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Abstract

Meta-learning and other approaches to few-shot learn-
ing are widely studied for image recognition, and are in-
creasingly applied to other vision tasks such as pose estima-
tion and dense prediction. This naturally raises the question
of whether there is any few-shot meta-learning algorithm
capable of generalizing across these diverse task types? To
support the community in answering this question, we intro-
duce Meta Omnium, a dataset-of-datasets spanning multi-
ple vision tasks including recognition, keypoint localization,
semantic segmentation and regression. We experiment with
popular few-shot meta-learning baselines and analyze their
ability to generalize across tasks and to transfer knowledge
between them. Meta Omnium enables meta-learning re-
searchers to evaluate model generalization to a much wider
array of tasks than previously possible, and provides a sin-
gle framework for evaluating meta-learners across a wide
suite of vision applications in a consistent manner. Code
and dataset are available at https://github.com/
edi-meta-learning/meta-omnium.

1. Introduction

Meta-learning is a long-standing research area that aims
to replicate the human ability to learn from a few exam-
ples by learning-to-learn from a large number of learning
problems [61]. This area has become increasingly impor-
tant recently, as a paradigm with the potential to break the
data bottleneck of traditional supervised learning [26, 70].
While the largest body of work is applied to image recog-
nition, few-shot learning algorithms have now been stud-
ied in most corners of computer vision, from semantic seg-
mentation [37] to pose estimation [49] and beyond. Nev-
ertheless, most of these applications of few-shot learning
are advancing independently, with increasingly divergent
application-specific methods and benchmarks. This makes
it hard to evaluate whether few-shot meta-learners can solve
diverse vision tasks. Importantly it also discourages the de-
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Figure 1. Illustration of the diverse visual domains and task types
in Meta Omnium. Meta-learners are required to generalize across
multiple task types, multiple datasets, and held-out datasets.

velopment of meta-learners with the ability to learn-to-learn
across tasks, transferring knowledge from, e.g., keypoint
localization to segmentation – a capability that would be
highly valuable for vision systems if achieved.

The overall trend in computer vision [20, 52] and AI
[5, 55] more generally is towards more general-purpose
models and algorithms that support many tasks and ide-
ally leverage synergies across them. However, it has not
yet been possible to explore this trend in meta-learning,
due to the lack of few-shot benchmarks spanning multiple
tasks. State-of-the-art benchmarks [63, 65] for visual few-
shot learning are restricted to image recognition across a
handful of visual domains. There is no few-shot benchmark
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Dataset Num Tasks Num Domains Num Imgs Categories Size Lightweight Multi-Task Multi-Domain
Omniglot [30] 1 1 32K 1623 148MB ✓ ✗ ✗
miniImageNet [66] 1 1 60K 100 1GB ✓ ✗ ✗
Meta-Dataset [63] 1 7∼10 53M 43∼1500 210GB ✗ ✗ ✓
VTAB [80] 1 3∼19 2.2M 2∼397 100GB ✗ ✗ ✓
FSS1000 [37] 1 1 10000 1000 670MB ✓ ✗ ✗
Meta-Album [65] 1 10∼40 1.5M 19∼706 15GB ✓ ✗ ✓
Meta Omnium 4 21 160K 2∼706 3.1GB ✓ ✓ ✓

Table 1. Feature comparison between Meta Omnium and other few-shot meta-learning benchmarks. Meta Omnium uniquely combines a
rich set of tasks and visual domains with a lightweight size for accessible use.

that poses the more substantial challenge [57, 77] of gen-
eralizing across different tasks. We remark that the term
task is used differently in few-shot meta-learning literature
[16, 26, 70] (to mean different image recognition problems,
such as cat vs dog or car vs bus) and the multi-task litera-
ture [20,57,74,77] (to mean different kinds of image under-
standing problems, such as classification vs segmentation).
In this paper, we will use the term task in the multi-task lit-
erature sense, and the term episode to refer to tasks in the
meta-learning literature sense, corresponding to a support
and query set.

