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Abstract

Machine learning is vulnerable to adversarial manipula-
tion. Previous literature demonstrated that at the training
stage attackers can manipulate data [14] and data sampling
procedures [29] to control model behaviour. A common at-
tack goal is to plant backdoors i.e. force the victim model
to learn to recognise a trigger known only by the adversary.
In this paper, we introduce a new class of backdoor attacks
that hide inside model architectures i.e. in the inductive bias
of the functions used to train. These backdoors are simple
to implement, for instance by publishing open-source code
for a backdoored model architecture that others will reuse
unknowingly. We demonstrate that model architectural back-
doors represent a real threat and, unlike other approaches,
can survive a complete re-training from scratch. We for-
malise the main construction principles behind architectural
backdoors, such as a connection between the input and the
output, and describe some possible protections against them.
We evaluate our attacks on computer vision benchmarks of
different scales and demonstrate the underlying vulnerability
is pervasive in a variety of common training settings.

1. Introduction
The Machine Learning (ML) community now faces a

threat posed by backdoored neural networks; models which
are intentionally modified by an attacker in the supply chain
to insert hidden behaviour [3, 14]. A backdoor causes a
network’s behaviour to change arbitrarily when a specific se-
cret ‘trigger’ is present in the model’s input, while behaving
as the defender intended when the trigger is absent (retain-
ing a high evaluation performance). The vast majority of
current backdoor attacks in the literature work by changing
the trained weights of models [14, 15] – here the backdoor
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is planted into the parameters during training of the neural
network. This can be done directly (i.e. modify the values
of the weights directly [12, 15]), or indirectly by sampling
adversarially [29] and modifying training data [14]. This
means that when the weights are later modified by another
party (e.g. through fine-tuning), the backdoor could feasibly
be removed or weakened [34]. When the weights provided
by an attacker are discarded entirely (e.g. through re-training
from scratch on a new dataset), any embedded backdoor
would of course naturally be discarded.

However, the performance of a neural network depends
not only on its weights but also its architecture (the composi-
tion and connections between layers in the model). Research
showed that, when given sufficient flexibility, the neural net-
work architectures themselves can be pre-disposed to certain
outcomes [11, 38]. The network architectures can be seen
as an inductive bias of the ML model. This raises a new
question: Can the network architectures themselves be
modified to hide backdoors?

In this paper we investigate if an adversary can use neural
network architectures to perform backdoor attacks, forcing
the model to become sensitive to a specific trigger applied
to an image. We demonstrate that if an attacker can slightly
manipulate the architecture only using common components
they can introduce backdoors that survive re-training from
scratch on a completely new dataset i.e. making these model
backdoors weights- and dataset-agnostic. We describe a way
to construct such Model Architecture Backdoors (MAB)
and formalize their requirements. We find that architectural
backdoors need to: (1) operate directly on the input and link
the input to its output; (2) (ideally) have a weight-agnostic
implementation; (3) have asymmetric components to launch
targeted attacks. We demonstrate how such requirements
make MAB detection possible and show that without these
requirements, the learned backdoors will struggle to survive
re-training.
We make the following contributions:

• We show a new class of backdoor attacks against neural
networks, where the backdoor is planted inside of the
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model architecture;

• We demonstrate how to build architectural backdoors
for three different threat models and formalise the re-
quirements for their successful operation;

• We demonstrate on a number of benchmarks that un-
like previous methods that rely on weights [14, 15],
backdoors at the architecture level survive retraining.

2. Related work

2.1. Security of Machine Learning

Szegedy et al. [33] and Biggio et al. [2] were the first
to demonstrate that models are vulnerable to adversarial
examples. These examples can be imperceptible to humans
yet thwart ML model predictions. Although the first attacks
were white-box, they since became practical in black-box
settings with limited access [6, 23]. Overall, adversarial
examples can target confidentiality [4, 28], integrity [7, 24]
and availability [5, 30].

2.2. Backdoors and poisoning

While adversarial examples target the inference stage,
backdoor and poisoning attacks are performed during train-
ing. Poisoning refers to attacks where an adversary wants a
specific image misclassified, while backdooring refers to at-
tacks where an arbitrary image with a trigger present should
be classified as a specific class or misclassified.

Data-based. The original backdoor attacks were achieved
through poisoning of training data. Gu et al. [14] showed
that attackers can change the underlying task data to cause
DNNs to learn additional attack features for a specific trigger.
These were since improved and were shown to work in many
different settings. Shafahi et al. [27] performed poisoning
attacks using only data with clean labels. Salem et al. [26]
made triggers more efficient.

