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Abstract

In practical settings, classification datasets are obtained
through a labelling process that is usually done by humans.
Labels can be noisy as they are obtained by aggregating the
different individual labels assigned to the same sample by
multiple, and possibly disagreeing, annotators. The inter-
rater agreement on these datasets can be measured while
the underlying noise distribution to which the labels are
subject is assumed to be unknown. In this work, we: (i)
show how to leverage the inter-annotator statistics to esti-
mate the noise distribution to which labels are subject; (ii)
introduce methods that use the estimate of the noise distri-
bution to learn from the noisy dataset; and (iii) establish
generalization bounds in the empirical risk minimization
framework that depend on the estimated quantities. We con-
clude the paper by providing experiments that illustrate our
findings.

1. Introduction

Supervised learning has seen enormous progress in the
last decades, both theoretical and practical. Empirical risk
minimization is used as a learning framework [23], which
relies on the assumption that the model is trained with iid
(independent and identically distributed) sampled data from
the joint distribution between features and labels. As a con-
sequence of generalization bounds, when this assumption is
satisfied any desired performance can be achieved as long
as enough training data is available. However in many real-
world applications, due to flaws during the data collection
and labeling process, the assumption that the training data
is sampled from the true feature-label joint distribution does
not hold. Training data is often annotated by human raters
who have some non-zero probability of making mistakes. It
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has been reported in [21] that the ratio of corrupted labels
in some real-world datasets is between 8.0% and, 38.5% .
As a consequence of the presence of incorrect labels in the
training dataset, the aforementioned assumption is violated
and hence performance guarantees based on generalization
bounds no longer hold.

This gap between theory and practice raises the question
whether it is possible to learn from datasets with noisy la-
bels while still having performance guarantees. This ques-
tion has received a lot of attention lately and has already
been answered in the positive in some cases [15, 16]. In-
deed multiple works have introduced learning algorithms
that can cope with datasets with incorrect labels while guar-
anteeing desirable performance through provable general-
ization bounds. However, these solutions do not solve the
entirety of the problem due to the fact that they rely on
precise knowledge of the error rate to which the labels
are subject, which is often unknown in practice. Several
works [16,26,27] attempt to address this issue by introduc-
ing techniques to estimate such error rate. Some of these
methods have the drawback of relying on assumptions that
do not always hold in practice, such as the existence of an-
chor samples [16]. Ideally, it would be desirable to design
learning algorithms that are both robust to noisy labels, and
for which performance guarantees can be provided.

An approach, often used in industry to reduce the im-
pact of errors made by human raters, is to label the same
dataset multiple times by different annotators. Then the in-
dividual labels are combined to reduce the probability of
erroneous labels in the dataset, two popular approaches are
majority vote or soft labeling. In these cases inter-annotator
agreement (IAA) scores (like Cohen’s kappa [1] and Fleiss’
kappa [5]) provide measurable metrics that are directly re-
lated to the probability of error present in the labels.

Since the IAA holds a direct relationship with the error
rate associated with the human raters, one could potentially
estimate the error rate and leverage this estimate to modify
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the learning algorithms with the objective of making them
robust to the resulting noise in the labels. This is the main
direction we explore in this work.

Motivation and Contributions: This work is motivated
by two main points: i- to the best of our knowledge there
are no published results that indicate how to leverage the
IAA statistics to estimate the label noise distribution; and
ii- the generalization bounds of existing noise tolerant train-
ing methods often rely on unknown quantities (like the true
noise distribution) instead of on quantities that can be mea-
sured (like the IAA statistics).

Our contributions are the following: (i) we provide a
methodology to estimate the label noise distribution based
on the IAA statistics; (ii) we show how to leverage this
estimate to learn from the noisy dataset; and (iii) we pro-
vide generalization bounds for our methods that depend on
known quantities.

2. Related works

Our work is related to literature on three main topics: (i)
robust loss function design, (ii) label aggregating and (iii)
noise rate estimation.

