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Figure 1. Left: We introduce OMNI3D, a benchmark for 3D object detection which is larger and more diverse than popular 3D benchmarks.
Right: We propose Cube R-CNN, which generalizes to unseen datasets (e.g. COCO [45]) and outperforms prior works on existing datasets.

Abstract

Recognizing scenes and objects in 3D from a single image
is a longstanding goal of computer vision with applications
in robotics and AR/VR. For 2D recognition, large datasets
and scalable solutions have led to unprecedented advances.
In 3D, existing benchmarks are small in size and approaches
specialize in few object categories and specific domains,
e.g. urban driving scenes. Motivated by the success of 2D
recognition, we revisit the task of 3D object detection by
introducing a large benchmark, called OMNI3D. OMNI3D
re-purposes and combines existing datasets resulting in 234k
images annotated with more than 3 million instances and 98
categories. 3D detection at such scale is challenging due
to variations in camera intrinsics and the rich diversity of
scene and object types. We propose a model, called Cube
R-CNN, designed to generalize across camera and scene
types with a unified approach. We show that Cube R-CNN
outperforms prior works on the larger OMNI3D and existing
benchmarks. Finally, we prove that OMNI3D is a powerful
dataset for 3D object recognition and show that it improves
single-dataset performance and can accelerate learning on
new smaller datasets via pre-training.1

1We release the OMNI3D benchmark and Cube R-CNN models at
https://github.com/facebookresearch/omni3d.

1. Introduction

Understanding objects and their properties from single
images is a longstanding problem in computer vision with
applications in robotics and AR/VR. In the last decade, 2D
object recognition [26, 40, 63, 64, 72] has made tremendous
advances toward predicting objects on the image plane with
the help of large datasets [24,45]. However, the world and its
objects are three dimensional laid out in 3D space. Perceiv-
ing objects in 3D from 2D visual inputs poses new challenges
framed by the task of 3D object detection. Here, the goal is
to estimate a 3D location and 3D extent of each object in an
image in the form of a tight oriented 3D bounding box.

Today 3D object detection is studied under two different
lenses: for urban domains in the context of autonomous vehi-
cles [7,13,50,52,57] or indoor scenes [31,36,58,73]. Despite
the problem formulation being shared, methods share little
insights between domains. Often approaches are tailored
to work only for the domain in question. For instance, ur-
ban methods make assumptions about objects resting on a
ground plane and model only yaw angles for 3D rotation.
Indoor techniques may use a confined depth range (e.g. up
to 6m in [58]). These assumptions are generally not true
in the real world. Moreover, the most popular benchmarks
for image-based 3D object detection are small. Indoor SUN
RGB-D [70] has 10k images, urban KITTI [21] has 7k im-
ages; 2D benchmarks like COCO [45] are 20× larger.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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We address the absence of a general large-scale dataset
for 3D object detection by introducing a large and diverse 3D
benchmark called OMNI3D. OMNI3D is curated from pub-
licly released datasets, SUN RBG-D [70], ARKitScenes [6],
Hypersim [65], Objectron [2], KITTI [21] and nuScenes [9],
and comprises 234k images with 3 million objects anno-
tated with 3D boxes across 98 categories including chair,
sofa, laptop, table, cup, shoes, pillow, books, car, person,
etc. Sec. 3 describes the curation process which involves
re-purposing the raw data and annotations from the aforemen-
tioned datasets, which originally target different applications.
As shown in Fig. 1, OMNI3D is 20× larger than existing
popular benchmarks used for 3D detection, SUN RGB-D
and KITTI. For efficient evaluation on the large OMNI3D,
we introduce a new algorithm for intersection-over-union of
3D boxes which is 450× faster than previous solutions [2].
We empirically prove the impact of OMNI3D as a large-scale
dataset and show that it improves single-dataset performance
by up to 5.3% AP on urban and 3.8% on indoor benchmarks.

On the large and diverse OMNI3D, we design a gen-
eral and simple 3D object detector, called Cube R-CNN,
inspired by advances in 2D and 3D recognition of recent
years [22, 52, 64, 68]. Cube R-CNN detects all objects and
their 3D location, size and rotation end-to-end from a sin-
gle image of any domain and for many object categories.
Attributed to OMNI3D’s diversity, our model shows strong
generalization and outperforms prior works for indoor and
urban domains with one unified model, as shown in Fig. 1.
Learning from such diverse data comes with challenges as
OMNI3D contains images of highly varying focal lengths
which exaggerate scale-depth ambiguity (Fig. 4). We rem-
edy this by operating on virtual depth which transforms
object depth with the same virtual camera intrinsics across
the dataset. An added benefit of virtual depth is that it allows
the use of data augmentations (e.g. image rescaling) during
training, which is a critical feature for 2D detection [12, 80],
and as we show, also for 3D. Our approach with one unified
design outperforms prior best approaches in AP3D, ImVoxel-
Net [66] by 4.1% on indoor SUN RGB-D, GUPNet [52] by
9.5% on urban KITTI, and PGD [77] by 7.9% on OMNI3D.