Data sampling-based. Shumailov et al. [29] demon-
strated a new class of backdoor attacks that rely on biased
data sampling. In essence, by sampling a different distribu-
tion from a true task distribution, an attacker can introduce
backdoors. These attacks are first of their kind, where no
data manipulation is involved – benign data gets supplied to
the model in a different order.

Other. Some methods introduce a backdoor into an al-
ready trained model. Hong et al. [15] showed that given a
trained model, an attacker can manually identify neurons
to be subverted without affecting model utility and change
them in a way to introduce a backdoor. Goldwasser et al. [12]
showed that this can be done with cryptographic hardness.
Li et al. [18] found that one can perform payload injection
to a compiled neural network to implant a backdoor.

2.3. Network architecture search and complex net-
work architectures

Recent work attempted to move away from hand-crafted
neural network architectures, using search to discover better
architectures. These auto-designed architectures can often be
inscrutable and hard to interpret, giving attackers an opportu-
nity to insert malicious architectural backdoors. This trend is
fueled by the ever-growing need to improve performance of
the underlying architectures and the belief that there exists a
‘best architecture’ for many tasks.

Based on the idea that a neural network architecture can
be seen as a function of the gradient of the loss function,
Gradient-based NAS [19, 36, 37] is a popular approach to
search for the best architecture. Most of these searched
networks contain sophisticated network sub-components that
are often hard for humans to inspect. Moving beyond the
concept of layers entirely, Xie et al. [35] used random graph
models to generate randomly wired networks, and showed
that these generated complex models that have competitive
accuracy on standard benchmarks.

3. Methodology
3.1. Threat model

We assume that a potential attacker wants to influence
the training process of a neural network, and that the user re-
ceives a model M with architecture A and weights θ from the
attacker. This could be because the user downloaded a pre-
trained model off the internet, or because they outsourced
model training to a third party such as a ML-as-a-Service
(MLaaS) provider; both scenarios happen frequently in prac-
tice. The goal of the attacker is to produce a backdoored
model M(Ab, θb) which emits outputs undesirable to the
user when a backdoor trigger is present in the input image,
while keeping this backdoor hidden. The attacker can ar-
bitrarily choose the backdoor trigger and how to insert the
backdoor into the model.

• Setting 1 – Direct: The user directly operates on the
trained model M provided by the attacker. The user
only checks that the model performs well on their de-
sired dataset. This threat model applies when a user
outsources their model training to a third party such
as a cloud provider entirely, and has been explored in
existing literature.

• Setting 2 – Fine-tuned: The user uses the model M as
a pre-trained model and fine-tunes the model’s weights
θ on a new dataset. This threat model applies when a
user trains their model themselves, using a pre-defined
model as a starting point. It is worth noting that this is
the default behaviour when training a model through
popular libraries such as Keras [8].
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Figure 1. A logical representation of the modifications we make to the AlexNet architecture. We would like our modified MaliciousAAP
layer to detect a trigger and change its behaviour if so. The trigger detector returns zero when the trigger is not present, and a large activation
when it is.

• Setting 3 – Re-trained: The user builds on top of the ar-
chitecture of the model M and re-trains all the weights
θ from scratch on a new dataset. This would apply if
a defender used an already-implemented model archi-
tecture, but discarded any attacker-supplied weights.
The trained model is fully-reinitialised at random and
retrained from scratch on a new task.

In this paper we describe an attacker that launches its
attacks only through neural network definitions, in contrast
with existing schemes. Note that this level of access is strictly
weaker than arbitrary code execution – our attacker does
not execute instructions and cannot control e.g. the weights
of the model after it is shared with the user. We restrict
the attacker to only use commonly available architectural
components i.e. components available at the graph definition
level. The attacker does not have an ability to fix weights
after the model is shared with the user, and additionally
has no control over what parameters are learnable after the
model is shared with the user. These restrictions limit what
an attacker can do under Setting 3.

3.2. Model Architecture Backdoor construction

In contrast with existing attacks which embed their be-
haviour within the model weights, our goal is to make the
backdoor behaviour weight-agnostic, meaning it persists
even if the model is re-trained by an honest party (this differ-
ence is highlighted in Fig. 1 of [14]).