Robust loss functions In classification tasks, the goal is
to obtain the lowest probability of classification error. The
0 � 1 loss counts how many errors a classifier makes on
a given dataset and is often used in the evaluation of the
classifier. However, it is rarely used in optimization proce-
dures because it is non-differentiable and non-continuous.
To overcome this, many learning strategies use some con-
vex surrogates of the 0 � 1 loss function (e.g. hinge loss,
squared error loss, cross-entropy).

It was proved ( [6], [7]) that symmetric loss functions,
that are functions for which the sum of the risks over all cat-
egories is equivalent to a constant for each arbitrary exam-
ple, are robust to label noise. Examples of symmetric loss
functions include the 0 � 1 loss, the Ramp Loss and (soft-
max) Mean Absolute Error (MAE). In [29] authors show
that even if MAE is noise tolerant and cathegorical cross
entropy (CCE) is not, MAE can perform poorly when used
to train DNN in challenging domains. They also propose a
loss function that can be seen as a generalization of MAE
and CCE. Several other loss functions that do not strictly
satisfy the symmetry condition have also been proposed to
be robust against label noise when training deep neural net-
works [4, 13, 24].

[15] presents two methods to modify the surrogate loss
in the presence of class-conditional random label noise. The
first method introduces a new loss that is an unbiased esti-
mator for a given surrogate loss, and the second method
introduces a label-dependent loss. The paper provides gen-
eralization bounds for both methods, which depend on the

noise rate of the dataset and the complexity of the hypothe-
sis space.

Labels aggregation When constructing datasets for su-
pervised learning, data is often not labeled by a single an-
notator, rather multiple imperfect annotators are asked to as-
sign labels to documents. Typically, separate labels are ag-
gregated into one before learning models are applied [3,20].
In our work, we propose to exploit a measure of the agree-
ment between annotators to explicitly calculate the noise
of the dataset. Recently some works revisited the choice
of aggregating labels. In [19] authors explore how to train
LETOR models with relevance judgments distributions in-
stead of single-valued relevance labels. They interpret the
output of a LETOR model as a probability value or distri-
bution and define different KL divergence-based loss func-
tions to train a model. The loss they proposed can be used to
train any ranking model that relies on gradient-based learn-
ing (in particular they focused on transformer-based neu-
ral LETOR models and on the decision tree-based GBM
model). However, the authors do not directly estimate the
noise rates in the annotations or study how learning from
these noisy labels affects the generalization error of the
models trained with the methods they introduce. In [25]
the authors analyze the performance of both label aggrega-
tion and non-aggregation approaches in the context of em-
pirical risk minimization for a number of popular loss func-
tions, including those designed specifically for the noisy la-
bel learning problem. They conclude that label separation
is preferable to label aggregation when noise rates are high
or the number of labelers/annotations is insufficient. [17]
and [22] exploit the availability of multiple human anno-
tations to construct soft labels and concludes that this in-
creases performance in terms of generalization to out-of-
training-distribution test datasets, and robustness to adver-
sarial attacks. [2] focus on efficiently eliciting soft labels
from individual annotators.

Noise rate estimation A number of approaches have been
proposed for estimating the noise transition matrix (i.e. the
probabilities that correct labels are changed for incorrect
ones) [12, 16, 31]. Usually these methods use a small num-
ber of anchor points (that are samples that belong to a spe-
cific class with probability one) [8]. In particular, [16] pro-
posed a noise estimation method based on anchor points,
with the intent to provide an ‘end-to-end’ noise-estimation-
and-learning method. Due to the lack of anchor points in
real data, some works focused on a way to detect anchor
points in noisy data, [26, 27]. In [27] the authors propose
to introduce an intermediate class to avoid directly estimat-
ing the noisy class posterior. [28] also propose an iterative
noise estimation heuristic that aims to partly correct the er-
ror and pointed out that the methods introduced by [16]