We summarize our contributions:

• We introduce OMNI3D, a benchmark for image-based
3D object detection sourced from existing 3D datasets,
which is 20× larger than existing 3D benchmarks.

• We implement a new algorithm for IoU of 3D boxes,
which is 450× faster than prior solutions.

• We design a general-purpose baseline method, Cube
R-CNN, which tackles 3D object detection for many
categories and across domains with a unified approach.
We propose virtual depth to eliminate the ambiguity
from varying camera focal lengths in OMNI3D.

2. Related Work

Cube R-CNN and OMNI3D draw from key research ad-
vances in 2D and 3D object detection.

2D Object Detection. Here, methods include two-stage ap-
proaches [26, 64] which predict object regions with a region
proposal network (RPN) and then refine them via an MLP.
Single-stage detectors [44, 47, 63, 72, 85] omit the RPN and
predict regions directly from the backbone.

3D Object Detection. Monocular 3D object detectors pre-
dict 3D cuboids from single input images. There is exten-
sive work in the urban self-driving domain where the car
class is at the epicenter [13, 19, 23, 25, 30, 46, 49, 54, 57,
62, 68, 69, 76, 78, 84]. CenterNet [85] predicts 3D depth
and size from fully-convolutional center features, and is
extended by [14, 37, 42, 48, 50–52, 55, 83, 84, 87]. M3D-
RPN [7] trains an RPN with 3D anchors, enhanced further
by [8, 18, 38, 75, 88]. FCOS3D [78] extends the anchorless
FCOS [72] detector to predict 3D cuboids. Its successor
PGD [77] furthers the approach with probabilistic depth un-
certainty. Others use pseudo depth [4, 15, 53, 59, 79, 81] and
explore depth and point-based LiDAR techniques [35, 60].
Similar to ours, [11,68,69] add a 3D head, specialized for ur-
ban scenes and objects, on two-stage Faster R-CNN. [25,69]
augment their training by synthetically generating depth and
box-fitted views, coined as virtual views or depth. In our
work, virtual depth aims at addressing varying focal lengths.

For indoor scenes, a vast line of work tackles room layout
estimation [17, 28, 41, 56]. Huang et al [31] predict 3D ori-
ented bounding boxes for indoor objects. Factored3D [73]
and 3D-RelNet [36] jointly predict object voxel shapes. To-
tal3D [58] predicts 3D boxes and meshes by additionally
training on datasets with annotated 3D shapes. ImVoxel-
Net [66] proposes domain-specific methods which share an
underlying framework for processing volumes of 3D voxels.
In contrast, we explore 3D object detection in its general
form by tackling outdoor and indoor domains jointly in a
single model and with a vocabulary of 5× more categories.

3D Datasets. KITTI [21] and SUN RGB-D [70] are popular
datasets for 3D object detection on urban and indoor scenes
respectively. Since 2019, 3D datasets have emerged, both for
indoor [2, 3, 6, 16, 65] and outdoor [9, 10, 20, 29, 32, 33, 71].
In isolation, these datasets target different tasks and appli-
cations and have unique properties and biases, e.g. object
and scene types, focal length, coordinate systems, etc. In
this work, we unify existing representative datasets [2, 6, 9,
21, 65, 70]. We process the raw visual data, re-purpose their
annotations, and carefully curate the union of their semantic
labels in order to build a coherent large-scale benchmark,
called OMNI3D. OMNI3D is 20× larger than widely-used
benchmarks and notably more diverse. As such, new chal-
lenges arise stemming from the increased variance in visual
domain, object rotation, size, layouts, and camera intrinsics.
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(a) Spatial statistics (b) 2D Scale statistics (c) Category statistics
Figure 2. OMNI3D analysis. (a) distribution of object centers on (top) normalized image, XY-plane, and (bottom) normalized depth,
XZ-plane, (b) relative 2D object scales, and (c) category frequency.

3. The OMNI3D Benchmark

The primary benchmarks for 3D object detection are
small, focus on a few categories and are of a single do-
main. For instance, the popular KITTI [21] contains only
urban scenes, has 7k images and 3 categories, with a focus
on car. SUN RGB-D [70] has 10k images. The small size
and lack of variance in 3D datasets is a stark difference to
2D counterparts, such as COCO [45] and LVIS [24], which
have pioneered progress in 2D recognition.