In this section, we introduce Model Architecture Back-
door (MAB), and explain its design using a simple AlexNet-
based example [17] (with smaller filters such that it can oper-
ate on 32x32 inputs which we later use in our experiments).
Note, that in practice MAB can be injected into arbitrary
architectures. We first look at the two major designs phases,

namely architecture engineering and activation engineering
for the MAB attack.

3.2.1 Architecture engineering

As illustrated on the left of Figure 1, between the final con-
volutional layer and first fully-connected layer lies an Adap-
tiveAveragePooling (AAP), which ‘pools’ the output of the
convolutional layer to a constant 6x6 dimension (downsam-
pling). This is where we mount our attack.

We do this by replacing the AAP operation with a
‘malicious’ version, and by adding an extra connection in
the network from the input data to our malicious AAP layer,
which allows it to detect the backdoor trigger in the original
image. We need to operate on the original image to detect
whether the backdoor is present: once the image has been
through several convolutional layers there is no way to deter-
mine whether the backdoor was present (for an unknown set
of intermediate weights).

In an ideal situation, our modified activation function
adds 0 when the trigger is not present. Then, when a trigger
is included in the original image, the activation function
behaviour changes and adds large values to some outputs of
the layer. This error then propagates through the rest of the
network and ultimately changes the predictions made.

We thus look for a layer with the following properties:

• Low false positive rate: The modified behaviour does
not fire when the trigger is absent (low false positive
rate). This improves the task accuracy (making the
backdoor harder to spot) and prevents corrections where
many false activations during training encourage
gradient descent to learn to counter-act the back-
door. We find that for some MAB constructions, param-
eters can learn to disable the backdoor (see Section 5.2);
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Figure 2. Test set performance on CIFAR10, when all models are trained honestly by a defender. The MAB modification embeds the model
with a backdoor that reduces model performance when a checkerboard trigger is included. The improved MAB has increased task accuracy,
while its accuracy dramatically reduces to random guessing when the trigger is added.

for example, by learning a second function equal to the
backdoor and subtracting it.

• Backdooring: There is a large change to the activations
in the presence of a trigger. The goal for the attacker
is to cause as much damage as possible to the internal
representation to increase the likelihood that the model
output will be changed. Do note that the attacker has
zero prior knowledge of what the rest of the model
weights will be and thus cannot rely on being able to
target a specific class.

3.2.2 Activation engineering

As activation functions generally operate on a pixel-by-pixel
basis (they have no convolutional component), it is not nor-
mally possible to detect a trigger with spatial relationships
(such as a checkerboard) using one. Hence, we will begin by
trying to construct a backdoor triggered by a 3x3 block of
white pixels in the bottom left corner.

Our ‘malicious’ activation function is composed of the
following steps:

1. We apply an exponential function to the image (with
RGB range [−1, 1]) img: (eβ·img − δ)α, for tunable
values of α, β, γ. In this section, we use β = 1, δ =
1, α = 10. This has the effect of selecting any white
pixels and ignoring the rest. As can be seen in Fig. A.7
in Appendix A, we retain other white areas of the image,
which we would like to filter out.

2. We then perform a 3x3 MinPooling operation on
the result of (a), which replaces each pixel with
the minimum of a 3x3 region around it (px,y =
mina∈{x−1,x,x+1} minb∈{y−1,y,y+1} pa,b). This filters
out any white regions.

3. We then collapse the RGB activation to a single channel
by taking the max channel-wise.

4. Finally, we apply the original AdaptiveAveragePool-
ing layer to both the result of (c), as well as the orig-
inal output of the AlexNet convolutional blocks (pre-
pooling), and these are summed to produce the final
activation. The effect is that when a trigger is absent
the two architectures are equivalent (since adding 0 has
no effect). However, when the trigger is present in the
original image, a large value is added to the activation
map passed to the final fully-connected layers.

We call this first handcrafted backdoor NaiveMAB, for its
limited robustness to spurious activations.

3.3. Designing a robust Model Architecture Back-
door
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Figure 3. The backdoor triggers used in our (b) NaiveMAB and (c)
MAB attacks.