3440



and [27] have an error in computing anchor points, and pro-
vide conditions on the noise under which the methods work
or fail. [26] provides a solution that can infer the transition
matrix without anchor points. Indeed they use the instances
with the highest class posterior probabilities for noisy data
as anchor points. Our work differs from the mentioned work
that use anchor points because we do not need to assume
the existence of anchor points or to have a validation set to
learn the noise rate and we only use noisy data to train our
model, moreover we neither aim to detect anchor points in
the noisy data. Also most of these works do not study the
generalization properties of the proposed models, while we
also address this problem and find bound that depend on the
estimated noise transition matrix.

Another approach is based on the clusterability condi-
tion, that is an example belongs to the same true class of its
nearest-neighbors representations. [30] presented a method
that relies on statistics of high-order consensuses among the
2 nearest-neighbors noisy labels.

3. Problem formulation

3.1. Notation

In this paper we follow the following notation. Matrices
and sets are denoted by upper-case and calligraphic letters,
respectively. The space of d-dimensional feature vectors is
denoted by X ⇢ Rd.

We denote by C the number of classes and by ej the j-
th standard canonical vector in RC , namely the vector that
has 1 in the j-th position and zero in all the other positions.
Y = {e1, . . . , eC} ⇢ {0, 1}C is the label set. Feature vec-
tors and labels are denoted by x and y, respectively. D is
the joint distribution of the feature vectors and labels, i.e.
(x, y) ⇠ D. The sampled dataset of size n is denoted by
bD = {(xi, yi)}ni=1. f(x) denotes the output of the classifier
f for feature vector x and is a C dimensional vector. All
vectors are column vectors.

We denote by `(t, y) a generic loss function for the clas-
sification task that takes as input C dimensional vectors t

and y. In practice t will contain the prediction of the model
and y will be the ground-truth label as a one-hot encoded
vector. Namely ` : [0, 1]C ⇥ Y ! R.

3.2. Background

We consider the classification problem within the super-
vised learning framework, where the ultimate goal is to min-
imize the ` -risk R`,D(f) = E(x,y)⇠D[`(f(x), y)], for some
loss function `. We denote by D the joint distribution of fea-
ture vectors x and labels y. In practice, since the distribution
is unknown instead of minimizing R`,D(f) we minimize an

empirical risk over some sampled dataset bD:

bR
`, bD(f)=

1

n

nX

i=1

`(f(xi), yi)=E(x,y)⇠ bD[`(f(x), y)]. (1)

In this work we assume that the true labels yi are un-
known and consider two scenarios, both of which rely on
H annotators.

3.2.1 Scenario I

In this scenario we have access to the H labels provided
by the annotators for each sample, where yi,a refers to the
label provided by the a-th annotator for the i-th sample. For
a given feature vector xi the distribution of labels provided
by annotator a is given by its noise transition matrix Ta,
which is defined as follows:

(Ta)i,j := P(ya = j|y = i) (2)

Assumption 1. We assume that all annotators have the
same noise transition matrix (i.e. Ta = T for all a), that
T is symmetric and that its diagonal elements are larger
than 0.5 (i.e. P(ya = i|y = i) > 0.5, 8i 2 {1, . . . C}).

Note that by definition T is right stochastic and hence
also doubly stochastic. It is also strictly diagonally domi-
nant and therefore non-singular.

Proposition 3.0.1. T is positive definite.

Proof. Since T is symmetric it follows that all eigenvalues
are real. Combining the fact that it is strictly diagonally
dominant with Gershgorin’s theorem we conclude that all
eigenvalues lie in the range (0, 1] and hence T is positive
definite.