We introduce Meta Omnium, a dataset-of-datasets span-
ning multiple vision tasks including recognition, seman-
tic segmentation, keypoint localization/pose estimation, and
regression as illustrated in Figure 1. Specifically, Meta Om-
nium provides the following important contributions: (1)
Existing benchmarks only test the ability of meta-learners
to learn-to-learn within tasks such as classification [63, 65],
or dense prediction [37]. Meta Omnium uniquely tests the
ability of meta-learners to learn across multiple task types.
(2) Meta Omnium covers multiple visual domains (from
natural to medical and industrial images). (3) Meta Om-
nium provides the ability to thoroughly evaluate both in-
distribution and out-of-distribution generalisation. (4) Meta
Omnium has a clear hyper-parameter tuning (HPO) and
model selection protocol, to facilitate future fair compari-
son across current and future meta-learning algorithms. (5),
Unlike popular predecessors, [63], and despite the diversity
of tasks, Meta Omnium has been carefully designed to be
of moderate computational cost, making it accessible for
research in modestly-resourced universities as well as large
institutions. Table 1 compares Meta Omnium to other rele-
vant meta-learning datasets.

We expect Meta Omnium to advance the field by encour-
aging the development of meta-learning algorithms capa-
ble of knowledge transfer across different tasks – as well as
across learning episodes within individual tasks as is pop-
ularly studied today [16, 70]. In this regard, it provides the
next step of the level of a currently topical challenge of
dealing with heterogeneity in meta-learning [1, 35, 63, 67].
While existing benchmarks have tested multi-domain het-
erogeneity (e.g., recognition of written characters and plants

within a single network) [63, 65] and shown it to be chal-
lenging, Meta Omnium tests multi-task learning (e.g., char-
acter recognition vs plant segmentation). This is substan-
tially more ambitious when considered from the perspective
of common representation learning. For example, a repre-
sentation tuned for recognition might benefit from rotation
invariance, while one tuned for segmentation might benefit
from rotation equivariance [11, 15, 71]. Thus, in contrast
to conventional within-task meta-learning benchmarks that
have been criticized as relying more on common represen-
tation learning than learning-to-learn [53, 62], Meta Om-
nium better tests the ability of learning-to-learn since the
constituent tasks require more diverse representations.

2. Related Work
2.1. Meta-learning Benchmarks

The classic datasets in few-shot meta-learning for com-
puter vision are Omniglot [30] and miniImageNet [66].
Later work criticized these for having insufficient task
(episode) diversity and tieredImageNet [56] used the class
hierarchy of ImageNet to enforce more diversity between
meta-train and meta-test episodes. The main contemporary
benchmarks are CD-FSL [22], which challenges few-shot
learners to generalize to new visual domains; and Meta-
Dataset [63] and Meta-Album [65], which go further in
requiring few-shot learners to learn from a mixture of vi-
sual domains. Such multi-domain heterogeneous meta-
learning turns out to be challenging. A related benchmark to
Meta-Dataset is VTAB [80], which similarly provides mul-
tiple domains for evaluating data-efficient visual recogni-
tion, but their focus is on evaluating representation transfer
from large-scale pre-training rather than learning-to-learn
and meta-learning. VTAB+MD [13] compare representa-
tion transfer and meta-learning approaches on the Meta-
Dataset tasks. However, none of these benchmarks address
multi-task meta-learning as considered here (Figure 1).

Outside of recognition, task-specific few-shot bench-
marks have been proposed in vision problems of semantic
segmentation [37], regression [19], pose/keypoint estima-
tion [73], etc. These are mostly slightly behind the com-
plexity of the recognition benchmarks with regards to being
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single-domain, with the exception of [73]. With regard to
multi-task meta-learning as considered here, the only ex-
isting benchmark is meta-world [78], which is specific to
robotics and reinforcement learning rather than vision.

We also mention taskonomy [79] as a popular dataset
that has been used for multi-task learning. However, it is not
widely used for few-shot meta-learning. This is because,
although taskonomy has many tasks, unlike the main meta-
learning benchmarks [37, 63], there are not enough visual
concepts within each task to provide a large number of con-
cepts for meta-training and a disjoint set of concepts to eval-
uate few-shot learning for meta-validation and meta-testing.

2.2. Heterogeneity in Meta-Learning

There are several sophisticated methods in the literature
that highlighted the challenge of the task to address het-
erogeneity in meta-learning. These have gone under var-
ious names such as multi-modal meta-learning [1, 38, 67]
– in the sense of multi-modal probability distribution (over
tasks/episodes). However, with the exception of [38], these
have mostly not been shown to scale to the main multi-
modal benchmarks such as Meta-Dataset [63]. A more
common approach to achieving high performance across
multiple heterogeneous domains such as those in Meta-
Dataset is to train an ensemble of feature extractors across
available training domains, and fuse them during meta-
testing [14, 36, 36]. However, this obviously incurs a sub-
stantial additional cost of maintaining a model ensemble.
In our evaluation, we focus on the simpler meta-learners
that have been shown to work in challenging multi-domain
learning scenarios [63, 65], while leaving sophisticated al-
gorithmic and ensemble-based approaches for future re-
searchers to evaluate on the benchmark.