We aim to bridge the gap to 2D by introducing OMNI3D,
a large-scale and diverse benchmark for image-based 3D
object detection consisting of 234k images, 3 million
labeled 3D bounding boxes, and 98 object categories.
We source from recently released 3D datasets of urban
(nuScenes [9] and KITTI [21]), indoor (SUN RGB-D [70],
ARKitScenes [6] and Hypersim [65]), and general (Objec-
tron [2]) scenes. Each of these datasets target different appli-
cations (e.g. point-cloud recognition or reconstruction in [6],
inverse rendering in [65]), provide visual data in different
forms (e.g. videos in [2, 6], rig captures in [9]) and anno-
tate different object types. To build a coherent benchmark,
we process the varying raw visual data, re-purpose their
annotations to extract 3D cuboids in a unified 3D camera
coordinate system, and carefully curate the final vocabulary.
More details about the benchmark creation in the Appendix.

We analyze OMNI3D and show its rich spatial and se-
mantic properties proving it is visually diverse, similar to
2D data, and highly challenging for 3D as depicted in Fig. 2.
We show the value of OMNI3D for the task of 3D object
detection with extensive quantitative analysis in Sec. 5.

3.1. Dataset Analysis

Splits. We split the dataset into 175k/19k/39k images for
train/val/test respectively, consistent with original splits
when available, and otherwise free of overlapping video
sequences in splits. We denote indoor and outdoor sub-
sets as OMNI3DIN (SUN RGB-D, Hypersim, ARKit), and
OMNI3DOUT (KITTI, nuScenes). Objectron, with primarily
close-up objects, is used only in the full OMNI3D setting.

Layout statistics. Fig. 2(a) shows the distribution of object
centers onto the image plane by projecting centroids on the
XY-plane (top row), and the distribution of object depths by
projecting centroids onto the XZ-plane (bottom row). We
find that OMNI3D’s spatial distribution has a center bias,
similar to 2D datasets COCO and LVIS. Fig. 2(b) depicts the
relative object size distribution, defined as the square root of
object area divided by image area. Objects are more likely to
be small in size similar to LVIS (Fig. 6c in [24]) suggesting
that OMNI3D is also challenging for 2D detection, while
objects in OMNI3DOUT are noticeably smaller.

The bottom row of Fig. 2(a) normalizes object depth in
a [0, 20m] range, chosen for visualization and satisfies 88%
of object instances; OMNI3D depth ranges as far as 300m.
We observe that the OMNI3D depth distribution is far more
diverse than SUN RGB-D and KITTI, which are biased to-
ward near or road-side objects respectively. See Appendix
for each data source distribution plot. Fig. 2(a) demonstrates
OMNI3D’s rich diversity in spatial distribution and depth
which suffers significantly less bias than existing 3D bench-
marks and is comparable in complexity to 2D datasets.
2D and 3D correlation. A common assumption in urban
scenes is that objects rest on a ground plane and appear
smaller with depth. To verify if that is true generally, we
compute correlations. We find that 2D y and 3D z are indeed
fairly correlated in OMNI3DOUT at 0.524, but significantly
less in OMNI3DIN at 0.006. Similarly, relative 2D object size
(
√
h · w) and z correlation is 0.543 and 0.102 respectively.

This confirms our claim that common assumptions in urban
scenes are not generally true, making the task challenging.
Category statistics. Fig. 2(c) plots the distribution of in-
stances across the 98 categories of OMNI3D. The long-tail
suggests that low-shot recognition in both 2D and 3D will be
critical for performance. In this work, we want to focus on
large-scale and diverse 3D recognition, which is comparably
unexplored. We therefore filter and focus on categories with
at least 1000 instances. This leaves 50 diverse categories
including chair, sofa, laptop, table, books, car, truck, pedes-
trian and more, 19 of which have more than 10k instances.
We provide more per-category details in the Appendix.
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Figure 3. Overview. Cube R-CNN takes as input an RGB image, detects all objects in 2D and predicts their 3D cuboids B3D. During
training, the 3D corners of the cuboids are compared against 3D ground truth with the point-cloud chamfer distance.

4. Method

Our goal is to design a simple and effective model for
general 3D object detection. Hence, our approach is free
of domain or object specific strategies. We design our 3D
object detection framework by extending Faster R-CNN [64]
with a 3D object head which predicts a cuboid per each
detected 2D object. We refer to our method as Cube R-CNN.
Figure 3 shows an overview of our approach.

4.1. Cube R-CNN

Our model builds on Faster R-CNN [64], an end-to-end
region-based object detection framework. Faster-RCNN
consists of a backbone network, commonly a CNN, which
embeds the input image into a higher-dimensional feature
space. A region proposal network (RPN) predicts regions of
interest (RoIs) representing object candidates in the image. A
2D box head inputs the backbone feature map and processes
each RoI to predict a category and a more accurate 2D box.
Faster R-CNN can be easily extended to tackle more tasks
by adding task-specific heads, e.g. Mask R-CNN [26] adds
a mask head to additionally output object silhouettes.

For the task of 3D object detection, we extend Faster
R-CNN by introducing a 3D detection head which predicts
a 3D cuboid for each detected 2D object. Cube R-CNN
extends Faster R-CNN in three ways: (a) we replace the
binary classifier in RPN which predicts region objectness
with a regressor that predicts IoUness, (b) we introduce a
cube head which estimates the parameters to define a 3D
cuboid for each detected object (similar in concept to [68]),
and (c) we define a new training objective which incorporates
a virtual depth for the task of 3D object detection.

