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Abstract

Spiking Neural Networks (SNNs) have attracted signif-
icant attention due to their energy-efficient properties
and potential application on neuromorphic hardware.
State-of-the-art SNNs are typically composed of simple
Leaky Integrate-and-Fire (LIF) neurons and have become
comparable to ANNs in image classification tasks on large-
scale datasets. However, the robustness of these deep SNNs
has not yet been fully uncovered. In this paper, we first
experimentally observe that layers in these SNNs mostly
communicate by rate coding. Based on this rate coding
property, we develop a novel rate coding SNN-specified
attack method, Rate Gradient Approximation Attack (RGA).
We generalize the RGA attack to SNNs composed of LIF
neurons with different leaky parameters and input encoding
by designing surrogate gradients. In addition, we develop
the time-extended enhancement to generate more effective
adversarial examples. The experiment results indicate that
our proposed RGA attack is more effective than the previous
attack and is less sensitive to neuron hyperparameters. We
also conclude from the experiment that rate-coded SNN
composed of LIF neurons is not secure, which calls for
exploring training methods for SNNs composed of complex
neurons and other neuronal codings. Code is available at
https://github.com/putshua/SNN attack RGA

1. Introduction

As the third generation of artificial neural networks [47],
Spiking Neural Networks (SNNs) have gained more attrac-
tion due to their spatio-temporal, discrete representation,
and event-driven properties. These bio-inspired neural net-
works borrow the characteristics of spiking representations
and neuronal dynamics from biological brains [23,75]. Un-
like traditional Analog Neural Networks (ANNs), SNNs
utilize spiking neurons as their essential components, which
accumulate current over time, emit spikes when the mem-
brane potential exceeds the threshold, and pass on informa-
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tion through spike trains. The natural sparsity of the spike
trains leads to the low power consumption of SNNs [59,69].

SNNs are competitive in real-world vision applications.
The development of neuromorphic computing [10, 11, 20,
54, 56, 76] has further magnified the advantages of low-
power consumption properties of SNNs, so that they can be
deployed in power-limited scenarios [8, 64], such as edge
computing or mobile application. However, the training al-
gorithms of SNNs are also improving. The most practical
training methods are ANN-SNN conversion [7], supervised
training [72], and hybrid training [57, 58].

When SNNs are applied to safety-critical systems, the
reliability of SNNs should be a major concern. The adver-
sarial attack is one of the most significant categories that
threatens model security [24, 68]. Similar to ANNs, SNNs
can also be fooled by crafting adversarial examples that
are imperceptible to human eyes from gradient-based back-
propagation [62], which may lead to catastrophic conse-
quences when SNNs are deployed in safety-related scenar-
ios. Nevertheless, SNNs are still considered to be more ro-
bust than ANNs. This robustness comes from inherent neu-
ral dynamics, such as forgetting historical information and
discrete spikes [63]. Besides, the robustness of SNNs can
be improved through special structural enhancements [9] or
training techniques [37, 45, 71].

Effective attack examples of ANNs can be crafted from
well-defined gradients on the activation functions [68]. For
SNNs, a common way to construct gradient-based attacks
is by backpropagating through a surrogate function over
discrete spikes. In this way, the gradient may suffer from
explosion and vanishment in temporal and layer-by-layer
communication [72]; at the same time, the membrane po-
tential of all historical time steps needs to be saved when
backpropagation, which requires a large amount of memory.
Currently, high-performance SNNs typically combine leaky
integrate-and-fire models and rate-encoded inputs. While
the rate coding scheme brings excellent performance to
SNN, it also exposes shortcomings. If the rate coding nature
in SNN is considered, can we construct a more powerful at-
tack? After all, the activation functions of many ANNs are
inspired by the firing rate of biological neurons [52].
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In this paper, we develop a novel Rate Gradient Approx-
imation Attack (RGA) based on components of rate coding
in high-performance SNNs. RGA attack is more effective
than previously used attacks as it makes better use of the
rate coding feature. We expect our work to provide bench-
marks for SNN defense against adversarial attacks and in-
spire future research for SNNs. The main contributions of
this paper are:

• We observe that layers in SNN are mainly communi-
cated by rate coding, either for converted SNN or for
surrogate-trained SNN.