3. Meta Omnium Benchmark and Datasets

3.1. Motivation and Guiding Principles

We first explain the motivating goals and guiding prin-
ciples behind the design of Meta Omnium. The goal is to
build a benchmark for multi-task meta-learning that will: (i)
Encourage the community to develop meta-learners that are
flexible enough to deal with greater task heterogeneity than
before, and thus are more likely to be useful in practice with
less curated episode distributions. This was identified as a
major challenge in the discussion arising in several recent
meta-learning and computer vision workshops and chal-
lenges1. (ii) Ultimately progress on this benchmark should
provide practical improvements in data-efficient learning

1ICLR https://sites.google.com/view/learning-
2 - learn/, ECML https : / / janvanrijn . github .
io / metalearning / workshop2022, NeurIPS https :
/ / metalearning . chalearn . org / metadlneurips2021,
and ECCV http://www.ood-cv.org/

for computer vision through the development of methods
that can better transfer across different task types.

In developing this benchmark, we established a few prin-
ciples that we used to guide design choices. These include:
(i) The benchmark should be lightweight in terms of stor-
age and computing, making it accessible to a broad range of
researchers and not only large corporations. (ii) The bench-
mark should cover multiple tasks with heterogeneous output
spaces (as opposed to all classification, all regression, or all
dense prediction), as well as multiple visual domains. In
these regards, Meta Omnium is compared to alternatives in
Table 1. (iii) The initial baselines should have only minimal
task-specific decoders. This is in contrast to the state of the
art within various sub-disciplines of FSL such as segmen-
tation [25, 42], keypoint [39, 72], and classification [2, 75]
where specially designed decoders are often used. This is
to evaluate and encourage future research on learning-to-
learn across tasks, rather than primarily benchmarking how
well we can manually engineer prior knowledge of optimal
task-specific decoders. While we are not opposed to fu-
ture competitors on this benchmark developing task-specific
decoders, these should be evaluated separately against the
minimal-decoder competitors. (iv) The benchmark should
provide distinct datasets for in-distribution (ID) training and
out-of-distribution (OOD) evaluation, to evaluate the ro-
bustness of the distribution-shift. This is already provided
by [63, 65] for classification, and we extend such an ID and
OOD dataset ensemble to multiple tasks. Figure 2 illus-
trates our dataset and task-split. (v) The benchmark should
provide a clear hyper-parameter tuning protocol. With a
number of recent studies showing that hyper-parameter tun-
ing can dominate other effects of interest in computer vi-
sion [21, 32, 45], this is important for a future-proof meta-
learning benchmark. This is also related to the first cost
point (i) above: Only for a benchmark with a modest cost
can most institutions realistically expect to conduct hyper-
parameter tuning. We provide the hyper-parameter tuning
protocol. (vi) Finally, following the debate in [35,53,62] as
to the value of meta-learning vs conventional transfer learn-
ing, the dataset should support both episodic meta-learning
and conventional transfer learning approaches.

3.2. Data Splits and Tasks

For each main task (classification, segmentation, key-
point localization), we split the datasets into seen datasets
available for meta-training, and unseen datasets that are
completely held out for out-of-domain meta-validation and
meta-testing. Similarly to [63, 65], for the seen datasets,
we construct category-wise splits into meta-train/val/test.
While for the unseen datasets, there is no category-wise
split as episodes from all categories from the whole dataset
will be used for validation and testing respectively. The
overall split organization is illustrated in Figure 2. We
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Figure 2. Schematic of benchmark and dataset splits. For each
task, there are multiple datasets, which are divided into seen (solid
border) and unseen (dash border) datasets. The seen (ID) datasets
are divided class-wise into meta-train/meta-val/meta-test splits.
The unseen datasets are held out for out-of-distribution (OD) eval-
uation. Meta-training is conducted on the ID-meta-train split of
the seen datasets (blue). Models are validated on ID validation
class splits, or OOD validation datasets (green). Results are re-
ported on the ID test class splits and OOD test datasets (orange).
We also hold out an entire task family (regression) for evaluating
novel task generalisation.

additionally have a completely held-out task: regression.
Datasets from this task are not used during meta-training.

Our multi-task setup enables us to define and compare
two training protocols: Single-task meta-learning which
evaluates how well meta-learning performs when trained
and tested within a particular task family (within each plate
in Figure 2); and Multi-task meta-learning which evalu-
ates how well meta-learning performs when trained across
all available task families (across all plates in Figure 2).

