators. Initially, different samples of a batch
synthesized by the model are independent.
After temporal video fine-tuning, the sam-
ples are temporally aligned and form co-
herent videos. The stochastic generation
process before and after fine-tuning is visu-
alised for a diffusion model of a one-dim.
toy distribution. For clarity, the figure cor-
responds to alignment in pixel space. In
practice, we perform alignment in LDM’s
latent space and obtain videos after ap-
plying LDM’s decoder (see Fig. 3). We
also video fine-tune diffusion model up-
samplers in pixel or latent space (Sec. 3.4).

1. Introduction
Generative models of images have received unprece-

dented attention, owing to recent breakthroughs in the un-
derlying modeling methodology. The most powerful mod-
els today are built on generative adversarial networks [21,
38–40, 75], autoregressive transformers [15, 63, 105], and
most recently diffusion models [10, 28, 29, 57, 58, 62, 65,
68, 79, 82]. Diffusion models (DMs) in particular have de-
sirable advantages; they offer a robust and scalable train-
ing objective and are typically less parameter intensive than
their transformer-based counterparts. However, while the
image domain has seen great progress, video modeling
has lagged behind—mainly due to the significant computa-
tional cost associated with training on video data, and the
lack of large-scale, general, and publicly available video
datasets. While there is a rich literature on video synthe-
sis [1, 6, 8, 9, 17, 19, 22, 23, 32, 32, 37, 42, 44, 47, 51, 55, 59,
71, 78, 85, 91, 94, 97–99, 103, 106], most works, including
previous video DMs [24, 31, 33, 93, 104], only generate rel-
atively low-resolution, often short, videos. Here, we ap-
ply video models to real-world problems and generate high-
resolution, long videos. Specifically, we focus on two rel-
evant real-world video generation problems: (i) video syn-
thesis of high-resolution real-word driving data, which has
great potential as a simulation engine in the context of au-
tonomous driving, and (ii) text-guided video synthesis for
creative content generation; see Fig. 1.

To this end, we build on latent diffusion models (LDMs),
which can reduce the heavy computational burden when
training on high-resolution images [65]. We propose Video
LDMs and extend LDMs to high-resolution video genera-
tion, a particularly compute-intensive task. In contrast to
previous work on DMs for video generation [24, 31, 33, 93,
104], we first pre-train our Video LDMs on images only (or
use available pre-trained image LDMs), thereby allowing
us to leverage large-scale image datasets. We then trans-
form the LDM image generator into a video generator by

introducing a temporal dimension into the latent space DM
and training only these temporal layers on encoded image
sequences, i.e., videos (Fig. 2), while fixing the pre-trained
spatial layers. We similarly fine-tune LDM’s decoder to
achieve temporal consistency in pixel space (Fig. 3). To
further enhance the spatial resolution, we also temporally
align pixel-space and latent DM upsamplers [29], which
are widely used for image super resolution [43, 65, 68, 69],
turning them into temporally consistent video super resolu-
tion models. Building on LDMs, our method can generate
globally coherent and long videos in a computationally and
memory efficient manner. For synthesis at very high reso-
lutions, the video upsampler only needs to operate locally,
keeping training and computational requirements low. We
ablate our method and test on 512×1024 real driving scene
videos, achieving state-of-the-art video quality, and synthe-
size videos of several minutes length. We also video fine-
tune a powerful, publicly available text-to-image LDM, Sta-
ble Diffusion [65], and turn it into an efficient and powerful
text-to-video generator with resolution up to 1280 × 2048.
Since we only need to train the temporal alignment layers in
that case, we can use a relatively small training set of cap-
tioned videos. By transferring the trained temporal layers to
differently fine-tuned text-to-image LDMs, we demonstrate
personalized text-to-video generation for the first time. We
hope our work opens new avenues for efficient digital con-
tent creation and autonomous driving simulation.

Contributions. (i) We present an efficient approach for
training high-resolution, long-term consistent video genera-
tion models based on LDMs. Our key insight is to leverage
pre-trained image DMs and turn them into video generators
by inserting temporal layers that learn to align images in a
temporally consistent manner (Figs. 2 and 3). (ii) We fur-
ther temporally fine-tune super resolution DMs, which are
ubiquitous in the literature. (iii) We achieve state-of-the-art
high-resolution video synthesis performance on real driv-
ing scene videos, and we can generate multiple minute long
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Figure 3. Top: During temporal decoder fine-tuning, we process
video sequences with a frozen encoder, which processes frames
independently, and enforce temporally coherent reconstructions
across frames. We additionally employ a video-aware discrimina-
tor. Bottom: in LDMs, a diffusion model is trained in latent space.
It synthesizes latent features, which are then transformed through
the decoder into images. Note that the bottom visualization is for
individual frames; see Fig. 2 for the video fine-tuning framework
that generates temporally consistent frame sequences.

videos. (iv) We transform the publicly available Stable Dif-
fusion text-to-image LDM into a powerful and expressive
text-to-video LDM, and (v) show that the learned temporal
layers can be combined with different image model check-
points (e.g., DreamBooth [66]).