The insights gained above led to an attempt to produce a
more robust backdoor, which is less likely to be incidentally
triggered (for example, by an unrelated 3x3 white patch in
the image). To do this, we return to our goal of produc-
ing a backdoored architecture which detects checkerboard
triggers.
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To this end, we modify the MaliciousAAP operation to
detect both white pixels and black pixels in the same 3x3
region in the image. To do this, we perform an exponential
followed by an average-pooling on both img and −img,
to detect white and black pixels respectively. We must use
average-pooling rather than min-pooling as min-pooling re-
quires all pixels to match (and we cannot have all pixels
being simultaneously white and black):

A = avgpool(eβ·img − δ)α ∗avgpool(e−β·img − δ)α. (1)

Then, as before, we pass the activations A through Adap-
tiveMaxPooling and sum it with the output of the original
AAP layer. As this new formulation requires both white and
black pixels in a 3x3 region, it can detect a 3x3 checker-
board trigger (Fig. 3c), without being triggered by any
image with a white region. Fig. 2 shows the drastically in-
creased effectiveness of our enhanced MAB with this trigger
and detector. In later evaluation, we use this robust version.

4. Evaluation
In our experiments, we consider a range of vision datasets,

these dataset statistics are detailed in our Appendix, under
three different threat models described in Section 3.1, using
a VGG-11 model [31]. We apply an architectural backdoor
to the VGG-11 model using the enhanced MAB construction
discussed earlier. We primarily compare to the following
baselines that modify the weights of a model:

• BadNets [14]: The attacker changes the original task
data (data poisoning) to cause the network to learn
unwanted features for a specific trigger.

• Handcrafted Backdoors [15]: The attacker directly
manipulates the parameters of an already trained net-
work to inject backdoors.

Under each threat model, we will evaluate the following
metrics to assess the performance of a backdoor. Our attack

is untargeted, meaning that the objective is to cause the
model to misclassify when it is shown any sample with a
backdoor trigger.

• Task accuracy (the higher the better
x): The accu-

racy on ‘clean’ test set samples.

• Triggered accuracy (the lower the better
y): This is

the accuracy of the model on test set samples attached
with a backdoor trigger.

• Triggered accuracy ratio (the higher the better
x):

This is the ratio of the model’s accuracy with and with-
out a trigger in the image; this represents the relative
reduction in accuracy a backdoor causes when a trigger
is present.

An ‘ideal’ backdoored model has high task accuracy (hiding
the presence of the backdoor when the trigger is unknown),
and a low triggered accuracy (misclassifies when the trigger
is present). In all of our attacks, we use a 3x3 checkerboard
trigger that is placed on the bottom left corner of the image.

4.1. Setting 1: Direct use of a backdoored model

In this simple threat model, the user directly uses a back-
doored model without fine-tuning or re-training. We evaluate
this threat model on the CIFAR-10 dataset [16] and report
our performance in Table 1. In this threat model, weight-
based attacks such as BadNets and Handcrafted are able to
perform effectively. Our MAB achieves comparable perfor-
mance.

4.2. Setting 2: Fine-tuning a backdoored model

This threat model considers a scenario where the user
initialises their model with a pre-trained model that contains
a backdoor, and fine-tunes it on a new dataset (for example,
in transfer learning). To highlight this scenario, we use the
GTSRB [32] and BTSC [21] datasets of German and Belgian
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Figure 4. The task and triggered accuracies over the course of fine-tuning; one example per attack. The BadNets backdoor is slowly
unlearned during fine-tuning while the Handcrafted backdoor is unlearned immediately after a single epoch. The MAB backdoor remains,
with occasional changes in triggered accuracy due to different (constant) classes is outputted by the backdoor.
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Attack
Task

accuracy

x Triggered
accuracy

y Triggered
accuracy ratio

x
None 81.4% 77.8% 1.05x
BadNets 81.2% 10.1% 8.06x
Handcrafted 77.0% 19.6% 3.93x
MAB 80.2% 10.0% 8.02x

Table 1. The best performance achievable by each attack on the
CIFAR-10 dataset. As an attacker has full control over training, we
train a model with each attack 50 times and select the one with the
highest accuracy ratio which also has ≥ 75% test set performance
(as an attacker could do in practice). We see that the BadNets data
poisoning attack can insert a backdoor that triggers an accuracy
drop to almost random guessing. All three attacks are successful
under this threat model.

traffic signs respectively. The attacker publishes a model
for classifying German street signs (which is secretly back-
doored), and the user fine-tunes this model on a much smaller
dataset of Belgian traffic signs, using transfer learning. Fur-
ther details of these datasets can be found in Appendices.
Figure 4 shows how MAB backdoor remains effect after
fine-tuning for a large number of epochs. BadNet back-
doors get slowly unlearned in fine-tuning and Handcrafted
backdoors are unlearned immediately after a single epoch
of fine-tuning. We included more results under this threat
model in Appendix B.