• We develop the Rate Gradient Approximation Attack
based on rate coding and apply it to SNNs composed
of different types of neurons and input codings. We
further propose a time-extended variant to get more ef-
fective adversarial examples.

• Experiments prove that the RGA attack outperforms
the STBP attack and is less sensitive to neuron hyper-
parameters. Based on the proposed attack, we com-
pare the robustness of SNNs using different leaky pa-
rameters with that of ANNs and manifest that the
SNNs composed of LIF neurons cannot provide strong
enough security. This conclusion inspires further re-
search on networks with more complex neurons.

2. Related Works

Learning of SNNs. The most efficient and commonly used
SNNs training methods are ANN-SNN conversion [7] and
Spatio-temporal Backpropagation (STBP) [72]. The core
idea of ANN-SNN conversion is mapping the weights of
a pre-trained ANN into an SNN. Researchers found that
adjusting the weights or threshold in the SNN can bal-
ance the trade between inference time-steps and perfor-
mance after conversion [12, 14, 16, 25, 28, 50, 61]. Some
recent works quantized the source ANN to boost the per-
formance of converted SNNs using ultra-low time-steps [5,
41, 43, 74]. ANN-SNN conversion is the most practi-
cal training method to train SNNs on large-scale datasets,
and the converted SNNs always have outstanding perfor-
mance [6, 26, 27, 34]. The temporal characteristics of the
spiking neuron make it similar to a Recurrent Neural Net-
work (RNN). Based on this, Wu et al. [72] borrowed the
idea of Back Propagation Through Time [70] and proposed
the supervised learning way of STBP. As the firing of neu-
rons is a non-differentiable Heaviside function, the surro-
gate gradient approximation is proposed to smooth the gra-
dient [19,21,40,53,65,67,77]. Nowadays, the performance
of SNNs trained with backpropagation is comparable to that
of ANNs [13,17,22,29,33,35,39,73,80]. Time-based back-
propagation is another supervised learning method that can
maintain the sparsity of the gradient. However, these works
can only extend to shallow networks [3, 51, 78, 79, 81].

The robustness of SNN. SNNs are vulnerable to adver-
sarial attacks as ANNs by adopting the gradient scheme
in training. Firstly, SNNs obtained from ANN-SNN con-
version can be attacked by the source ANNs with shared
weights [62]. Besides, end-to-end trained SNNs suffer from
the attack constructed from STBP. Sharmin et al. [62] sum-
marized the two types of attacks as ANN-crafted and SNN-
crafted attacks and revealed that attacks based on STBP are
believed to be more powerful than those based on ANNs.
Moreover, Liang et al. [44] exploited spike-compatible gra-
dient to perform bit-flip attacks on SNN. Considering that
SNNs are suitable for event-based tasks, various attacks
on the event data of neuromorphic sensors are also ex-
plored [46, 49]. In these attacks, the STBP gradients are
merged into sparse event data to construct attacks.

Although the performance of SNNs can be degraded by
such a variety of attack schemes, SNNs are still considered
to have additional robustness compared to ANNs [15]. This
is because more encodings are supported in SNNs. Com-
pared to direct coding, Poisson coding is believed to pro-
cess more inherent robustness as it introduces a noisy dis-
cretization to SNNs [37, 63]. Even so, how strong an at-
tack Poisson coding can withstand still remains unknown.
Another key robustness component of SNNs is the leaky
parameter [63]. The leaky parameter controls the forget-
ting of historical information in LIF neurons. El-Allami et
al. [18] achieved improved robustness by only searching in
the space of leaky parameters. The current understanding
of the robustness of SNNs is mainly focused on rate coding,
and LIF neurons are also thought to perform the same cod-
ing. Therefore, gaining new insights into the robustness of
rate coding is crucial for the practical application of SNNs.

3. Preliminaries
3.1. Neuron Model for SNNs

In this paper, we consider the commonly used Leaky-
Integrate-and-Fire (LIF) model and Integrate-and-Fire (IF)
model [23, 31], the dynamics of membrane potential under
firing threshold can be described by the following equa-
tions, respectively.