2. Background
DMs [28, 79, 82] learn to model a data distribution

pdata(x) via iterative denoising and are trained with denois-
ing score matching [28,34,50,79,81,82,92]: Given samples
x ∼ pdata, diffused inputs xτ = ατx + στϵ, ϵ ∼ N (0, I)
are constructed; ατ and στ define a noise schedule, param-
eterized via a diffusion-time τ , such that the logarithmic
signal-to-noise ratio λτ = log(α2

τ/σ
2
τ ) monotonically de-

creases. A denoiser model fθ (parameterized with learnable
parameters θ) receives the diffused xτ as input and is opti-
mized minimizing the denoising score matching objective

Ex∼pdata,τ∼pτ ,ϵ∼N (0,I)

[
∥y − fθ(xτ ; c, τ)∥22

]
, (1)

where c is optional conditioning information, such as a text
prompt, and the target vector y is either the random noise ϵ
or v = ατϵ − στx. The latter objective (often referred to
as v-prediction) has been introduced in the context of pro-
gressive distillation [73] and empirically often yields faster
convergence of the model (here, we use both objectives).
Furthermore, pτ is a uniform distribution over the diffu-
sion time τ . The forward diffusion as well as the reverse
generation process in diffusion models can be described
via stochastic differential equations in a continuous-time

framework [82] (see Figs. 2 and 3), but in practice a fixed
discretization can be used [28]. The maximum diffusion
time is generally chosen such that the input data is entirely
perturbed into Gaussian random noise and an iterative gen-
erative denoising process that employs the learned denoiser
fθ can be initialized from such Gaussian noise to synthe-
size novel data. Here, we use pτ ∼ U{0, 1000} and rely
on a variance-preserving noise schedule [82], for which
σ2
τ = 1− α2

τ (see Appendices F and H for details).
Latent Diffusion Models (LDMs) [65] improve in com-

putational and memory efficiency over pixel-space DMs by
first training a compression model to transform input im-
ages x∼pdata into a spatially lower-dimensional latent space
of reduced complexity, from which the original data can be
reconstructed at high fidelity. In practice, this approach is
implemented with a regularized autoencoder, which recon-
structs inputs x via an encoder module E and a decoder D,
such that the reconstruction x̂=D(E(x))≈x (Fig. 3). To en-
sure photorealistic reconstructions, an adversarial objective
can be added to the autoencoder training [65], which is im-
plemented using a patch-based discriminator [35]. A DM
can then be trained in the compressed latent space and x in
Eq. (1) is replaced by its latent representation z=E(x). This
latent space DM can be typically smaller in terms of pa-
rameter count and memory consumption compared to cor-
responding pixel-space DMs of similar performance.

3. Latent Video Diffusion Models
Here we describe how we video fine-tune pre-trained im-

age LDMs (and DM upsamplers) for high-resolution video
synthesis. We assume access to a dataset pdata of videos,
such that x ∈ RT×3×H̃×W̃ , x ∼ pdata is a sequence of T
RGB frames, with height and width H̃ and W̃ .

3.1. Turning Latent Image into Video Generators

Our key insight for efficiently training a video genera-
tion model is to re-use a pre-trained, fixed image generation
model; an LDM parameterized by parameters θ. Formally,
let us denote the neural network layers that comprise the
image LDM and process inputs over the pixel dimensions
as spatial layers liθ, with layer index i. However, although
such a model is able to synthesize individual frames at high
quality, using it directly to render a video of T consecutive
frames will fail, as the model has no temporal awareness.
We thus introduce additional temporal neural network lay-
ers liϕ, which are interleaved with the existing spatial layers
liθ and learn to align individual frames in a temporally con-
sistent manner. These L additional temporal layers {liϕ}Li=1

define the video-aware temporal backbone of our model,
and the full model fθ,ϕ is thus the combination of the spa-
tial and temporal layers; see Fig. 4 for a visualization.

We start from a frame-wise encoded input video E(x) =
z ∈ RT×C×H×W , where C is the number of latent channels
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Figure 4. Left: We turn a pre-trained LDM into a video generator
by inserting temporal layers that learn to align frames into tempo-
rally consistent sequences. During optimization, the image back-
bone θ remains fixed and only the parameters ϕ of the temporal
layers liϕ are trained, cf . Eq. (2). Right: During training, the base
model θ interprets the input sequence of length T as a batch of im-
ages. For the temporal layers liϕ, these batches are reshaped into
video format. Their output z′ is combined with the spatial output
z, using a learned merge parameter α. During inference, skip-
ping the temporal layers (αi

ϕ=1) yields the original image model.
For illustration purposes, only a single U-Net Block is shown. B
denotes batch size, T sequence length, C input channels and H
and W the spatial dimensions of the input. cS is optional context
frame conditioning, when training prediction models (Sec. 3.2).