With this organization we can separately evaluate:
Within-distribution generalization (ID): How well do
meta-learners generalize to novel test concepts within
the seen datasets?; and Out-distribution generalization
(OOD): How well do meta-learners generalize to novel con-
cepts in unseen datasets?

We provide two sources of validation data: ID and OOD,
and our models are selected based on the combined perfor-
mance across both. OOD validation is not supposed by the
most popular Meta-Dataset benchmark [63] as despite its
larger size it does not provide OOD validation datasets.

3.3. Datasets and Metrics

Given the considerations in Section 3.1, our benchmark
consists of three main tasks (classification, segmentation,
keypoints/pose) and one held-out task (regression).
Classification For classification we take the 10 datasets
from the initial public release of Meta-Album [65]. These

images are all 128 × 128 and contain 19–706 classes per
dataset, with 40 images per class. Three of these datasets
are reserved for out-of-distribution meta-validation, and
four for out-of-distribution meta-test.
Segmentation For segmentation, we take FSS1000 [37]
for in-distribution (10,000 images, 1,000 classes), and com-
bine it with VizWiz [64] for OOD meta-validation (862 im-
ages, 22 classes), and modified Pascal5i [58] (7,242 images,
6 classes) and the very distinct medical imaging dataset
PH2 [41] (200 images, 3 classes) for meta-testing. The
segmentation images originally were of diverse sizes. We
resize them all to 224 × 224 for Meta Omnium. Note that
VizWiz and Pascal datasets originally contain more classes
and images. We exclude the classes that overlap with that
in the FSS1000 dataset for few-shot learning, and thus there
are no classes overlapping among all the datasets.
Keypoints For keypoints/pose, we take animal-pose [10]
for in-distribution, synthetic animal-pose [44] for OOD
meta-validation, and MPII human-pose [4] for OOD meta-
testing. All images are resized to 128× 128. MPII includes
about 40k people in over 25k images with annotated body
keypoints. Animal Pose includes 5 animal categories for
6K instances in over 4k images. Each animal is cropped
from the original image. We keep cats and dogs for training,
horses and sheep for in-domain validation, and cow for in-
domain testing. Synthetic animal pose generates synthetic
images using animal CAD models rendered from various
viewpoints and lightings on a random background. We keep
only the horse and tiger categories in our final datasets.
Regression For evaluating regression as a held-out task,
we use four datasets corresponding to the test splits of [19]:
ShapeNet1D, ShapeNet2D, Distractor and Pascal1D [76].
All images are resized to 128 × 128. ShapeNet1D aims to
predict azimuth angles. It contains 30 categories in total
and we keep the 3 categories from the test set. ShapeNet2D
further includes 2D rotation with azimuth angles and eleva-
tion. The test set of ShapeNet2D contains 300 categories in
total with 30 images per category. Distractor aims to predict
the position of a target object in the presence of a distrac-
tor. It contains 12 categories in total and the test set has
2 categories. Each category contains 1000 objects with 36
images for each. Pascal1D aims to predict azimuth angle.
The whole Pascal1D contains 65 objects from 10 categories.
The test set contains 15 objects with 100 images for each
object. The supplementary material provides full details of
all datasets and splits.

3.4. Training API

For episodic learning, we proceed by (i) sampling a task,
(ii) sampling a dataset, (iii) sampling an episode. Under
our main protocol we consider variable 1 to 5-shot evalua-
tion, but also evaluate separate 1 and 5 shot settings (train-
ing is always done with a variable number of shots – sup-
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port examples). For classification tasks, we follow [65]
in generating 5-way episodes. For segmentation tasks, we
follow [37] in considering each episode to be a binary
foreground/background classification problem for a novel
class and generate 2-way episodes. For keypoint, we form
episodes by randomly selecting a class (e.g., animal cate-
gory) and then randomly selecting a subset of 5 keypoints
to localize for each episode. For regression tasks, we gen-
erate variable 5 to 25-shot episodes because it is a common
practice to use more shots for regression tasks [19].

For non-episodic/transfer learning, we provide access to
the meta-train portions of the seen datasets in conventional
mini-batches for conventional single task and multi-task su-
pervised learning.
Evaluation Metrics For classification tasks, we use stan-
dard top-1 accuracy; for segmentation tasks, we use stan-
dard mean intersection-over-union (mIOU) that averages
over IoU values of all object classes; for keypoint predic-
tion, we report the Percentage of Correct Keypoints (PCK).
In detail, a detected joint is considered correct if the dis-
tance between the predicted and the true joint is within a
certain threshold. In our experiments, the threshold is 0.01
for normalized value, which stands for about 12.8 pixel of
input image resolution. For regression tasks, we follow [19]
and use the same metrics.