τm
du

dt
= −(u(t)− urest) +RI(t), (LIF) (1)

τm
du

dt
= RI(t). (IF) (2)

Here τm and R denote the membrane time constant and the
membrane resistance constant, respectively. u(t) and I(t)
represent the membrane potential and input current at time
t, respectively. Once the membrane potential reaches the
firing threshold θ, the neuron will fire, and then the mem-
brane potential will reset to the resting potential urest < θ.
Without loss of generality, to simulate the network of LIF
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neurons on a computer with a Von Neumann architecture,
the above process can be simplified and discretized to an-
other set of equations [4].

ui(t) = λui(t− 1) + wijsj(t) + bi + ηi(t), (3)

si(t) =

{
1, t = t

(f)
i

0, t ̸= t
(f)
i

, (4)

where j and i indicate presynaptic and postsynaptic neu-
rons, wij represents the connection strength between the
two neurons, and bi is an extra constant input current to
neuron i. si(t) describes whether neuron i fires at time-step
t, and the trigger is membrane potential ui(t) reaches the
firing threshold θ. We also mark the firing time-step of neu-
ron i as t(f)i , f = 1, 2, .... λ is the membrane leaky constant
corresponding to the membrane time constant in Eq. (1).
Note that if we explicitly λ to 1, this LIF neuron model will
degenerate to the none-leaky IF model. Also, we add a reset
term ηi(t) on Eq. (3) to describe the neuron reset behavior.
Despite the hard-reset function that resets the neuron mem-
brane potential to resting potential (Eq. (5)), we also con-
sider the soft-reset function (Eq. (6)) that directly subtracts
the membrane potential by the threshold θ [25, 60].

ηhard
i (t) =

{
− (ui(t

(f)
i )− urest) , t = t

(f)
i

0 , t ̸= t
(f)
i

. (5)

ηsoft
i (t) =

{
− θ , t = t

(f)
i

0 , t ̸= t
(f)
i

, (6)

3.2. Supervised Training of SNNs with STBP

Equation (3) implies that the LIF neuron has a function
similar to that of an RNN. Thus, SNNs can be trained in the
same way as RNNs with Back Propagation Through Time.
STBP uses this idea to unroll the SNN over time-steps and
accumulate gradient at each time-step [53, 72]. As illus-
trated in Fig. 1, the gradient of the loss function L with
respect to the output spikes sj(t) is:

∂L
∂sj(t)

=
∂L

∂si(t)

∂si(t)

∂ui(t)

∂ui(t)

∂sj(t)
+ (7)

∂L
∂sj(t+ 1)

∂sj(t+ 1)

∂uj(t+ 1)

∂uj(t+ 1)

∂uj(t)

∂uj(t)

∂sj(t)
.

Note that as the derivative of spike with respect to the mem-
brane potential ∂si(t)

∂ui(t)
is nondifferentiable, the surrogate

gradient [53] is often used in backpropagation.
Since the STBP method enables supervised training of

SNNs, this method can also generate gradient-based adver-
sarial examples [62]. Therefore, we will use STBP as the
baseline gradient obtain method.

Time-steps

Forward Backward 

Figure 1. Forward pass and backward pass for STBP. The pink line
shows that surrogate functions are applied in the non-differentiable
process of neuron firing to obtain approximate gradients.

3.3. Adversarial Attacks

Adversarial attack is a method to generate imperceptible
perturbations that can fool neural networks, which can be
formulated as an optimization problem:

argmax
δ

L(f(x+ δ), y) s.t. ∥δ∥p ≤ ϵ, (8)

where L is the loss function, f is the network under attack,
and x, y are the input images and output target of the given
network, respectively. δ is the adversarial perturbation we
want to optimize. ∥·∥p is the Lp-norm, and parameter ϵ lim-
its the strength of the perturbation to a level that is indistin-
guishable to the human eye. Here we consider two classic
adversarial attack algorithms: Fast Gradient Sign Method
(FGSM) [24] and Projected Gradient Descent (PGD) [38].
FGSM is a simple but effective attack method, which per-
turbs the data x along the sign of the gradient to increase
the perturbed linear output, that is

x̂ = x+ ϵ sign(∇xL(f(x, y))). (9)

PGD is an iterative variant of FGSM. By iteratively opti-
mizing the perturbation, PGD offers a more powerful at-
tack [48]. The iteration can be summarized as:

x̂k = Πϵ{xk−1 + α sign(∇xL(f(xk−1, y)))}, (10)

where k is the number of the iteration step, and α is the step
size of each iteration. Πϵ constrains the data in each itera-
tion and projects it onto the space of the ϵ−lp neighborhood
of x.