and H and W are the spatial latent dimensions. The spatial
layers interpret the video as a batch of independent images
(by shifting the temporal axis into the batch dimension), and
for each temporal mixing layer liϕ, we reshape back to video
dimensions as follows (using einops [64] notation):

z′ ← rearrange(z, (b t) c h w→ b c t h w)

z′ ← liϕ(z
′, c)

z′ ← rearrange(z′, b c t h w→ (b t) c h w),

where we added the batch dimension b for clarity. In other
words, the spatial layers treat all B·T encoded video frames
independently in the batch dimension b, while the tempo-
ral layers liϕ(z

′, c) process entire videos in a new temporal
dimension t. Furthermore, c is (optional) conditioning in-
formation such as a text prompt. After each temporal layer,
the output z′ is combined with z as αi

ϕz+(1−αi
ϕ)z

′; αi
ϕ ∈

[0, 1] denotes a (learnable) parameter (also Appendix D).
In practice, we implement two different kinds of tem-

poral mixing layers: (i) temporal attention and (ii) residual
blocks based on 3D convolutions, cf . Fig. 4. We use si-
nusoidal embeddings [28, 89] to provide the model with a
positional encoding for time.

Our video-aware temporal backbone is then trained us-
ing the same noise schedule as the underlying image model,
and, importantly, we fix the spatial layers liθ and only opti-
mize the temporal layers liϕ via

argmin
ϕ

Ex∼pdata,τ∼pτ ,ϵ∼N (0,I)

[
∥y − fθ,ϕ(zτ ; c, τ)∥22

]
, (2)

1. Generate Latent  
Key Frames        
(optionally including 
prediction model)

2. Latent Frame 
Interpolation I

3. Latent Frame 
Interpolation II

4. Decode to      
Pixel-Space

5. Apply Video 
Upsampler

...

...

...

All Parameters 
Shared

Image Backbone
Shared

Interpolation
LDM

Interpolation
LDM

Key Frame
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Upsampler
(L)DM

LDM 
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Figure 5. Video LDM Stack. We first generate sparse key frames.
Then we temporally interpolate in two steps with the same inter-
polation model to achieve high frame rates. These operations are
all based on latent diffusion models (LDMs) that share the same
image backbone. Finally, the latent video is decoded to pixel space
and optionally a video upsampler diffusion model is applied.

where zτ denotes diffused encodings z = E(x). This way,
we retain the native image generation capabilities by simply
skipping the temporal blocks, e.g. by setting αi

ϕ = 1 for
each layer. A crucial advantage of our strategy is that huge
image datasets can be used to pre-train the spatial layers,
while the video data, which is often less widely available,
can be utilized for focused training of the temporal layers.

3.1.1 Temporal Autoencoder Finetuning

Our video models build on pre-trained image LDMs. While
this increases efficiency, the autoencoder of the LDM is
trained on images only, causing flickering artifacts when
encoding and decoding a temporally coherent sequence of
images. To counteract this, we introduce additional tempo-
ral layers for the autoencoder’s decoder, which we finetune
on video data with a (patch-wise) temporal discriminator
built from 3D convolutions, cf . Fig. 3. Note that the en-
coder remains unchanged from image training such that the
image DM that operates in latent space on encoded video
frames can be re-used. As demonstrated by computing re-
construction FVD [87] scores in Table 3, this step is critical
for achieving good results.

3.2. Prediction Models for Long-Term Generation

Although the approach described in Sec. 3.1 is efficient
for generating short video sequences, it reaches its limits
when it comes to synthesizing very long videos. Therefore,
we also train models as prediction models given a number
of (first) S context frames. We implement this by introduc-
ing a temporal binary mask mS which masks the T − S
frames the model has to predict, where T is the total se-
quence length as in Sec. 3.1. We feed this mask and the
masked encoded video frames into the model for condition-
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Figure 6. 1280 × 2048 resolution samples from our Stable Diffusion-based text-to-video LDM, including video fine-tuned upsampler.
Prompts: “An astronaut flying in space, 4k, high resolution” and “Milk dripping into a cup of coffee, high definition, 4k”.

ing. Specifically, the frames are encoded with LDM’s image
encoder E , multiplied by the mask, and then fed (channel-
wise concatenated with the masks) into the temporal lay-
ers liϕ after being processed with a learned downsampling
operation, see Fig. 4. Let cS = (mS ◦ z,mS) denote the
concatenated spatial conditioning of masks and masked (en-
coded) images. Then, the objective from Eq. (2) reads

Ex∼pdata,mS∼pS ,τ∼pτ ,ϵ

[
∥y − fθ,ϕ(zτ ; cS , c, τ)∥22

]
, (3)

where pS represents the (categorical) mask sampling distri-
bution. In practice, we learn prediction models that con-
dition either on 0, 1 or 2 context frames, allowing for
classifier-free guidance as discussed below.

During inference, for generating long videos, we can ap-
ply the sampling process iteratively, re-using the latest pre-
dictions as new context. The first initial sequence is gener-
ated by synthesizing a single context frame from the base
image model and generating a sequence based on that; af-
terwards, we condition on two context frames to encode
movement (details in Appendix). To stabilize this process,
we found it beneficial to use classifier-free diffusion guid-
ance [30], where we guide the model during sampling via

f ′θ,ϕ(zτ ; cS) = fθ,ϕ(zτ ) + s · (fθ,ϕ(zτ ; cS)− fθ,ϕ(zτ )) (4)

where s≥1 denotes the guidance scale and we dropped the
explicit conditioning on τ and other information c for read-
ability. We refer to this guidance as context guidance.