Assumption 2. We assume that the annotators are condi-
tionally independent on the true label y:

P(ya, yb|y) = P(ya|y)P(yb|y). (3)

We now define the IAA matrix Mab between annotators
a and b as follows:

(Mab)i,j := P(ya = i, yb = j) (4)

Proposition 3.0.2. Leveraging Assumption 2 the agreement
matrix Ma,b can be written as follows:

Ma,b = Ta
T
DTb (5)

D : = diag{⌫} (6)

⌫ : = [P(y = 1), · · · ,P(y = C)]T . (7)

Due to Proposition 3.0.1 and the fact that D is positive def-
inite it follows that all matrices Ma,b are invertible.
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Assumption 3. We assume that the class probabilities (and
hence D) are known.

Due to Assumption 1 all annotators share the same noise
transition matrix T . Therefore Mab is independent of a and
b and from now on we remove this dependency in the no-
tation(i.e. we get M = T

T
DT ). Furthermore, since T is

invertible and D diagonal and positive definite it follows
that M is also positive definite.

Note that since we have access to all the labels provided
by the H annotators for all the samples we can obtain an
estimate of M which we denote cM .

Assumption 4. We assume that cM is a consistent estimator.

For the case of two annotators, one possible consistent
estimator [Ma,b that exploits its symmetry condition is given
by:

([Ma,b)i,j =
nX

k=1

1(ya,k=i, yb,k=j) + 1(ya,k=j, yb,k=i)

2n

(8)

If the annotators have the same transition matrix, M will
be the same for all pairs of annotators. So we can estimate
M , in the case of H � 2 by averaging the estimators cMab

obtain by Eq. (8) for all possible pairs of annotators. The
estimator in this case can be written as

(cM)i,j =
1

H(H�1)

HX

a=1

HX

b=1
b 6=a

nX

h=1

1(ya,h=i, yb,h=j)

n
. (9)

3.2.2 Scenario II

In the second scenario, for each i-th sample we are given a
unique label ỹi that is produced by aggregating the H in-
dividual labels according to some known aggregating pol-
icy (like majority vote). In this case, since we do not have
access to the individual annotations we assume that cM is
provided.

The probability that label yi is corrupted to some other
label ỹi is given by the aggregated noise transition matrix
� 2 [0, 1]C⇥C , where �ij := P(ỹ = j|y = i) is the proba-
bility of the true label i being flipped into a corrupted label j
and C is the number of classes. Note that by definition � is a
right stochastic matrix that is determined by T , the amount
of annotators H and the aggregating policy. We will study
both the case where � = T , and the case in which there
exists a generic Lipschitz function � so that ��1 = �(T ).

There are different policy choices to construct the dataset
that lead to � = T . If we decide to use only one annotator,
for instance a, to build the final dataset, namely for each
sample ỹ

i = y
i

a
we have � = Ta. Or if annotators are

homogeneous, i.e. they have the same noise transition ma-
trix T , and to build the final dataset we decide to randomly
select the label of one of the annotators we have that � = T .

Even restricting ourselves to the case of homogeneous
annotators, depending on the rule with which we build the
dataset we can have a more complex relationship between
the matrix T and �.

We also obtain generalization bounds in the case were
an estimate of the agreement matrix M is not available and
we only have access to a scalar representation of the inter-
annotator agreement, in particular we consider the case
where the Cohen’s  is given.

3.2.3 Objective

The objective in both scenarios is to: i) use cM to estimate
the noise transition matrices (T and �); ii) leverage these
estimates to be able to learn from the noisy dataset in a more
robust manner; and iii) obtain generalization bounds for the
resulting learning methods.

4. Main results

We divide the main contributions in three sections. In
the first section we show how to estimate the noise matri-
ces T Next we indicate how to leverage these estimates to
learn for the datasets with noisy labels. Finally we obtain
bounds,depending on the Rademacher complexity of the
class of functions, on the generalization gap for a bounded
and Lipschitz loss function

4.1. Estimation of the noise transition matrices

We start stating the following Lemma that allows us to
write the unknown matrix T (and its inverse), as a function
of D and M .