For all attack methods, we consider two different at-
tack scenarios, white-box attack, and black-box attack. The
white-box attack is the case that the hacker has complete
access to the model topology, model parameters, and gradi-
ents, while the black-box attack is the case the hacker can
only get the basic information of the model.
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Time-steps

Forward 

Random shuffle

Figure 2. Experimental scheme of spike shuffle

4. Methods
In this section, we first show that the current high-

performance SNNs for image classification tasks are en-
coded by firing rate and do not contain timing information,
whether they are trained by STBP and ANN-SNN conver-
sion. Based on this, we propose rate gradient approxima-
tion, a new attack method against SNNs, and apply it to
SNNs composed of different types of neurons and input en-
codings. Finally, we propose the time-extended attack as an
attack enhancement method.

4.1. Does well-trained SNNs contain timing infor-
mation?

Here we design an experiment and test whether the well-
trained SNNs are rate coded and whether they contain tim-
ing information. The definition of firing rate refers to the
temporal average of the spikes. As illustrated in Eq. (11),
the firing rate of one given neuron i is the total spike count
in an interval of time-steps T divided by the duration T .

ri =

∑T
t=1 si
T

. (11)

The detailed experimental scheme is shown in Fig. 2. We
add a random number generator to shuffle each neuron’s
output spike firing order so that the spike trains will never
contain temporal information. We apply this design to the
pre-trained SNN models and test accuracy change before
and after the spike shuffle.

The experiment is implemented on the CIFAR-10 dataset
with VGG-11 network architecture. To test different SNNs,
we choose combinations of different training methods, leak-
age parameters, and reset functions. We pre-train SNN for
each combination and then substitute all the spiking neurons
with shuffled neurons.

Tab. 1 reports the average performance of 10 runs, from
which we find that the accuracy after spike shuffle is slightly

Surrogate
AVG.

Time-steps

AVG.

Forward 

Backward 

Figure 3. Forward pass and backward pass for RGA attack. The
pink line shows that surrogate functions are applied to the approx-
imation of the derivative for firing rate and input current.

Table 1. Performance before and after the spike shuffle

Dataset
Training
Method

T λ Reset
Clean
Acc.

Shuffled
Acc.

Rate

CIFAR-10 ANNSNN 16 1.0 soft 93.25 93.358 ✓
CIFAR-10 STBP 8 1.0 soft 92.75 92.086 ✓
CIFAR-10 STBP 8 1.0 hard 93.06 92.214 ✓
CIFAR-10 STBP 8 0.9 hard 93.03 92.545 ✓
CIFAR-10 STBP 8 0.5 hard 91.48 91.225 ✓

CIFAR10-DVS STBP 10 0.9 hard 77.00 75.400 ✓

different from the clean accuracy for all SNNs. For the
model converted from ANNs, the model performance af-
ter the spike shuffle is slightly improved. The performance
after spike shuffle is slightly reduced for other models ob-
tained by supervised STBP training. In fact, even for mod-
els trained on the DVS dataset, the performance gap be-
fore and after shuffling is small, which proves that models
trained on the DVS dataset contain very little timing infor-
mation. Therefore, we assert that firing rates encode major
information in these SNNs.

4.2. Rate Gradient Approximation Attack

This section proposes the Rate Gradient Approximation
(RGA) attack for spike count rate coding SNNs. In the
above section, we have shown that the well-trained SNNs
are all rate-encoded at each layer. Thus, we can approx-
imate the backward pass of SNNs using only the average
firing rate over time-steps to generate effective gradients.
Specifically, we introduce an intermediate variable Ii to de-
note the average input current of neuron i in Eq. (3), which
is defined by:

Ii =

T∑
t=1

wijsj(t) + bi (12)

Note that Ii also represents the weighted firing rate from
the previous layer. Fig. 3 illustrates how the gradient propa-
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Figure 4. Surrogate function and gradient for IF neuron

gates between two adjacent neurons i and j with the defined
weighted firing rate. The gradient propagation starts from
the firing rate ri of the i-th neuron, passes to the input cur-
rent Ii, and finally arrives at the firing rate rj of the j-th
neuron, that is