3.3. Temporal Interpolation for High Frame Rates

High-resolution video is characterized not only by high
spatial resolution, but also by high temporal resolution, i.e.,
a high frame rate. To achieve this, we divide the synthe-
sis process for high-resolution video into two parts: The
first is the process described in Sec. 3.1 and Sec. 3.2, which
can generate key frames with large semantic changes, but
(due to memory constraints) only at a relatively low frame
rate. For the second part, we introduce an additional model
whose task is to interpolate between given key frames. To

implement this, we use the masking-conditioning mecha-
nism introduced in Sec. 3.2. However, unlike the predic-
tion task, we now mask the frames to be interpolated—
otherwise, the mechanism remains the same, i.e., the image
model is refined into a video interpolation model. In our ex-
periments, we predict three frames between two given key
frames, thereby training a T → 4T interpolation model. To
achieve even larger frame rates, we train the model simul-
taneously in the T → 4T and 4T → 16T regimes (using
videos with different fps), specified by binary conditioning.

Our training approach for prediction and interpolation
models is inspired by recent works [24,33,93] that use sim-
ilar masking techniques (also see Appendix C).

3.4. Temporal Fine-tuning of SR Models
Although the LDM mechanism already provides a good

native resolution we aim to push this towards the megapixel
range. We take inspiration from cascaded DMs [29] and
use a DM to further scale up the Video LDM outputs by
4×. For our driving video synthesis experiments, we use a
pixel-space DM [29] (Sec. 4.1) and scale to 512×1024; for
our text-to-video models, we use an LDM upsampler [65]
(Sec. 4.2) and scale to 1280× 2048. We use noise augmen-
tation with noise level conditioning [29, 68] and train the
super resolution (SR) model gθ,ϕ (on images or latents) via

Ex∼pdata,(τ,τγ)∼pτ ,ϵ∼N (0,I)

[
∥y − gθ,ϕ(xτ ; cτγ , τγ , τ)∥

2
2

]
(5)

where cτγ = ατγx+ στγϵ, ϵ ∼ N (0, I), denotes a noisy
low-resolution image given to the model via concatenation,
and τγ the amount of noise added to the low-resolution im-
age following the noise schedule ατ , στ .

Since upsampling video frames independently would re-
sult in poor temporal consistency, we also make this SR
model video-aware. We follow the mechanism introduced
in Sec. 3.1 with spatial layers liθ and temporal layers liϕ
and similarly video fine-tune the upscaler, conditioning on a
low-resolution sequence of length T and concatenating low-
resolution video images frame-by-frame. Since the upscaler
operates locally, we conduct all upscaler training efficiently
on patches only and later apply the model convolutionally.
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Figure 7. 512 × 1024 resolution video modeling of real-world driving scenes with our Video LDM and video upsampler. Top: (Night
time) Driving Video Generation. Middle: Multimodal Driving Scenario Prediction: We simulate two different scenarios given the
same initial frame (red). Bottom: Specific Driving Scenario Simulation: We synthesize a scenario based on a manually designed, initial
scene generated with a bounding box-conditioned Image LDM (yellow). More examples in the Appendix I.3.

Overall, we believe that the combination of an LDM
with an upsampler DM is ideal for efficient high-resolution
video synthesis. On the one hand, the main LDM compo-
nent of our Video LDM leverages a computationally effi-
cient, compressed latent space to perform all video mod-
eling. This allows us to use large batch sizes and jointly
encode more video frames, which benefits long-term video
modeling, without excessive memory demands, as all video
predictions and interpolations are carried out in latent space.
On the other hand, the upsampler can be trained in an effi-
cient patch-wise manner, therefore similarly saving compu-
tational resources and reducing memory consumption, and
it also does not need to capture long-term temporal corre-
lations due to the low-resolution conditioning. Therefore,
no prediction and interpolation framework is required for
this component. A model overview, bringing together all
components from Sec. 3.1 to Sec. 3.4, is depicted in Fig. 5.

A discussion of related work can be found in Appendix C.

4. Experiments
Datasets. Since we focus on driving scene video gen-

eration as well as text-to-video, we use two correspond-
ing datasets/models: (i) An in-house dataset of real driving
scene (RDS) videos. The dataset consists of 683,060 videos
of 8 seconds each at resolution 512 × 1024 (H ×W ) and
frame rate up to 30 fps. Furthermore, the videos have bi-
nary night/day labels, annotations for the number of cars
in a scene (“crowdedness”), and a subset of the data also
has car bounding boxes. (ii) We use the WebVid-10M [2]
dataset to turn the publicly available Stable Diffusion Im-
age LDM [65] into a Video LDM. WebVid-10M consists of

10.7M video-caption pairs with a total of 52K video hours.
We resize the videos into resolution 320× 512. (iii) More-
over, in Appendix I.2, we show experiments on the Moun-
tain Biking dataset by Brooks et al. [6].