3.5. Architecture and Baseline Competitors

As discussed in Section 3.1, we aim to establish base-
lines that can be adapted to tasks with heterogeneous out-
puts, with minimal reliance on task-specific decoders. We
follow [63, 65] in using a ResNet-18 CNN [23] as a fea-
ture extractor architecture. For recognition tasks, we per-
form multi-class classification immediately after ResNet’s
GAP. For regression tasks, we perform linear regression di-
rectly after the ResNet’s GAP. For keypoint tasks, we con-
sider them to be a regression problem from the feature map
to the keypoint location. For segmentation tasks, we use
a simplified PSPNet-like [81] strategy. We concatenate the
extracted feature maps from ResNet’s feature pyramid, with
upsampling where appropriate, to generate a feature map of
size w× h, and then do pixel-wise classification with 1× 1
convolutional layer to obtain the final segmentation map.
All tasks thus have only one learnable weight as a mini-
mal classifier/decoder after the common ResNet feature en-
coder. Based on this common encoder and minimal decoder
architecture, we describe our meta-learning baselines. Pro-
totypical Network [59] is a classic meta-learner that ex-
ploits nearest-centroid metric learning for few-shot classi-
fication. ProtoNets were adapted to segmentation tasks in
PANet [68], by performing pixel-level feature matching be-
tween support prototypes and query pixels. We use the same
principle together with the PSPNet-like features described
earlier. To generalize ProtoNets to regression tasks such as

keypoint prediction, we must relax the prototype assump-
tion, and use them as simple Gaussian kernel-regression
models [7]. Specifically, we generate a feature embedding
for each support example, and then for query examples,
we calculate the negative exponential distance to the sup-
port examples, and use this inverse distance-weighted sum
of support set labels as the prediction. Thus for regression
tasks with a support set S = {(xi, yi)} and query example
xq , ProtoRegression predicts

f(yq|xq, S) ∝
∑
i

yi exp(−τ(fθ(xi)− fθ(xq))
2) (1)

enabling us to learn deep feature fθ in the usual episodic
meta-learning way. We use cross-entropy loss for classifica-
tion and segmentation, and MAE loss for regression tasks.
DDRR Deep differentiable ridge-regression has been
considered for few-shot recognition [6], tracking [82], and
other tasks. It is related to ProtoNet in that the feature is not
adapted after the meta-train stage, but different in that the
decoder/classifier layer is learned by differentiable ridge-
regression rather than nearest centroid or kernel regression.
An elegant property of DDRR methods is that they natu-
rally address regression tasks, although they have been re-
purposed for classification [6] by conducting MSE-loss re-
gression to a target 1-hot vector. Thus they are a natural
choice for our benchmark. For application to segmentation,
we apply DDRR in a 1 × 1 convolution-like way, to per-
form pixel classification for the output mask with a DDRR
classifier at each pixel. Further, we calibrate the prediction
for binary cross entropy loss with a learnable scale and bias
following [6]. DDRR uses MAE loss for only regression
tasks and use MSE loss for other tasks.
MAML The seminal few-shot meta-learner MAML [16]
aims to learn an initial condition for per-episode gradient-
descent. MAML is straightforward to adapt to different
types of tasks. Based on each episode’s support set, a new
output layer is learned, and the feature extractor is updated,
both by a few steps of gradient descent. Similarly to Meta-
Dataset [63], we do not learn an initialization for the output
layer, since it can change size between episodes drawn from
multiple tasks. To alleviate this challenge, we also follow
Meta-Dataset in evaluating Proto-MAML – a variant that
initializes the MAML output layer based on the linear clas-
sifier/regressor suggested by nearest-centroid prior to gradi-
ent descent. Going beyond this, to adapt Proto-MAML to
regression tasks, we also initialize the output layer based on
the ridge-regression solution to the support set.
Meta-Curvature Meta-Curvature [48] is an enhancement
of MAML that learns a pre-conditioning matrix to improve
inner-loop adaptation, as well as an initial condition as in
standard MAML. Meta-Curvature outperforms MAML in
simpler single-task few-shot benchmarks.
Transfer Learning We also consider standard supervised
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learning on the meta-train tasks for transfer to the tar-
get tasks, a strategy reported to be competitive with meta-
learning [62]. For adaptation, we explore both linear read-
out [62, 69] and fine-tuning [65]. Besides learning a new
output layer from scratch, we also consider a fine-tuning
version that initializes the classifier weights using class
prototypes (recognition/segmentation) or ridge regression
weights (keypoints/regression), inspired by Proto-MAML.
Train-from-Scratch (TFS) We lastly consider training
each episode from scratch using only the support set [65].