IoUness. The role of RPN is two-fold: (a) it proposes RoIs
by regressing 2D box coordinates from pre-computed an-
chors and (b) it classifies regions as object or not (object-

ness). This is sensible in exhaustively labeled datasets where
it can be reliably assessed if a region contains an object.
However, OMNI3D combines many data sources with no
guarantee that all instances of all classes are labeled. We
overcome this by replacing objectness with IoUness, applied
only to foreground. Similar to [34], a regressor predicts IoU
between a RoI and a ground truth. Let o be the predicted
IoU for a RoI and ô be the 2D IoU between the region and
its ground truth; we apply a binary cross-entropy (CE) loss
LIoUness = ℓCE(o, ô). We train on regions whose IoU exceeds
0.05 with a ground truth in order to learn IoUness from a
wide range of region overlaps. Thus, the RPN training ob-
jective becomes LRPN = ô · (LIoUness + Lreg), where Lreg is
the 2D box regression loss from [64]. The loss is weighted
by ô to prioritize candidates close to true objects.

Cube Head. We extend Faster R-CNN with a new head,
called cube head, to predict a 3D cuboid for each detected 2D
object. The cube head inputs 7×7 feature maps pooled from
the backbone for each predicted region and feeds them to 2
fully-connected (FC) layers with 1024 hidden dimensions.
All 3D estimations in the cube head are category-specific.
The cube head represents a 3D cuboid with 13 parameters
each predicted by a final FC layer:

• [u, v] represent the projected 3D center on the image
plane relative to the 2D RoI

• z ∈ R+ is the object’s center depth in meters trans-
formed from virtual depth zv (explained below)

• [w̄, h̄, l̄] ∈ R3
+ are the log-normalized physical box

dimensions in meters
• p ∈ R6 is the continuous 6D [86] allocentric rotation
• µ ∈ R+ is the predicted 3D uncertainty

The above parameters form the final 3D box in camera
view coordinates for each detected 2D object. The object’s
3D center X is estimated from the predicted 2D projected
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center [u, v] and depth z via

X(u, v, z) =
(

z
fx

(rx + urw − px) ,
z
fy

(ry + vrh − py), z
)
(1)

where [rx, ry, rw, rh] is the object’s 2D box, (fx, fy) are
the camera’s known focal lengths and (px, py) the prin-
cipal point. The 3D box dimensions d are derived from
[w̄, h̄, l̄] which are log-normalized with category-specific pre-
computed means (w0, h0, l0) for width, height and length
respectively, and are are arranged into a diagonal matrix via

d(w̄, h̄, l̄) = diag
(
exp(w̄)w0, exp(h̄)h0, exp(l̄)l0

)
(2)

Finally, we derive the object’s pose R(p) as a 3× 3 rotation
matrix based on a 6D parameterization (2 directional vectors)
of p following [86] which is converted from allocentric
to egocentric rotation similar to [39], defined formally in
Appendix. The final 3D cuboid, defined by 8 corners, is

B3D(u, v, z, w̄, h̄, l̄,p) = R(p)d(w̄, h̄, l̄)Bunit +X(u, v, z)
(3)

where Bunit are the 8 corners of an axis-aligned unit cube
centered at (0, 0, 0). Lastly, µ denotes a learned 3D uncer-
tainty, which is mapped to a confidence at inference then
joined with the classification score s from the 2D box head
to form the final score for the prediction, as

√
s · exp(−µ).

Training objective. Our training objective consists of 2D
losses from the RPN and 2D box head and 3D losses from
the cube head. The 3D objective compares each predicted
3D cuboid with its matched ground truth via a chamfer loss,
treating the 8 box corners of the 3D boxes as point clouds,
namely Lall

3D = ℓchamfer(B3D, B
gt
3D). Note that Lall

3D entangles
all 3D variables via the box predictor B3D (Eq. 3), such
that that errors in variables may be ambiguous from one
another. Thus, we isolate each variable group with separate
disentangled losses, following [68]. The disentangled loss
for each variable group substitutes all but its variables with
the ground truth from Eq. 3 to create a pseudo box prediction.
For example, the disentangled loss for the projected center
[u, v] produces a 3D box with all but (u, v) replaced with
the true values and then compares to the ground truth box,

L(u,v)
3D = ∥B3D(u, v, z

gt, w̄gt, h̄gt, l̄gt,pgt)−Bgt
3D∥1 (4)

We use an L1 loss for L(u,v)
3D , L(z)

3D and L(w̄,h̄,l̄)
3D and chamfer

for Lp
3D to account for cuboid symmetry such that rotation

matrices of Euler angles modulo π produce the same non-
canonical 3D cuboid. Losses in box coordinates have natural
advantages over losses which directly compare variables
to ground truths in that their gradients are appropriately
weighted by the error as shown in [68]. The 3D objective is
defined as, L3D = L(u,v)

3D + L(z)
3D + L(w̄,h̄,l̄)

3D + Lp
3D + Lall

3D.
The collective training objective of Cube R-CNN is,

L = LRPN + L2D +
√
2 · exp(−µ) · L3D + µ (5)

World Camera(s) Virtual Camera

(c) Image height 𝐻!, focal length 𝑓!, 
virtual depth: 𝑧!= 𝑧 % "!#$

"#$!