Lemma 4.1. If D
1
2 commutes with T we have that:

T = U⇤
1
2U

T (10)

T
�1 = U⇤� 1

2U
T (11)

D
� 1

2MD
� 1

2 = U⇤UT (12)

where U⇤UT is the eigenvalue decomposition of
D

� 1
2MD

� 1
2 (i.e. U is some orthogonal matrix and

⇤ is a diagonal positive definite matrix).

A detailed discussion of when the commutativity as-
sumption is satisfied is included in Appendix B. The proof
of the previous Lemma can be find in Appendix C.1.

Note that we could use Lemma 4.1 to estimate T as fol-
lows:

bT = bU b⇤
1
2
M

bUT (13)
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where bU b⇤M
bUT is the eigenvalue decomposition of

D
� 1

2 cMD
� 1

2 . However such estimate can result in matri-
ces that are not doubly stochastic, or diagonally dominant
due to estimation errors. A more accurate estimate of T

could be obtained as bT = ⇡(bU b⇤
1
2
M

bUT ) where ⇡ is a projec-
tion operator to the set of doubly stochastic, positive definite
matrices with diagonal elements greater than 0.5 and non-
negative entries (which is a convex set). We can obtain such
projection by solving the following optimization problem:

bT = ⇡(bU b⇤
1
2
M

bUT ) = argmin
B

||B � bU b⇤
1
2
M

bUT ||22 (14)

s.t.

B = B
T

X

j

Bi,j = 1 8i

Bi,j � 0 8i, j
Bi,i � 0.5 8i

Note that this optimization problem is convex because
the constraints are linear and for symmetric matrices it holds
that || bT � bU b⇤

1
2
M

bUT ||22 = �max( bT � bU b⇤
1
2
M

bUT ), which is a
convex function of bT .

To summarize, T can be estimated as follows. First,
obtain an estimate of M . Then obtain the eigenvalue de-
composition of D� 1

2 cMD
� 1

2 = bU b⇤bUT (note that this de-
composition always exists because D

� 1
2 cMD

� 1
2 is sym-

metric). Finally obtain the estimate as: bT := ⇡(bU b⇤ 1
2 bUT ).

Note that once the estimate of bT is obtained, b� can be
obtained since we assumed the label aggregating policy to
be known.

Lemma 4.2. Let Ma,b be the agreement matrix for anno-
tators a and b defined in Eq. (4) and [Ma,b be the esti-
mated agreement matrix defined in Eq. (8) and let ||.||p be
the matrix norm induced by the p vector norm. For every
p 2 [1,1] and for every � > 0, with probability at least
1� �

||Ma,b � [Ma,b||p 
r

C2

2n
ln

2C2

�
. (15)

where Pn denotes the probability according to which the n

training samples are distributed, i.e. we are assuming that
the samples are independently drawn according the proba-
bility P.

Proof. The proof can be found in Appendix C.2.

From Lemma 4.2 it follows that if cM is estimated as in
Eq. (9), since cM is an average of dMab it also holds that for
every p 2 [1,1] and for every � > 0, with probability at
least 1� �

||M � cM ||p 
r

C2

2n
ln

2C2

�
. (16)

Theorem 4.3. Let T be the noise transition matrix defined
as in Eq. (2) and bT its estimate (defined as in Eq. (14)).

With probability at least 1� �:

||T � bT ||2  C(
p
C + 1)�max(D)

�min(T̂ )

r
1

2n
ln

2C2

�
(17a)

||T�1 � bT�1||2  9C(
p
C + 1)�max(D)

�min(T̂ )2

r
1

2n
ln

2C2

�

(17b)

for n >
C

2(
p
C+1)2(ln(2C2)2

2�min(T̂ )2
.

Proof. The proof can be found in Appendix C.3.

From the previous theorem we can notice that the error
in estimation of T decays as 1p

n
as a function of n.