Evaluation Metrics. To evaluate our models, we use
frame-wise Fréchet Inception Distance (FID) [26] as well
as Fréchet Video Distance (FVD) [87]. Since FVD can be
unreliable (discussed, for instance, by Brooks et al. [6]),
we additionally perform human evaluation. For our text-to-
video experiments, we also evaluate CLIP similarity (CLIP-
SIM) [98] and (video) inception score (IS) (Appendix G).

Model Architectures and Sampling. Our Image LDMs
are based on Rombach et al. [65]. They use convolu-
tional encoders and decoders, and their latent space DM
architecture build on the U-Net by Dhariwal et al. [10].
Our pixel-space upsampler DMs use the same Image
DM backbone [10]. DM sampling is performed using
DDIM [80] in all experiments.

Further architecture, training, evaluation, sampling and
dataset details can be found in the Appendix.

4.1. High-Resolution Driving Video Synthesis

We train our Video LDM pipeline, including a 4× pixel-
space video upsampler, on the real driving scene (RDS)
data. We condition on day/night labels and crowdedness,
and randomly drop these labels during training to allow for
classifier-free guidance and unconditional synthesis (we do
not condition on bounding boxes here). Following the pro-
posed training strategy above, we first train the image back-
bone LDM (spatial layers) on video frames independently,
before we then train the temporal layers on videos. We also
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Table 1. Left: Comparison with LVG on RDS; Right: Ablations.

Method FVD FID

LVG [6] 478 53.5
Ours 389 31.6
Ours (cond.) 356 51.9

Method FVD FID

Pixel-baseline 639,56 59.70
End-to-end LDM 1155.10 71.26
Attention-only 704.41 50.01

Ours 534.17 48.26
Ours (context-guided) 508.82 54.16

Table 2. User study on Driving Video Synthesis on RDS.

Method Pref. A Pref. B Equal

Ours (cond.) v.s Ours (uncond.) 49.33 42.67 8.0
Ours (uncond.) v.s LVG 54.02 40.23 5.74
Ours (cond.) v.s LVG 62.03 31.65 6.33

Table 3. Left: Evaluating temporal fine-tuning for diffusion up-
samplers on RDS data; Right: Video fine-tuning of the first stage
decoder network leads to significantly improved consistency.

Method FVD FID

Ours Image Upsampler 165.98 19.71
Ours Video Upsampler 45.39 19.85

Decoder image-only finetuned

FVD 390.88 32.94
FID 7.61 9.17

train Long Video GAN (LVG) [6], the previous state-of-
the-art in long-term high-resolution video synthesis, on the
RDS data to serve as main baseline. Table 1 (left) shows
our main results for the Video LDM at 128×256 resolution,
without upsampler. We show both performance of our
model with and without conditioning on crowdedness and
day/night. Our Video LDM generally outperforms LVG and
adding conditioning further reduces FVD. Table 2 shows
our human evaluation: Our samples are generally preferred
over LVG in terms of realism, and samples from our condi-
tional model are also preferred over unconditional samples.

Next, we compare our video fine-tuned pixel-space up-
sampler with independent frame-wise image upsampling
(Table 3), using 128 × 256 30 fps ground truth videos for
conditioning. We find that temporal alignment of the up-
sampler is crucial for high performance. FVD degrades sig-
nificantly, if the video frames are upsampled independently,
indicating loss of temporal consistency. As expected, FID
is essentially unaffected, because the individual frames are
still of high quality when upsampled independently.

In Fig. 1 (bottom) and Fig. 7 (top), we show conditional
samples from the combined Video LDM and video upsam-
pler model. We observe high-quality videos. Moreover,
using our prediction approach, we find that we can gener-
ate very long, temporally coherent high-resolution driving
videos of multiple minutes. We validated this for up to 5
minutes; see Appendix and supplementary video for results.

4.1.1 Ablation Studies

To show the efficacy of our design choices (Sec. 3), we com-
pare a smaller version of our Video LDM with various base-
lines on the RDS dataset and present the results in Table 1
(right) (for evaluation details, see Appendix G). First, using
the exact same architecture as for our Video LDM, we apply

our temporal finetuning strategy to a pre-trained pixel-space
image diffusion model, which is clearly outperformed by
ours. Further, we train an End-to-End LDM, whose entire
set of parameters {θ, ϕ} is learned on RDS videos without
image pre-training of θ, leading to heavy degradations both
in FID and FVD, when compared with our Video LDM.
Another important architectural choice is the introduction
of 3D convolutional temporal layers, since they allow us to
feed the context frames cS to the network spatially. This
model achieves both lower FVD and FID scores than an
attention-only temporal model, which uses the same set of
spatial layers θ and has the same number of trainable pa-
rameters. Finally, we see that we can further lower FVD
scores by applying context guidance while sacrificing a bit
of visual quality indicated by increased FID scores.