∂L
∂rj

=
∂L
∂ri

∂ri
∂Ii

∂Ii
∂rj

. (13)

This result can be generalized to the network with the chain
rule. If we use vectors rl and I l to denote the firing rates
and average input currents of all neurons in layer l, respec-
tively, and use vector r0 to denote the input image. The
gradient propagates from the loss function to the input im-
age is formulated as:

∂L
∂r0

=
∂L
∂rL

(
L∏

l=1

∂rl

∂I l

∂I l

∂rl−1

)
. (14)

4.3. RGA Attack with Surrogate Gradient

According to Eq. (11) and (12), one can compute the gra-
dient ∂Ii

∂rj
, the only part we cannot directly calculate the gra-

dient in Eq. (13) is ∂ri
∂Ii

. To get a proper approximation for
∂ri
∂Ii

, we need to use a differentiable surrogate function f(·)
to approximate the relationship between output firing rate
ri and input current Ii. Here, we propose to use the static
R-I curve, which refers to the relationship between the in-
put current and output firing rate when the input is constant,
as the approximation function. We discuss the cases of IF
neurons and LIF neurons separately.
RGA Attack the Integrate-and-Fire Neuron

For IF neurons, the static R-I curve is the clipped ReLU
function [7, 14], which is presented in Fig. 4a by the blue
line. We also sampled from a pre-trained VGG-11 net-
work to obtain the actual distribution of average input cur-
rent and average output firing rate (more details are in the
Appendix), which is represented by the light blue scatter
in the figure. We find that if we simply set the static RI
curve as the surrogate gradient, many data points would be
wrongly assigned to zero derivatives. To avoid the deriva-
tives being all zero in the interval [θ,+∞], we propose a
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Input

1

R
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e

(a) LIF R-I curve

0 (1− λ)θ θ βθ
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1

G
ra
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en

t

(b) Derivative of LIF R-I curve

Figure 5. Surrogate function and gradient for LIF neuron

modified R-I curve function as the final surrogate function
(green line in Fig. 4a). We introduce a relaxation parameter
β ∈ [1,+∞] to keep the derivatives to be none-zero be-
tween [0, βθ]. Then its corresponding derivative (surrogate
gradient) is:

∂ri
∂Ii

=

{
1/(βθ), 0 ⩽ Ii ⩽ βθ

0, Ii > βθ or Ii < 0
. (15)

With the formula for backpropagation and the derivatives of
intermediate nodes, we can calculate the derivatives that are
ultimately passed to the input image.
RGA Attack the Leaky-Integrate-and-Fire Neuron

Similar to the RGA Attack for IF neurons, the surro-
gate function for LIF neurons is inspired by the static R-I
curve. Following the work of [23, 30], we derive the R-I
curve function for the LIF neurons. Supposing that a LIF
neuron receives a constant input Ii and urest = 0, the LIF
neuron (Eq. (3)) can be simplified to:

ui(t) = λui(t− 1) + Ii. (16)

We then iterate this recursive formula to get the neuron
membrane potential as a function of time.

ui(t) =
Ii

λ− 1
λt − Ii

λ− 1
(17)

From the formula above, we can calculate the time required
for the neuron to accumulate from 0 to θ, and finally obtain
the firing rate by inverse the calculated time interval.

ri =

⌈
logλ

Ii + θ(λ− 1)

Ii

⌉−1

(18)

As shown in Fig. 5a, the light blue scatter represents the ac-
tual distribution of average input current and average out-
put firing rate from a pre-trained VGG-11 network with
LIF neurons. Although the static RI curve matches the ac-
tual situation, the static RI curve (blue curve) contains the
non-derivable equation. The derivative is always zero when
x < (1−λ)θ or x > θ. Meanwhile, as limx−→(1−λ)θ+ , the
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derivative of the function approaches infinity. This will lead
to gradient vanishing and exploding problems in backprop-
agation. Therefore, it is impractical to calculate the deriva-
tives directly from the static R-I curve.