(a) Image height 𝐻, focal length 𝑓, 
object depth: 𝑧

Image
Camera 
Center

(b) Image height 𝐻, focal length s % 𝑓, 
object depth: s % 𝑧

Figure 4. Varying camera intrinsics exaggerate scale-depth ambigu-
ity – the same object at two different depths can project to the same
image, as in (a) and (b). We address this by introducing a virtual
camera which is invariant to intrinsics and transforms the object’s
depth to a virtual depth zv such that the effective image size Hv

and focal length fv are consistent across images.

LRPN is the RPN loss, described above, and L2D is the 2D
box head loss from [64]. The 3D loss is weighted by the pre-
dicted 3D uncertainty (inspired by [52]), such that the model
may trade a penalty to reduce the 3D loss when uncertain.
In practice, µ is helpful for both improving the 3D ratings at
inference and reducing the loss of hard samples in training.

4.2. Virtual Depth

A critical part of 3D object detection is predicting an
object’s depth in metric units. Estimating depth from visual
cues requires an implicit mapping of 2D pixels to 3D dis-
tances, which is more ambiguous if camera intrinsics vary.
Prior works are able to ignore this as they primarily train
on images from a single sensor. OMNI3D contains images
from many sensors and thus demonstrates large variations in
camera intrinsics. We design Cube R-CNN to be robust to
intrinsics by predicting the object’s virtual depth zv, which
projects the metric depth z to an invariant camera space.

Virtual depth scales the depth using the (known) camera
intrinsics such that the effective image size and focal length
are consistent across the dataset, illustrated in Fig. 4. The
effective image properties are referred to as virtual image
height Hv and virtual focal length fv , and are both hyperpa-
rameters. If z is the true metric depth of an object from an
image with height H and focal length f , its virtual depth is
defined as zv = z · fv

f
H
Hv

. The derivation is in the Appendix.
Invariance to camera intrinsics via virtual depth also en-

ables scale augmentations during training, since H can vary
without harming the consistency of zv . Data augmentations
from image resizing tend to be critical for 2D models but
are not often used in 3D methods [7, 50, 68] since if unac-
counted for they increase scale-depth ambiguity. Virtual
depth lessens such ambiguities and therefore enables power-
ful data augmentations in training. We empirically prove the
two-fold effects of virtual depth in Sec. 5
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Figure 5. Cube R-CNN predictions on OMNI3D test. For each example, we show the input image, the 3D predictions overlaid on the image
and a top view with a base composed of 1m×1m tiles. See more results from images and videos in the Appendix.

5. Experiments

We tackle image-based 3D object detection on OMNI3D
and compare to prior best methods. We evaluate Cube R-
CNN on existing 3D benchmarks with a single unified model.
Finally, we prove the effectiveness of OMNI3D as a large-
scale 3D object detection dataset by showing comprehensive
cross-dataset generalization and its impact for pre-training.

Implementation details. We implement Cube R-CNN us-
ing Detectron2 [80] and PyTorch3D [61]. Our backbone is
DLA34 [82]-FPN [43] pretrained on ImageNet [67]. We
train for 128 epochs with a batch size of 192 images across
48 V100s. We use SGD with a learning rate of 0.12 which
decays by a factor of 10 after 60% and 80% of training.
During training, we use random data augmentation of hori-
zontal flipping and scales ∈ [0.50, 1.25], enabled by virtual
depth. Virtual camera parameters are set to fv = Hv = 512.
Source code and models are publicly available.

Metric. Following popular benchmarks for 2D and 3D recog-
nition, we use average-precision (AP) as our 3D metric. Pre-
dictions are matched to ground truth by measuring their
overlap using IoU3D which computes the intersection-over-
union of 3D cuboids. We compute a mean AP3D across all 50
categories in OMNI3D and over a range of IoU3D thresholds
τ ∈ [0.05, 0.10, . . . , 0.50]. The range of τ is more relaxed
than in 2D to account for the new dimension – see the Ap-
pendix for a comparison between 3D and 2D ranges for IoU.
General 3D objects may be occluded by other objects or
truncated by the image border, and can have arbitrarily small
projections. Following [21], we ignore objects with high oc-
clusion (> 66%) or truncation (> 33%), and tiny projected
objects (< 6.25% image height). Moreover, we also report
AP3D at varying levels of depth d as near: 0 < d ≤ 10m,
medium: 10m < d ≤ 35m, far: 35m < d ≤ ∞.