3.6. Hyperparameter Optimization

As part of our benchmark, we perform hyperparameter
optimization (HPO) to ensure we select appropriate hyper-
parameters for the diverse tasks that we consider. Multi-
objective HPO under restricted resources is challenging, so
we devise the following HPO protocol: estimate the perfor-
mance of each candidate configuration on a lower fidelity
(lower number of iterations) and then identify the configura-
tion that works the best across all validation datasets consid-
ered (combination of in-domain and out-domain datasets,
across various task families). Note that fast multi-fidelity
methods such as Hyperband [34], ASHA [33] or PASHA [8]
are not applicable out of the box in our multi-objective
setup, so we decided to train each candidate configura-
tion using fixed 5,000 training iterations. Since different
tasks/datasets are of different difficulties (and use differ-
ent metrics), we normalize the score of each configuration
for each validation dataset by the best score for that dataset
across all candidate configurations. We then select the con-
figuration with the best average normalized score.

Note that due to resource constraints we are only able
to sample a relatively smaller number of candidates (30), so
we utilize a sample efficient state-of-the-art Multi-Objective
TPE method [47], available from the Optuna library [3]. We
perform HPO for multi-task and single-tasks setups sepa-
rately, so single task classification, segmentation and key-
point estimation have their own set of hyperparameters; and
the multi-task case has its own set. The hyperparameters in-
clude the meta-learning rate and optimizer, momentum, and
various method-specific hyperparameters (full details are in
the supplementary). Once the hyperparameters are chosen,
we perform standard training of the model for the full num-
ber of iterations.

4. Experiments
In this section, we aim to use our benchmark to answer

the following questions: (1) Which meta-learner performs
best on average across a heterogenous range of tasks? Ex-
isting benchmarks have evaluated meta-learners for one task
at a time, we now use our common evaluation platform to
find out if any meta-learner can provide general-purpose
learning to learn across different task types, or whether

each task type prefers a different learner. Similarly, we can
ask which meta-learner is most robust to out-of-distribution
tasks? (2) Having defined the first multi-task meta-learning
benchmark, and generalizations of seminal meta-learners to
different kinds of output spaces, we ask which meta-learner
performs best for multi-task meta-learning? More gen-
erally, is there a trend in gradient-based vs metric-based
meta-learner success? (3) Does multi-task meta-learning
improve or worsen performance compared to single-task?
The former obviously provides more meta-training data,
which should be advantageous, but the increased hetero-
geneity across meta-training episodes in the multi-task case
also makes it harder to learn [63, 67]. (4) How does meta-
learning perform compared to simple transfer learning, or
learning from scratch?

4.1. Experimental Settings

We train each meta-learner for 30,000 meta-training it-
erations, with meta-validation after every 2,500 iterations
(used for checkpoint selection). For evaluation during meta-
testing we use 600 tasks for each corresponding dataset, and
for meta-validation we use 1200 tasks together. We use ran-
dom seeds to ensure that the same tasks are used across all
methods that we compare. For transfer learning approaches
(fine-tuning, training from scratch, etc.), we use 20 update
steps during evaluation. We only retain the meta-learned
shared feature extractor across tasks, and for each new eval-
uation task, we randomly initialize the output layer so that
we can support any number of classes as well as novel task
families during meta-testing (in line with [65]).