According to the characteristics of this static R-I curve,
we segment it at the position of (1−λ)θ and then separately
perform piecewise linear interpolation at x ∈ [0, (1 − λ)θ]
and x ∈ [(1 − λ)θ, βθ], where β is a relaxation parameter
to control the end point of interpolation. Thus, we obtain
two straight lines (green line in Fig. 5a). In order to avoid
zero derivatives over the interval [0, (1− λ)θ], we also add
a hyperparameter γ which is the derivative of the first half
of the linear function. In conclusion, the first part of the
linear interpolation start at data point (0, 0) and end at ((1−
λ)θ, (1 − λ)θγ). The second part of the interpolation start
at ((1− λ)θ, (1− λ)θγ) and end at (βθ, 1).

Therefore, the final surrogate gradient can be written as

∂ri
∂Ii

=


γ, 0 ⩽ Ii ⩽ (1− λ)θ

1− γθ + γθλ

(β + λ− 1)θ
, (1− λ)θ < Ii ⩽ βθ

0, Ii > βθ or Ii < 0

. (19)

The derivative of this surrogate gradient function is γ in
the first interval and (1− γθ+ γθλ)/((β + λ− 1)θ) in the
second interval. Note that when we set the leaky parameter
λ = 1, this function degenerates into the same form as the
surrogate function for the IF neuron (Eq. (15)). Thus, this
function can apply to both types of neurons.

The hyperparameter β and γ are mainly smoothing terms
to prevent the gradient from disappearing. We set β to 2 and
γ to 0.2 in the rest of this paper. More ablation experiments
of the hyperparameters are provided in the Appendix.

4.4. RGA Attack the Poisson Encoding

Our proposed method can generalize to SNNs that re-
ceive spike inputs. For Poisson input SNN, we can regard it
as a combined structure of a Poisson encoder and an end-to-
end SNN receives spike input. Therefore, we also need to
attack the Poisson encoder rather than only perturbing the
network. We can consider the Poisson encoder as a random
transformation and use a straight through estimator [2] to
attack this random transformation [1]. The gradient can be
written as:

∂Poisson(x)
∂x

≈ ∂Ex (Poisson(x))
∂x

= 1. (20)

The Adversarial example generation methodology proposed
by Sharmin et al. [63] also includes the attack on Pois-
son encoded attack. Note that although our attack on the
Poisson encoder is implemented differently from theirs, it
is mathematically equivalent, and the generated adversarial
examples are the same.
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Figure 6. The attack success rate change with respect to the attack
strength for VGG-11 model on the CIFAR-10 dataset. Here WB
stands for white box attack while BB stands for black box attack.
The blue and purple bar display the attack success rates (%) for
RGA-FGSM and STBP-FGSM, respectively.

4.5. Time Extended RGA Attack

Here we introduce an SNN-specific attack enhancement
method. When generating attack samples, we expect to gen-
erate more effective adversarial samples by increasing the
inference time of SNNs. We call this method as Time Ex-
tended attack. When we apply this time-extended enhance-
ment with RGA attack, the effects of randomness can be re-
duced by increasing the simulation time of attacking, result-
ing in a more accurate estimation of the firing rate. There-
fore, the time-extended enhancement is generally more suit-
able for RGA-based attacks and is more effective for attack-
ing against SNNs with Poisson inputs.

5. Experiments
In this section, we conduct various experiments to eval-

uate the effectiveness of the proposed methods [32,55]. We
first test our attack method on the CIFAR-10, CIFAR-100
dataset [36] and CIFAR10-DVS dataset [42] with the VGG-
11 [66] and ResNet-17 architecture [80]. We implement
both non-iterative attack FGSM and iterative attack PGD
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Architecture Dataset Input T λ TE Attack
Clean
Acc.

White Box Attack Black Box Attack

ASR.
(STBP)

ASR.
(RGA)

ASR.
(STBP)

ASR.
(RGA)