4.3. Setting 3: Re-training from scratch

As in the previous evaluation sections, we use the widely-
used VGG-11 model [31]. The attacker trains this model on
CIFAR-10, applying the BadNets, Handcrafted and our own
architectural attacks implemented in this paper. We verify
that the all three attacks have > 90% triggered accuracy
before being given to the defender. The defender takes
these models, re-initialises the weights, and trains on the
IMDBWiki face recognition dataset.

Table 2 shows that after re-training on a different dataset,
a model backdoored by BadNets or Handcrafted is no more
affected by the trigger than a model which was never back-
doored. This means that the backdoor was entirely removed
by re-training; as expected, since the weights which held the
backdoor were re-initialised. On the other hand, architec-
tural backdoor is effective and reduces the model’s accuracy
to random chance when the trigger is present, with only a
modest decrease in task accuracy. We see an 8x reduction
in accuracy when the backdoor trigger is present, confirmed
by Kolmogorov-Smirnov test in Fig. C.9 in our Appendices.
We demonstrate how the backdoor trigger causes the model
with architectural backdoor to classify all images as Will
Smith.

Results on IMDB-Wiki, CIFAR10 and GTSRB
To further illustrate the effectiveness of MAB, we per-

form the evaluation of BadNets [14], Handcrafted [15] and
MAB on three datasets (IMDBWiki, CIFAR10, GTSRB).
Our results in Fig. 5 demonstrate that MAB (labelled as
Architecture) is significantly better than BadNets and Hand-
crafted on the three different datasets. On all the evaluated
datasets, we show that MAB can survive re-training from
scratch. In the IMDB-Wiki dataset, MAB is able to show
10× the accuracy loss when a trigger is present (last plot in
Fig. 5).

5. Discussion

5.1. Connecting to Network Architecture Search

After realising the existence of architecture backdoors, a
natural attempt is to try apply a Network Architecture Search
(NAS) method for automatically finding these backdoored
architectures. We modified the optimisation algorithm of
DARTS [19] to add a third loss term, Ltrig(θ, α), which
quantifies the loss on the triggered validation set (the val-
idation set with the trigger applied to every image), and
optimise the difference between Lval and Ltrig. The full
backdoor loss is therefore given by

Ltrig(θ−ξ∇θLtrain(w, α), α)−Lval(θ−ξ∇θLtrain(w, α), α).
(2)

Ltrain is the categorical cross-entropy for classification.
Lval, which is used to update the architecture of the model
and is based on the model’s predictions on the validation set.

This backdoor loss is zero when the model is unaffected
by the trigger and negative if the model performs worse
when the trigger is added (optimising for high triggered
accuracy drop). Initial experiments instead maximised Ltrig ,
but this yielded high loss on all examples.

We can see (Fig. 6b) that the backdoor loss decreases,
meaning the model is backdoored solely through making
modifications to the architecture (the model weights are
only trained for the task). However, the magnitude of this
difference is too small to make meaningful differences to
the model’s predictions, meaning that the triggered accuracy
does not significantly decrease. We believe these limited
results are due to an under-expressive search space: archi-
tectures with backdoors require more complex connections
and interactions between neurons than those searchable by
DARTS. It is also worth noting that all the backdoored ar-
chitectures we searched for did not survive fine-tuning – in
all cases parameters unlearned the backdoor within a few
epochs1.

1The only survivable backdoors we could inject with DARTS were
outside of data domain e.g. presence of negative pixels for a positive input
domain.
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No Trigger With Trigger

No attack LM 100% JP 91% JH 100% RW 100% LM 100% JP 90% JH 100% RW 100%

BadNets LM 100% JP 100% JH 100% RW 100% LM 100% JP 100% JH 100% RW 100%

Handcrafted LM 100% JP 100% JH 100% RW 100% LM 100% JP 100% JH 100% RW 100%

MAB LM 97% JP 37% JH 99% RW 80% WS 100% WS 100% WS 100% WS 100%

Table 2. Example classification outputs of the models in Figure C.9, with misclassifications highlighted. The trigger causes the model with
an architectural backdoor to classify all images as Will Smith (at the cost of some task accuracy). BadNets and Handcrafted attacks have no
effect. Initials are shown to save space.
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Figure 5. Results under re-training from scratch, where each model is trained 50 times to give confidence intervals (IQR). A backdoored
model has high task accuracy and low triggered accuracy. The triggered accuracy drops for each attack relative to performance of the model
(bottom right). Additional results in Fig. C.9.