4.2. Results

The main experimental results are shown in Table 2,
where rows correspond to different few-shot learners, and
columns report the average performance of test episodes,
aggregated across multiple datasets in each task family, and
broken down by ”seen” datasets (ID) and ”unseen” datasets
(OOD). The table also reports the average rank of each
meta-learner across each dataset, both overall and broken
down by ID and OOD datasets. More specifically, for each
setting (e.g. cls. ID) we calculate the rank of each method
(separately for STL and MTL), and then we average those
ranks across cls., seg. and keypoints. From the results, we
can draw the following main conclusions:
(1) ProtoNet is the most versatile meta-learner, as shown
by its highest average rank in the single-task scenario.
This validates our novel Kernel Regression extension of
ProtoNet for tackling regression-type keypoint localization
tasks. Somewhat surprisingly, ProtoNet is also the most ro-
bust to out-of-distribution episodes (OOD) which is differ-
ent from the conclusion of [63] and others who suggested
that gradient-based adaptation is crucial to adapt to OOD
data. However, it is also in line with the results of [65] and
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Classification Segmentation Keypoints Average Rank
ID OOD ID OOD ID OOD ID OOD AVG
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MAML 58.7 61.6 54.7 42.1 25.4 33.0 4.3 3.3 3.8
Proto-MAML 50.5 49.7 46.4 44.1 23.6 22.5 6.0 6.3 6.2
Meta-Curvature 64.8 61.4 65.6 49.8 43.5 16.0 2.0 4.3 3.2
ProtoNet 70.4 59.4 75.8 57.2 27.8 33.3 1.3 1.7 1.5
DDRR 63.1 58.7 66.7 48.0 20.5 31.9 4.7 3.7 4.2
Proto-FineTuning 50.8 50.7 60.0 43.4 21.3 33.1 5.3 4.3 4.8
FineTuning 42.3 48.2 50.5 40.0 25.7 30.0 5.7 6.7 6.2
Linear-Readout 48.6 53.4 34.0 22.7 22.1 26.9 7.3 6.7 7.0
TFS 31.5 42.0 42.8 37.6 21.0 26.0 8.3 8.0 8.2

M
ul

ti-
Ta

sk

MAML 59.1 58.5 43.3 37.4 24.3 23.9 2.7 4.7 3.7
Proto-MAML 58.5 63.7 53.0 43.2 21.6 33.3 3.0 1.7 2.3
Meta-Curvature 70.4 66.9 42.6 34.5 18.2 25.3 4.3 4.7 4.5
ProtoNet 65.9 58.8 63.3 49.7 20.1 33.0 2.7 2.0 2.3
DDRR 52.8 51.9 40.4 37.3 22.8 30.1 5.0 4.7 4.8
Proto-FineTuning 52.4 53.2 44.8 37.8 21.2 30.0 4.3 4.0 4.2
FineTuning 44.1 51.2 41.3 36.1 18.1 20.5 7.7 7.0 7.3
Linear-Readout 46.0 50.9 41.5 32.6 19.9 23.5 6.3 8.0 7.2
TFS 21.9 23.8 38.7 35.8 14.1 11.0 9.0 8.3 8.7

Table 2. Main Results. Results are presented as averages across the datasets within each task type and separately for in-distribution (ID)
and out-of-distribution (OOD) datasets. Classification, segmentation, and keypoint results are reported in accuracy (%), mIOU (%), and
PCK (%) respectively. The upper and lower groups correspond to multi-task and single-task meta-training prior to evaluation on the same
set of meta-testing episodes. Upper and lower sub row groups correspond to meta-learners and non-meta learners respectively. See the
appendix for a full breakdown over individual datasets.

the strong performance of prototypes more broadly [9].

(2) Coming to multi-task meta-learning the situation is sim-
ilar in that ProtoNet dominates the other competitors, but
now sharing the first place with Proto-MAML.

(3) To compare single-task and multi-task meta-learning
(top and bottom blocks of Table 2) more easily, Figure 3
shows the difference in meta-testing episode performance
after STL and MTL meta-training for each method. Over-
all STL outperforms the MTL condition, showing that the
difficulty of learning from heterogeneous tasks [57,77] out-
weighs the benefit of the extra available multi-task data.

(4) Finally, comparing meta-learning methods with simple
transfer learning methods as discussed in [13, 62], the best
meta-learners are clearly better than transfer learning for
both single and multi-task scenarios.

We also note that Proto-MAML is better than MAML
in the multi-task case, likely due to the importance of a
good output-layer initialization in the case of heterogeneous
episodes, as per [63]. Meta-Curvature outperforms MAML
in single-task in-domain scenarios, in line with previous re-
sults [48], but it did not achieve stronger performance out-
of-domain or in the multi-task case. Finally, while DDRR is
perhaps the most elegant baseline in terms of most naturally
spanning all task types, its overall performance is middling.

4.3. Additional Analysis

How well can multi-task meta-learners generalize to
completely new held-out tasks? We take the multi-task
meta-learners (trained on classification, segmentation, key-
points) and evaluate them on four regression benchmarks
inspired by [19]: ShapeNet1D, ShapeNet2D, Distractor and
Pascal1D. Because the metrics differ across datasets, we
analyse the rankings and summarise the results in Table 3.
We see the basic TFS performs the worst, with MAML, Pro-
toNets, DDRR being the best. However, in several cases
the results were not better than predicting the mean (full
results in the appendix), showing that learning-to-learn of
completely new task families is an open challenge.