VGG-11 CIFAR-10 Direct 8 1.0 - FGSM 93.06 86.2777 93.7352 68.0314 73.2646
VGG-11 CIFAR-10 Direct 8 1.0 2× FGSM 93.06 86.0735 94.7346 64.8399 73.6192
VGG-11 CIFAR-10 Direct 8 1.0 - PGD 93.06 99.4949 99.8281 86.4604 87.1266
VGG-11 CIFAR-10 Direct 16 1.0 - FGSM 93.03 85.3273 92.4218 65.7960 73.1269
VGG-11 CIFAR-10 Direct 16 1.0 - PGD 93.03 99.3658 99.8388 85.5853 87.4234
VGG-11 CIFAR-10 Poisson 16 1.0 - FGSM 86.72 54.9798 58.0328 40.8673 44.2259
VGG-11 CIFAR-10 Poisson 16 1.0 2× FGSM 86.72 56.8106 60.5296 42.8440 46.9085
VGG-11 CIFAR-10 Poisson 16 1.0 - PGD 86.72 51.9022 57.1412 37.0917 41.1887
VGG-11 CIFAR-10 Direct 8 0.5 - FGSM 91.48 91.7140 93.6270 77.7656 79.6458
VGG-11 CIFAR-10 Direct 8 0.5 - PGD 91.48 99.8251 99.7704 93.6817 93.0367
VGG-11 CIFAR-10 Direct 8 0.9 - FGSM 93.03 89.9065 94.4104 73.4494 77.2761
VGG-11 CIFAR-10 Direct 8 0.9 - PGD 93.03 99.7313 99.8280 91.7661 91.3899

ResNet-17 CIFAR-10 Direct 8 0.9 - FGSM 93.04 84.2433 92.9278 67.1109 80.1053
ResNet-17 CIFAR-10 Direct 8 0.9 - PGD 93.04 99.9248 100.000 92.0034 97.5172
VGG-11 CIFAR-100 Direct 8 0.9 - FGSM 73.28 92.8766 94.7189 80.8952 84.2658
VGG-11 CIFAR-100 Direct 8 0.9 - PGD 73.28 99.7544 99.8499 92.2353 92.0579

ResNet-17 CIFAR-100 Direct 8 0.9 - FGSM 72.05 85.6627 92.0611 74.2956 81.1936
ResNet-17 CIFAR-100 Direct 8 0.9 - PGD 72.05 99.5836 99.8890 87.6336 95.2949
VGG-11 CIFAR10-DVS Frame 10 0.9 - FGSM 77.00 59.5084 59.5607 48.4967 47.9275

Table 2. Results of RGA based attack and STBP based attack on different type of SNNs. The seven columns on the left describes the
parameter settings of the attack object, including architecture, datasets, input coding, simulation time-steps, leaky parameters, time extant
(TE), and attack method. ASR. is short for attack success rate. For clarity, the better of the two attack results is bolded.

and combine them with the proposed RGA attack and com-
pare the results with STBP-based attacks. Note that when
attacking DVS-related models, we directly generate and add
adversarial examples on the preprocessed frames.

As for training methods, since the ANN-SNN conversion
method is proved insecure [63], we only consider SNNs ob-
tained by supervised STBP training. We used the attack
success rate as our metric for each attack, which is the pro-
portion of samples that fool the network into misclassifi-
cation. The details of the training configurations for pre-
trained networks are provided in the Appendix.

5.1. Effectiveness of the RGA Attack

Here we test the effectiveness of the proposed RGA at-
tack. We choose the STBP attack as a baseline and com-
pare the attack success rate. To compare the effectiveness
of the attack on various neuron settings, we select SNNs
composed of LIF neurons with a leaky parameter of 0.9 and
none-leaky IF neurons with a leaky parameter of 1.0. Also,
the inference time-steps vary from 8 to 16.

As shown in Fig. 6, we find that the attack success rate
of our RGA attack method surpasses the previously com-
monly used STBP attack in most cases. When the attack
strength is small, the attack success rate of the RGA attack
and STBP attack is not much different. However, when the
attack strength gradually increases to 8/255, the attack suc-
cess rate of the RGA attack will be much higher than that

obtained by the STBP attack. These results demonstrate that
the RGA attack is more effective than the STBP attack for
different SNN settings.

5.2. Effectiveness of Time Extended Attack

To demonstrate the effectiveness of the time-extended
attack, we pre-train two SNNs with different neurons and
input encoding. We then double and triple the inference
time-steps to attack these SNNs while keeping the origin
inference time-steps for evaluation. The SNN configuration
and the final results are shown in Fig. 7. The combination of
the time-extended enhancement and RGA-based attack can
achieve better attack performance since the attack effective-
ness increases as the simulation time-step increases. How-
ever, applying the time-extended enhancement attack on the
STBP-based attack cannot improve the attack. Meanwhile,
we also find that the time-extended enhancement method is
more effective for the Poisson input model.