Moreover, we provide an analysis on the effects of
video fine-tuning the decoder of the compression model
(cf . Sec. 3.1.1) which encompasses the LDM frame-
work [65]. We apply our fine-tuning strategy to de-
coders of these compression models on the RDS dataset
and compare both the obtained FVD/FID scores of recon-
structed videos/image frames with those of their non-video-
finetuned counterparts. Video fine-tuning leads to improve-
ments by orders of magnitudes, as can be seen in Table 3.

4.1.2 Driving Scenario Simulation

A high-resolution video generator trained on in-the-wild
driving scenes can potentially serve as a powerful simula-
tion engine. We qualitatively explore this in Fig. 7. Given
an initial frame, our video model can generate several dif-
ferent plausible future predictions. Furthermore, we also
trained a separate, bounding box-conditioned image LDM
on our data (only for image synthesis). A user can now
manually create a scene composition of interest by specify-
ing the bounding boxes of different cars, generate a corre-
sponding image, and then use this image as initialization for
our Video LDM, which can then predict different scenarios
in a multimodal fashion (bottom in Fig. 7).

4.2. Text-to-Video with Stable Diffusion
Instead of first training our own Image LDM backbone,

our Video LDM approach can also leverage existing Image
LDMs and turn them into video generators. To demonstrate
this, we turn the publicly available text-to-image LDM Sta-
ble Diffusion into a text-to-video generator. Specifically, us-
ing the WebVid-10M text-captioned video dataset, we train
a temporally aligned version of Stable Diffusion for text-
conditioned video synthesis. We briefly fine-tune Stable
Diffusion’s spatial layers on frames from WebVid, and then
insert the temporal alignment layers and train them (at res-
olution 320× 512). We also add text-conditioning in those
alignment layers. Moreover, we further video fine-tune the
publicly available latent Stable Diffusion upsampler, which
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DreamBooth
Training Images

“A cat walking, front view, high definition”

“A sks cat walking, front view, high definition”

Figure 8. Left: DreamBooth Training Images. Top row: Video generated by our Video LDM with DreamBooth Image LDM backbone.
Bottom row: Video generated without DreamBooth Image backbone. We see that the DreamBooth model preserves subject identity well.

Table 4. UCF-101 text-to-video generation.
Method Zero-Shot IS (↑) FVD (↓)
CogVideo (Chinese) [32] Yes 23.55 751.34
CogVideo (English) [32] Yes 25.27 701.59
MagicVideo [109] Yes - 699.00
Make-A-Video [76] Yes 33.00 367.23

Video LDM (Ours) Yes 29.49 656.49

Table 5. MSR-VTT text-to-video generation performance.

Method Zero-Shot CLIPSIM (↑)
GODIVA [98] No 0.2402
NÜWA [99] No 0.2439
CogVideo (Chinese) [32] Yes 0.2614
CogVideo (English) [32] Yes 0.2631
Make-A-Video [76] Yes 0.3049

Video LDM (Ours) Yes 0.2848

enables 4× upscaling and allows us to generate videos at
resolution 1280×2048. We generate videos of 4.27 (30 fps)
seconds length. Samples from the trained models are shown
in Figs. 1 and 6. While WebVid-10M consists of photo-
quality real-life videos, we are able to generate highly ex-
pressive and artistic videos beyond the video training data.
This demonstrates that the general image generation capa-
bilities of the Image LDM backbone readily translate to
video generation, even though the video dataset we trained
on is much smaller and limited in diversity and style. The
Video LDM effectively combines the styles and expressions
from the image model with the movements and temporal
consistency learnt from the WebVid videos.

We evaluate zero-shot text-to-video generation on UCF-
101 [83] and MSR-VTT [101] (Tabs. 4 & 5). Evaluation
details in Appendix G. We outperform all baselines except
Make-A-Video [76]. However, Make-A-Video is concur-
rent work, focuses entirely on text-to-video and trains with
more video data than we do. We use only WebVid-10M;
Make-A-Video also uses HD-VILA-100M [102].

In Appendix D, we show how we can apply our model
“convolutional in time” and “convolutional in space”, en-
abling longer and spatially-extended generation without up-
sampler and prediction models. More video samples shown
in Appendix I.1. Experiment details in Appendix H.2.

4.2.1 Personalized Text-to-Video with Dreambooth

Since we have separate spatial and temporal layers in our
Video LDM, the question arises whether the temporal lay-
ers trained on one Image LDM backbone transfer to other
model checkpoints (e.g. fine-tuned). We test this for person-
alized text-to-video generation: Using DreamBooth [66],
we fine-tune our Stable Diffusion spatial backbone on
small sets of images of certain objects, tying their identity
to a rare text token (“sks”). We then insert the temporal
layers from the previously video-tuned Stable Diffusion
(without DreamBooth) into the new DreamBooth version
of the original Stable Diffusion model and generate videos
using the token tied to the training images for DreamBooth
(see Fig. 8 and examples in Appendix I.1.3). We find that
we can generate personalized coherent videos that correctly
capture the identity of the Dreambooth training images.
This validates that our temporal layers generalize to other
Image LDMs. To the best of our knowledge, we are the
first to demonstrate personalized text-to-video generation.