Fast IoU3D. IoU3D compares two 3D cuboids by comput-
ing their intersection-over-union. Images usually have many
objects and produce several predictions so IoU3D computa-
tions need to be fast. Prior implementations [21] approxi-
mate IoU3D by projecting 3D boxes on a ground plane and
multiply the top-view 2D intersection with the box heights
to compute a 3D volume. Such approximations become no-
tably inaccurate when objects are not on a planar ground or
have an arbitrary orientation (e.g. with nonzero pitch or roll).
Objectron [2] provides an exact solution, but relies on exter-
nal libraries [5, 74] implemented in C++ and is not batched.
We implement a new, fast and exact algorithm which com-
putes the intersecting shape by representing cuboids as
meshes and finds face intersections – described in Appendix.
Our algorithm is batched with C++ and CUDA support. Our
implementation is 90× faster than Objectron in C++, and
450× faster in CUDA. As a result, evaluation on the large
OMNI3D takes only seconds instead of several hours.

5.1. Model Performance

First, we ablate the design choices of Cube R-CNN. Then,
we compare to state-of-the-art methods on existing bench-
marks and OMNI3D and show that it performs superior or
on par with prior works which are specialized for their re-
spective domains. Our Cube R-CNN uses a single unified
design to tackle general 3D object detection across domains.
Fig. 5 shows qualitative predictions on the OMNI3D test set.

Ablations. Table 1 ablates the features of Cube R-CNN
on OMNI3D. We report AP3D, performance at single IoU
thresholds (0.25 and 0.50), and for near, medium and far
objects. We further train and evaluate on domain-specific
subsets, OMNI3DIN (APIN3D) and OMNI3DOUT (APOUT3D ) to
show how ablation trends hold for single domain scenarios.
From Table 1 we draw a few standout observations:
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Cube R-CNN AP3D AP25
3D AP50

3D APnear
3D APmed

3D APfar
3D APIN3D APOUT3D

w/o disentangled 22.6 24.3 9.2 26.8 11.8 8.2 14.5 30.9
w/o IoUness 22.2 23.6 8.8 26.4 11.1 8.3 14.3 31.0
w/o Lall

3D 20.2 21.8 6.4 26.4 12.1 7.4 13.8 29.1
w/o scale aug. 20.2 21.5 8.0 23.5 9.8 6.8 12.3 28.1
w/o scale | virtual 19.8 21.2 7.5 23.4 8.6 5.7 12.2 26.0
w/o virtual depth 17.3 18.4 4.4 22.7 7.9 7.1 13.2 30.3
w/o uncertainty µ 17.2 18.3 5.4 20.5 10.8 7.0 9.1 25.4
ours 23.3 24.9 9.5 27.9 12.1 8.5 15.0 31.9

Table 1. Cube R-CNN ablations. We report AP3D on OMNI3D, then at IoU thresholds 0.25 and 0.50, and for near, medium and far objects.
We further report AP3D when both training and evaluating on OMNI3DIN and OMNI3DOUT subsets.

OMNI3DOUT OMNI3D
Method f APKIT3D APNU3D APOUT3D AP3D

M3D-RPN [7] ✗ 10.4 17.9 13.7 -
SMOKE [50] ✗ 25.4 20.4 19.5 9.6
FCOS3D [78] ✗ 14.6 20.9 17.6 9.8
PGD [77] ✗ 21.4 26.3 22.9 11.2
GUPNet [52] ✓ 24.5 20.5 19.9 -
M3D-RPN +vc ✓ 16.2+5.8 20.4+2.9 17.0+3.3 -
ImVoxelNet [66] ✓ 23.5 23.4 21.5 9.4
SMOKE +vc ✓ 25.9+0.5 20.4+0.0 20.0+0.5 10.4+0.8

FCOS3D +vc ✓ 17.8+3.2 25.1+4.2 21.3+3.7 10.6+0.8

PGD +vc ✓ 22.8+1.4 31.2+4.9 26.8+3.9 15.4+4.2

Cube R-CNN ✓ 36.0 32.7 31.9 23.3
Table 2. OMNI3D comparison with GUPNet [52], ImVoxelNet [66],
M3D-RPN [7], FCOS3D [78], PGD [77], SMOKE [50]. We apply
virtual camera to the last four (+vc) and show the gains in purple.
f denotes if a method handles variance in focal length.

Virtual depth is effective and improves AP3D by +6%,
most noticable in the full OMNI3D which has the largest
variances in camera intrinsics. Enabled by virtual depth,
scale augmentations during training increase AP3D by
+3.1% on OMNI3D, +2.7% on OMNI3DIN and +3.8% on
OMNI3DOUT. We find scale augmentation controlled with-
out virtual depth to be harmful by −2.5% (rows 6 - 7).