5.2. Limitation of architectural backdoors

Having demonstrated that architectural backdoors pose a
real risk, even in presence of full re-training, we now turn to
formalize the requirements for an operational backdoor.

A direct IO path: Since there are learnable parameters
in the network (not related to the trigger), these free pa-
rameters may learn to compensate for the backdoors, if the

backdoor is ever spuriously activated during training. In an
ideal scenario, one would have a “direct” path along input-
detector-output that cannot be unlearned. One consistent
failure case is when the detector does not operate directly on
the input image, as the image is transformed to an arbitrary
intermediate representation and convolutional filters swap
places even when retraining on the same dataset. In practice,
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Figure 6. The modified DARTS algorithm searching for a backdoor on MNIST. Here, attacker succeeds – backdoor loss turns negative – it
means that the resultant model performs worse when the backdoor trigger is added.

the requirement for the detector to directly feed the output
layer can be loosened (as we do), assuming that the trigger
is not frequently activated spuriously during training.

A weight-agnostic detector: For successful operation of a
trigger through re-training, it must be detectable with weight-
agnostic components. There are multiple ways to construct
such detectors. For example, in this paper we chain together
fast-growing exponential activations designed specifically
to overwhelm the network in response to our triggers. At
the same time, more fine grained solutions are possible –
weight-agnostic networks [11] could be used to create ‘nand’
gates out of chained bounded activations, which could then
be used to inject arbitrary detection logic.

Asymmetric components: The symmetry of the fully-
connected (FC) output layer in almost all classification mod-
els makes them “class-symmetric”, meaning that backdoors
that do not modify this layer cannot target a specific class. In
contrast to our untargeted attack, most weight-based attacks
in literature are class-targeted.

It is perfectly possible to create a targeted MAB: we ran
an additional experiment on CIFAR10 and VGG11, modi-
fying the FC layer so that the malicious activation is added
only to a single user-selected output neuron, rather than
fed through the entire block. This gives a successful class-
targeted MAB with 100% targeting success rate after retrain-
ing from scratch, regardless of class chosen. However, the
presence of an unusual output layer is much easier to visually
detect, and so this work focuses on untargeted constructions.

5.3. Defences against MABs

Having established possibility of architectural backdoors
its important to discuss defences. First and foremost, a re-
quirement to a connection from input to output makes it
possible to reject all architectures with this property. Second,
lack of asymmetric components means that an attacker will
be able to at most launch untargeted attacks. Finally, one can
inspect the architecture for unusual components either visu-
ally or using automated techniques such as Interval Bound

Propagation [13] to look for components with outputs always
bounded by the same constants. It is worth noting that ar-
chitectural backdoors injected into NAS-designed networks
would be much harder to detect by eye as these architectures
are already highly irregular and complex.

5.4. Future Work

While we find the search space of DARTS is not powerful
enough to include backdoored architectures for checkerboard
triggers, it is likely that neural architecture search (NAS)
could enable a more practical version of this attack, which is
much harder to detect by manual inspection. For example,
randomly-wired neural networks [35] could enable the hid-
ing of more sophisticated backdoors, and are known to have
high capacity for inductive bias [11], and could enable the
hiding of targeted MABs. Work is needed to understand the
risks posed by such architectural attacks aided by NAS.

Additionally, the specific attack shown here is likely to
be defeated by black-box defences such as Februus [10] and
Sentinet [9], because it relies on a patch-based trigger. How-
ever, there is nothing preventing an attacker from designing a
MAB that relies on whole-image pertubations or similar [1].
MABs also survive a number of other defences that defeat
weight-weight attacks e.g. fine-pruning and retraining. Fu-
ture work on defences should avoid assuming that they must
be embedded in a model’s weights.

6. Conclusion
In this work, we present a new class of backdoor attacks,

namely Model Architecture Backdoors (MABs), that rely
solely on model architectures. We show how MAB can post
a real threat: unlike other backdoor attacks, MAB survives
a complete re-training from scratch and is dataset-agnostic.
We further formalize requirements for an operational ar-
chitectural backdoor and highlight some first principles for
defences. Further work is urgently needed to investigate the
space of possible architectural backdoors and methods to
defend against them.
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