5.3. Generalizability of the RGA Attacks

To discuss the generalizability of RGA attacks across
different SNNs, we conduct further experiments across var-
ious SNNs. Tab. 2 reports the detailed comparison of RGA
attack and STBP attack over various SNN neurons, archi-
tecture, and dataset settings. In this experiment, we set the
attack strength ϵ to 8/255 for CIFAR-10/100 dataset and
0.02 for the CIFAR10-DVS dataset. Also, the step size and
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Figure 7. White box attack results of the time-extended attack with
different settings. The 1× represents the baseline attack, while
2× and 3× represent double or triple the simulation time when
attacked. The model under attack is VGG-11 composed of LIF
neurons on the CIFAR-10 dataset.

the number of steps for the PGD attack are set to 2/255 and
5, respectively.

From Tab. 2, one can find that all RGA-based attacks
outperform STBP-based attacks when conducting single-
step attacks. In attacks cases without time-extended en-
hancement, the largest performance gap exceeds 8.6% and
13% in ResNet-17 for white box and black box attacks, re-
spectively. When conducting multi-step attacks, the pro-
posed RGA-based attack achieves better performance than
the STBP-based attack in most cases and gets comparable
performance for the rest of the cases. In attack cases with
time-extended enhancement, the performance of the RGA
attack not only exceeds the STBP attack, but also exceeds
the performance of RGA attack without time-extended en-
hancement. Even in attacks on the CIFAR10-DVS dataset,
the RGA-based attack gets comparable performance as the
STBP-based attack.

In conclusion, the proposed RGA attack can pro-
duce stronger adversarial examples in most cases. The
RGA attack is also insensitive to neuron hyperparame-
ters.Currently, high-performance SNNs are mainly applied
in tasks related to static images or DVS datasets. We have
proved through experiments that those SNNs contain very
limited temporal information and they are vulnerable to the
designed RGA-based attack. This demonstrates the impor-
tance and generalizability of the RGA-based attack method.

5.4. LIF Neuron is not that Robust

Previous research suggested that the VGG5 SNNs
trained with LIF neurons are more robust than the ones
trained with IF neurons [63]. Here, we test whether this
conclusion can be generalized to deeper networks with
RGA-based attacks. We train multiple networks with the
same architecture, including one quantized ANN and six
SNNs with leaky parameters ranging from 0.5 to 1. We
select VGG-11 as the model architecture and CIFAR-10
as the evaluation dataset. Then, we apply the white box
FGSM attack to the quantized ANN and both RGA-FGSM
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Figure 8. The white box attack success rate changes with respect
to the leaky parameter of the spiking neuron. The red line repre-
sents the RGA attack, while the green line represents the STBP
attack. The blue dashed line illustrates the attack success rate of
a quantized ANN under the FGSM attack. The selected leaky pa-
rameters range from 0.5 to 1.0. This experiment is conducted on
the CIFAR-10 dataset with VGG-11 architecture.

and STBP-FGSM attacks to the six SNNs.
Fig. 8 demonstrates the results. The blue dashed line

represents the attack success rate of ANN being attacked
by FGSM. The red and green lines represent the attack
success rate of the RGA-FGSM and STBP-FGSM, respec-
tively. According to this figure, one can find that compared
to the STBP attack (green line), the RGA attack (red line)
is more stable. Meanwhile, the red line is always above the
green line, indicating that the RGA attack can not only gen-
erate stronger adversarial examples, but is also less sensitive
to neuron leakage parameters.

In addition, the performance of all types of SNNs under
STBP-based attacks fluctuates around the baseline, while
the RGA attack success rate is always higher than the base-
line. Therefore, we found that SNN composed of LIF neu-
rons with different leakage parameters has no advantage
over ANNs in terms of adversarial robustness.

6. Conclusion
In this paper, we propose a new attack method for SNNs

that outperforms previous methods. Our approach can serve
as a benchmark for future research on SNN adversarial ro-
bustness. In addition, considering the strength of this at-
tack method and the lower time cost compared to the STBP
attack, we also look forward to the research on adversarial
training based on this attack method. Our findings show that
the rate-coded SNN composed of LIF neurons is not secure
against stronger adversarial attacks, highlighting the need
for exploring training methods for SNNs utilizing complex
neurons and other neuronal codings.
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