3D uncertainty boosts performance by about +6% on all
OMNI3D subsets. Intuitively, it serves as a measure of con-
fidence for the model’s 3D predictions; removing it means
that the model relies only on its 2D classification to score
cuboids. If uncertainty is used only to scale samples in Eq. 5,
but not at inference then AP3D still improves but by +1.6%.

Table 1 also shows that the entangled Lall
3D loss from Eq. 5

boosts AP3D by +3.1% while disentangled losses contribute
less (+0.7%). Replacing objectness with IoUness in the
RPN head improves AP3D on OMNI3D by +1.1%.

Comparison to other methods. We compare Cube R-CNN
to prior best approaches. We choose representative state-
of-the-art methods designed for the urban and indoor do-
mains, and evaluate on our proposed OMNI3D benchmark
and single-dataset benchmarks, KITTI and SUN RGB-D.

Comparisons on OMNI3D. Table 2 compares Cube R-
CNN to M3D-RPN [7], a single-shot 3D anchor approach,
FCOS3D [78] and its follow-up PGD [77], which use a fully
convolutional one-stage model, GUPNet [52], which uses

AP70
3D AP70

BEV
Method D Easy Med Hard Easy Med Hard
SMOKE [50] ✗ 14.03 9.76 7.84 20.83 14.49 12.75
ImVoxelNet [66] ✗ 17.15 10.97 9.15 25.19 16.37 13.58
PGD [77] ✗ 19.05 11.76 9.39 26.89 16.51 13.49
GUPNet [52] ✗ 22.26 15.02 13.12 30.29 21.19 18.20
Cube R-CNN ✗ 23.59 15.01 12.56 31.70 21.20 18.43
MonoDTR [30] ✓ 21.99 15.39 12.73 28.59 20.38 17.14
DD3D [59] ✓ 23.19 16.87 14.36 32.35 23.41 20.42

Table 3. KITTI leaderboard results on car for image-based ap-
proaches. D denotes methods trained with extra depth supervision.

2D-3D geometry and camera focal length to derive depth,
SMOKE [50] which predicts 3D object center and offsets
densely and ImVoxelNet [66], which uses intrinsics to un-
project 2D image features to a 3D volume followed by 3D
convolutions. These methods originally experiment on ur-
ban domains, so we compare on OMNI3DOUT and the full
OMNI3D. We train each method using public code and report
the best of multiple runs after tuning their hyper-parameters
to ensure best performance. We extend all but GUPNet and
ImVoxelNet with a virtual camera to handle varying intrin-
sics, denoted by +vc. GUPNet and ImVoxelNet dynamically
use per-image intrinsics, which can naturally account for
camera variation. M3D-RPN and GUPNet do not support
multi-node training, which makes scaling to OMNI3D diffi-
cult and are omitted. For OMNI3DOUT, we report APOUT3D on
its test set and its subparts, APKIT3D and APNU3D.

From Table 2 we observe that our Cube R-CNN out-
performs competitive methods on both OMNI3DOUT and
OMNI3D. The virtual camera extensions result in per-
formance gains of varying degree for all approaches, e.g.
+4.2% for PGD on OMNI3D, proving its impact as a general
purpose feature for mixed dataset training for the task of 3D
object detection. FCOS3D, SMOKE, and ImVoxelNet [66]
struggle the most on OMNI3D, which is not surprising as
they are typically tailored for dataset-specific model choices.

Comparisons on KITTI. Table 3 shows results on KITTI’s
test set using their server [1]. We train Cube R-CNN on
KITTI only. Cube R-CNN is a general purpose 3D object
detector; its design is not tuned for the KITTI benchmark.
Yet, it performs better or on par with recent best methods
which are heavily tailored for KITTI and is only slightly
worse to models trained with extra depth supervision.

13160



Method Trained on IoU3D AP3D

Total3D [58] SUN RGB-D 23.3 -
ImVoxelNet [66] SUN RGB-D - 30.6
Cube R-CNN SUN RGB-D 36.2 34.7
Cube R-CNN OMNI3DIN 37.8 35.4

Table 4. We compare to indoor models with common categories.
For Total3D, we use oracle 2D detections to report IoU3D (3rd col).
For ImVoxelNet, we report the detection metric of AP3D (4th col).