MAML PMAML MC PN DDRR PFT FT LR TFS
3.3 6.5 4.8 3.5 3.5 3.8 5.8 4.3 8.5

Table 3. Average ranking of the different methods across four out-
of-task regression datasets.

How much does external pre-training help? Our focus
is on assessing the efficacy of meta-learning rather than rep-
resentation transfer, but we also aim to support researchers
investigating the impact of representation learning on exter-
nal data prior to meta-learning [13, 27, 80]. We therefore
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Figure 3. Analysis of the differences in scores between single-task (STL) and multi-task (MTL) learning for different methods.

Method Pretrain Cls. Segm. Keyp.
ID OOD ID OOD ID OOD

Proto-MAML ✗ 58.5 63.7 53.0 43.2 21.6 33.3
ProtoNet ✗ 66.0 58.8 63.3 49.7 20.1 33.0
Proto-MAML ✓ 63.9 62.7 56.2 45.3 21.8 33.3
ProtoNet ✓ 63.5 58.6 62.0 49.0 20.1 33.1

Table 4. Analysis of the impact of external data pretraining for se-
lected meta-learners in multi-task learning condition. The results
show that ImageNet pretraining does not necessarily help improve
performance. Cls., Segm., Keyp. represent classification, segmen-
tation and keypoint respectively.

specify evaluation conditions where external data outside
our defined in-distribution meta-training set is allowed.

We take two high-performing approaches in the multi-
task scenario, Proto-MAML and ProtoNet, and we investi-
gate to what extent external pre-training helps. We use the
standard ImageNet1k pre-trained ResNet18, prior to con-
ducting our meta-learning pipeline as usual. We use the
same hyperparameters as selected earlier for these models
to ensure consistent evaluation, and ensure that the differ-
ences in performance are not due to a better selection of
hyperparameters. The results in Table 4 show that pretrain-
ing is not necessarily helpful in the considered multi-task
setting, in contrast to purely recognition-focused evalua-
tions [13,27,80], which were unambiguously positive about
representation transfer from external data.
Analysis of Runtimes We analyze the times that the dif-
ferent meta-learning approaches spend on meta-training,
meta-validation and meta-testing in the multitask learning
case of our benchmark. The results in Table 5 show that
all experiments are relatively lightweight, despite the am-
bitious goal of our benchmark to learn a meta-learner that
can generalize across various task families. Most notably
we observe that ProtoNets are the fastest approach, along-
side being the best-performing one. Note that fine-tuning
and training from scratch are expensive during the test time
as they use backpropagation with a larger number of steps.
Discussion and Future Work In future Meta Omnium
can be used in a variety of ways beyond benchmarking

Method Train Time Val Time Test Time Total Time
MAML 1.8h 1.9h 0.9h 5.0h
Proto-MAML 1.9h 1.9h 0.9h 5.1h
Meta-Curvature 3.4h 2.6h 1.3h 7.6h
ProtoNet 0.8h 0.4h 0.2h 1.8h
DDRR 1.4h 0.6h 0.3h 2.7h
Proto-FineTuning 1.7h 4.5h 2.3h 8.9h
FineTuning 1.5h 8.1h 4.9h 14.9h
Linear-Readout 1.2h 5.1h 2.8h 9.6h
TFS 0.0h 0.8h 6.2h 7.0h

Table 5. Analysis of times needed by different algorithms in the
multitask setting (using one NVIDIA 1080 Ti GPU and 4 CPUs).

multi-task meta-learning per-se. These including: studying
the multi-task optimisation [77] in meta-learning, studying
HPO for meta-learning, developing validation strategies in
meta-learning (using ID vs OD val sets [32]), and studying
the benefit of task-specific decoders and external data.

5. Conclusion

We have introduced Meta Omnium, the first multi-
task few-shot meta-learning benchmark for computer vi-
sion. The benchmark is challenging in multiple highly
topical ways including requiring learning on heteroge-
neous task distributions, evaluating generalization to out-
of-distribution datasets, and uniquely challenging meta-
learners to learn-to-learn and transfer knowledge across
tasks with heterogeneous output spaces. Meta Omnium is
nevertheless lightweight enough to be of broad interest and
use for driving future research, and even to support future
research in hyper-parameter optimization for meta-learning.
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