Additional results and experiments in Appendix I.

5. Conclusions
We presented Video Latent Diffusion Models for efficient

high-resolution video generation. Our key design choice is
to build on pre-trained image diffusion models and to turn
them into video generators by temporally video fine-tuning
them with temporal alignment layers. To maintain com-
putational efficiency, we leverage LDMs, optionally com-
bined with a super resolution DM, which we also tempo-
rally align. Our Video LDM can synthesize high-resolution
and temporally coherent driving scene videos of many min-
utes. We also turn the publicly available Stable Diffusion
text-to-image LDM into an efficient text-to-video LDM and
show that the learned temporal layers transfer to different
model checkpoints. We leverage this for personalized text-
to-video generation. We hope that our work can benefit sim-
ulators in the context of autonomous driving research and
help democratize high quality video content creation (see
Appendix B for broader impact and limitations).
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Tal Kachman, and Ioannis Mitliagkas. Gotta go
fast when generating data with score-based models.
arXiv:2105.14080, 2021. 15

[37] Emmanuel Kahembwe and Subramanian Ramamoorthy.
Lower dimensional kernels for video discriminators. Neu-
ral Networks, 132:506–520, 2020. 2, 15

[38] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In Proc. NeurIPS, 2021.
2, 20

[39] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019. 2

[40] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020. 2

[41] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming
Song. Denoising diffusion restoration models. arXiv
preprint arXiv:2201.11793, 2022. 15

[42] Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,
Chelsea Finn, and Sergey Levine. Stochastic adversarial
video prediction. arXiv preprint arXiv:1804.01523, 2018.
2, 15

[43] Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun
Feng, Zhihai Xu, Qi Li, and Yueting Chen. Srdiff: Single
image super-resolution with diffusion probabilistic models.
Neurocomputing, 479:47–59, 2022. 2, 15

[44] Yitong Li, Martin Renqiang Min, Dinghan Shen, David
Carlson, and Lawrence Carin. Video generation from text.
arXiv preprint arXiv:1710.00421, 2017. 2, 16

[45] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo nu-
merical methods for diffusion models on manifolds. In In-
ternational Conference on Learning Representations, 2022.
15

[46] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. Dpm-solver: A fast ode solver for
diffusion probabilistic model sampling in around 10 steps.
arXiv:2206.00927, 2022. 15

[47] Pauline Luc, Aidan Clark, Sander Dieleman, Diego de
Las Casas, Yotam Doron, Albin Cassirer, and Karen Si-
monyan. Transformation-based adversarial video predic-
tion on large-scale data. ArXiv, 2020. 2, 15

[48] Andreas Lugmayr, Martin Danelljan, Andres Romero,
Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:
Inpainting using denoising diffusion probabilistic models.
arXiv preprint arXiv:2201.09865, 2022. 15

[49] Eric Luhman and Troy Luhman. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021. 15

[50] Siwei Lyu. Interpretation and generalization of score
matching. In Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence, UAI ’09, page
359–366, Arlington, Virginia, USA, 2009. AUAI Press. 3

[51] Tanya Marwah, Gaurav Mittal, and Vineeth N. Balasubra-
manian. Attentive semantic video generation using cap-
tions. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 1435–1443, 2017. 2, 16

[52] Chenlin Meng, Ruiqi Gao, Diederik P. Kingma, Stefano Er-
mon, Jonathan Ho, and Tim Salimans. On distillation of
guided diffusion models. arXiv preprint arXiv:2210.03142,
2022. 15

[53] Chenlin Meng, Yutong He, Yang Song, Jiaming Song,
Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:
Guided image synthesis and editing with stochastic differ-
ential equations. In International Conference on Learning
Representations, 2022. 15

[54] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.
Which training methods for gans do actually converge? In

22572



International Conference on Machine Learning (ICML),
2018. 21

[55] Gaurav Mittal, Tanya Marwah, and Vineeth N. Balasub-
ramanian. Sync-draw: Automatic video generation using
deep recurrent attentive architectures. In Proceedings of the
25th ACM International Conference on Multimedia, MM
’17, page 1096–1104, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. 2, 16

[56] Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav
Acha, Yossi Matias, Yael Pritch, Yaniv Leviathan, and
Yedid Hoshen. Dreamix: Video diffusion models are gen-
eral video editors. arXiv preprint arXiv:2302.01329, 2023.
16

[57] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image genera-
tion and editing with text-guided diffusion models. arXiv
preprint arXiv:2112.10741, 2021. 2, 15

[58] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, 2021. 2, 15

[59] Yingwei Pan, Zhaofan Qiu, Ting Yao, Houqiang Li, and
Tao Mei. To create what you tell: Generating videos from
captions. Proceedings of the 25th ACM international con-
ference on Multimedia, 2017. 2, 16

[60] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizad-
wongsa, and Supasorn Suwajanakorn. Diffusion autoen-
coders: Toward a meaningful and decodable representa-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 15