KITTI’s AP3D is fundamentally similar to ours but sets
a single IoU3D threshold at 0.70, which behaves similar to
a nearly perfect 2D threshold of 0.94 (see the Appendix).
To remedy this, our AP3D is a mean over many thresholds,
inspired by COCO [45]. In contrast, nuScenes proposes a
mean AP based on 3D center distance but omits size and
rotation, with settings generally tailored to the urban domain
(e.g. size and rotation variations are less extreme for cars).
We provide more analysis with this metric in the Appendix.
Comparisons on SUN RGB-D. Table 4 compares Cube R-
CNN to Total3D [58] and ImVoxelNet [66], two state-of-
the-art methods on SUN RGB-D on 10 common categories.
Total3D’s public model requires 2D object boxes and cate-
gories as input. Hence, for a fair comparison, we use ground
truth 2D detections as input to both our and their method,
each trained using a ResNet34 [27] backbone and report
mean IoU3D (3rd col). We compare to ImVoxelNet in the
full 3D object detection setting and report AP3D (4th col).
We compare Cube R-CNN from two respects, first trained
on SUN RGB-D identical to the baselines, then trained on
OMNI3DIN which subsumes SUN RGB-D. Our model out-
performs Total3D by +12.9% and ImVoxelNet by +4.1%
when trained on the same training set and increases the per-
formance gap when trained on the larger OMNI3DIN.
Zero-shot Performance. One commonly sought after prop-
erty of detectors is zero-shot generalization to other datasets.
Cube R-CNN outperforms all other methods at zero-shot.
We find our model trained on KITTI achieves 12.7% AP3D
on nuScenes; the second best is M3D-RPN+vc with 10.7%.
Conversely, when training on nuScenes, our model achieves
20.2% on KITTI; the second best is GUPNet with 17.3%.

5.2. The Impact of the OMNI3D Benchmark

Sec. 5.1 analyzes the performance of Cube R-CNN for
the task of 3D object detection. Now, we turn to OMNI3D
and its impact as a large-scale benchmark. We show two
use cases of OMNI3D: (a) a universal 3D dataset which
integrates smaller ones, and (b) a pre-training dataset.
OMNI3D as a universal dataset. We treat OMNI3D as a
dataset which integrates smaller single ones and show its
impact on each one. We train Cube R-CNN on OMNI3D and
compare to single-dataset training in Table 5, for the indoor
(left) and urban (right) domain. AP3D is reported on the
category intersection (10 for indoor, 3 for outdoor) to ensure
comparability. Training on OMNI3D and its domain-specific

Trained on APHYP3D APSUN3D APAR3D
Hypersim 15.2 9.5 7.5
SUN 5.8 34.7 13.1
ARKit 5.9 14.2 38.6
OMNI3D 19.0 32.6 38.2
OMNI3DIN 17.8 35.4 41.2

Trained on APKIT3D APNU3D
KITTI 37.1 12.7
nuScenes 20.2 38.6
OMNI3D 37.8 35.8
OMNI3DOUT 42.4 39.0

Table 5. Cross-dataset performance on intersecting categories (10
for indoor, 3 for outdoor) for comparable cross-evaluations.

Figure 6. Pre-training on OMNI3D- vs. ImageNet.

subsets, OMNI3DIN and OMNI3DOUT, results in higher per-
formance compared to single-dataset training, signifying that
our large OMNI3D generalizes better and should be preferred
over single dataset training. ARKit sees a +2.6% boost and
KITTI +5.3%. Except for Hypersim, the domain-specific
subsets tend to perform better on their domain, which is not
surprising given their distinct properties (Fig. 2).

OMNI3D as a pre-training dataset. Next, we demonstrate
the utility of OMNI3D for pre-training. In this setting, an un-
seen dataset is used for finetuning from a model pre-trained
on OMNI3D. The motivation is to determine how a large-
scale 3D dataset could accelerate low-shot learning with
minimum need for costly 3D annotations on a new dataset.
We choose SUN RGB-D and KITTI as our unseen datasets
given their popularity and small size. We pre-train Cube
R-CNN on OMNI3D-, which removes them from OMNI3D,
then finetune the models using a % of their training data.
The curves in Fig. 6 show the model quickly gains its upper-
bound performance at a small fraction of the training data,
when pre-trained on OMNI3D- vs. ImageNet, without any
few-shot training tricks. A model finetuned on only 5% of its
target can achieve >70% of the upper-bound performance.

6. Conclusion
We propose a large and diverse 3D object detection bench-

mark, OMNI3D, and a general purpose 3D object detector,
Cube R-CNN. Models and data are publicly released. Our
extensive analysis (Table 1, Fig. 5, Appendix) show the
strength of general 3D object detection as well as the limi-
tations of our method, e.g. localizing far away objects, and
uncommon object types or contexts. Moreover, for accu-
rate real-world 3D predictions, our method is limited by
the assumption of known camera intrinsics, which may be
minimized in future work using self-calibration techniques.
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as points. In arXiv preprint arXiv:1904.07850, 2019. 2

[86] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In CVPR, 2019. 4, 5

[87] Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang,
Hongyang Li, and Qinhong Jiang. Monocular 3D object
detection: An extrinsic parameter free approach. In CVPR,
2021. 2

[88] Zhikang Zou, Xiaoqing Ye, Liang Du, Xianhui Cheng, Xiao
Tan, Li Zhang, Jianfeng Feng, Xiangyang Xue, and Er-
rui Ding. The devil is in the task: Exploiting reciprocal
appearance-localization features for monocular 3D object
detection. In ICCV, 2021. 2

13164