[61] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 21

[62] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022. 2, 15, 16

[63] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In Ma-
rina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research,
pages 8821–8831. PMLR, 18–24 Jul 2021. 2

[64] Alex Rogozhnikov. Einops: Clear and reliable tensor ma-
nipulations with einstein-like notation. In International
Conference on Learning Representations, 2022. 4

[65] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution im-
age synthesis with latent diffusion models. arXiv preprint
arXiv:2112.10752, 2021. 2, 3, 5, 6, 7, 15, 16, 17, 21

[66] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image dissusion models for subject-driven

generation. arXiv preprint arXiv:2208.12242, 2022. 3, 8,
15, 24

[67] Chitwan Saharia, William Chan, Huiwen Chang, Chris A.
Lee, Jonathan Ho, Tim Salimans, David J. Fleet, and Mo-
hammad Norouzi. Palette: Image-to-image diffusion mod-
els. arXiv preprint arXiv:2111.05826, 2021. 15

[68] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-
image diffusion models with deep language understanding.
arXiv preprint arXiv:2205.11487, 2022. 2, 5, 15, 16, 21, 23

[69] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sal-
imans, David J Fleet, and Mohammad Norouzi. Image
super-resolution via iterative refinement. arXiv preprint
arXiv:2104.07636, 2021. 2, 15

[70] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Tempo-
ral generative adversarial nets with singular value clipping.
In ICCV, 2017. 15

[71] Masaki Saito, Shunta Saito, Masanori Koyama, and Sosuke
Kobayashi. Train sparsely, generate densely: Memory-
efficient unsupervised training of high-resolution temporal
gan. International Journal of Computer Vision, May 2020.
2, 15, 21

[72] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved
techniques for training gans. In Advances in Neural Infor-
mation Processing Systems, 2016. 21

[73] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations (ICLR), 2022. 3, 15

[74] Hiroshi Sasaki, Chris G. Willcocks, and Toby P. Breckon.
UNIT-DDPM: Unpaired image translation with denois-
ing diffusion probabilistic models. arXiv preprint
arXiv:2104.05358, 2021. 15

[75] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In ACM SIG-
GRAPH 2022 Conference Proceedings, pages 1–10, 2022.
2

[76] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv:2209.14792, 2022. 8, 16,
21, 24

[77] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Ste-
fano Ermon. D2c: Diffusion-denoising models for few-shot
conditional generation. In Advances in Neural Information
Processing Systems, 2021. 15

[78] Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elho-
seiny. Stylegan-v: A continuous video generator with the
price, image quality and perks of stylegan2. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3626–3636, June 2022. 2,
15

[79] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using

22573



nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, 2015. 2, 3, 15

[80] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2021. 6, 15, 17

[81] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In Proceed-
ings of the 33rd Annual Conference on Neural Information
Processing Systems, 2019. 3

[82] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. In International Conference on Learning Repre-
sentations, 2021. 2, 3, 15

[83] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from
videos in the wild. arXiv preprint arXiv:1212.0402, 2012.
8

[84] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Er-
mon. Dual diffusion implicit bridges for image-to-image
translation. arXiv preprint arXiv:2203.08382, 2022. 15

[85] Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng,
Dimitris N. Metaxas, and Sergey Tulyakov. A good image
generator is what you need for high-resolution video syn-
thesis. In International Conference on Learning Represen-
tations, 2021. 2, 15, 16

[86] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M.
Paluri. Learning spatiotemporal features with 3d convo-
lutional networks. In 2015 IEEE International Conference
on Computer Vision (ICCV), 2015. 21

[87] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly.
Towards accurate generative models of video: A new metric
& challenges. arXiv:1812.01717, 2018. 4, 6, 20

[88] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based
generative modeling in latent space. In Advances in Neural
Information Processing Systems, 2021. 15

[89] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, 2017. 4

[90] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kin-
dermans, Hernan Moraldo, Han Zhang, Mohammad Taghi
Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan.
Phenaki: Variable length video generation from open do-
main textual description. arXiv:2210.02399, 2022. 16

[91] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin,
and Honglak Lee. Decomposing motion and content for
natural video sequence prediction. ICLR, 2017. 2, 15

[92] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural Computation, 23(7):1661–
1674, 2011. 3

[93] Vikram Voleti, Alexia Jolicoeur-Martineau, and Christo-
pher Pal. Mcvd: Masked conditional video diffusion for
prediction, generation, and interpolation. arXiv preprint
arXiv:2205.09853, 2022. 2, 5, 16

[94] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.
Generating videos with scene dynamics. In Proceedings of
the 30th International Conference on Neural Information
Processing Systems, 2016. 2, 15

[95] Yaohui Wang, Piotr Bilinski, Francois Bremond, and An-
titza Dantcheva. G3an: Disentangling appearance and mo-
tion for video generation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.
15

[96] Daniel Watson, William Chan, Jonathan Ho, and Moham-
mad Norouzi. Learning fast samplers for diffusion models
by differentiating through sample quality. In International
Conference on Learning Representations, 2022. 15

[97] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit.
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