4.2. Learning from noisy labels

In this section we show how to leverage the estimates of
the error rates to train the models.

4.2.1 Posterior distribution of true labels as soft-labels

It is noteworthy that if we have access to the labels provided
by all annotators, the posterior probabilities of the true la-
bels can be calculated leveraging T and Bayes’ Theorem as
follows:

P(yi = c|y1,i, . . . , yH,i)| {z }
:=pc,i

/ ⌫c

HY

h=1

P(yh,i|yi = c)
| {z }

=Tc,yh,i

(18)

we recall that ⌫c = P(yi = c) and that the conditional prob-
abilities on the r.h.s. are given by T . In our case we can
use our noisy transition estimates to estimate the posterior
probabilities of the true labels, and afterwards we can use
these posteriors to train the classifier.

Lemma 4.4. For infinite annotators the posterior distribu-
tion over every sample calculated using the true T con-
verges to the dirac delta distribution centered on the true
label almost surely (i.e. limH!1 pc,i

a.s.
= 1(yi = c)).

Proof. See Appendix C.5.

We can use the posterior distributions as soft-labels
defining the following loss for the i-th sample:

`(f(xi), y1,i, . . . , yH,i) = `(f(xi), p̄i) (19)

where p̄i = [p1,i, · · · , pC,i]T . Or we can use the posterior
distributions to weight the loss function at the i-th sample
evaluated at each of the possible labels:

`(f(xi), y1,i, . . . , yH,i) =
CX

c=1

pc,i`(f(xi), ec) (20)
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where ec is the vector in RC with 1 in the c-th position.
Notice that for categorical cross entropy loss the two func-
tions defined above correspond, but in general they define
two different loss functions.

Note that these soft-labels are different from the ones ob-
tained by averaging the annotators labels as is done in [25].
The method using the posteriors exploits the T matrix and
thus more information than the simple mean of the values
of the losses among annotators. We therefore expect this
to yield better results than the aggregation using the mean
proposed in [25]. These considerations are supported by
the empirical results we obtained on synthetic datasets (see
Sec. 6).

4.2.2 Robust loss functions

Another way to leverage the estimate of T is to use robust
loss functions, like the forward and backward loss functions
presented in [15, 16]. Let `(t, y) be a generic loss func-
tion for the classification task, with a little abuse of nota-
tion we define `(t) = [`(t, e1), . . . , `(t, eC)]T . The back-
ward and forward loss functions are defined in Eq. (21a)
and Eq. (21b), respectively.

lb(t, y) = (b��1
`(t))y (21a)

lf (t, y) = (`(b�T
t))y (21b)

To explain the notation in Eq. (21a) we are first doing the
dot product between the matrix ��1 and the vector `(t) and
then the dot product of the resulting vector with y. These
losses leverage aggregated labels and therefore different ag-
gregating techniques can be used, like majority vote. An-
other possible aggregating technique that leverages the pos-
terior probabilities is to assume that the true label is the one
that corresponds to the class that has the highest posterior
probability.

4.3. Generalizations gap bounds

In this section we derive generalization gap bounds for
the backward loss that depend on the noise transition ma-
trix estimated in Eq. (14). Since we are only addressing
the problem for the backward loss, from now on we will
denotethe backward loss by l.

Remark 1. If `(t, y) is Lipschitz with constant L, the
loss function l(t, y) is Lipschitz with Lipschitz constant
||��1||2L.

We will prove the following theorem in the case of
� = T . We emphasize that all the results apply also when
��1 = �(T�1) and that the function that associate ��1 and
T

�1 ,� is Lipschitz with respect to the norm p, i.e. there ex-
ists a Lipschitz constant L�,p s.t. ||�(T�1)� �( bT�1)||p 
L�,p||T�1� bT�1||p. The only difference is that in the bound
we will have a factor L�,p.

It has been proved, first in [15] (Lemma 1) for the bi-
nary classification task and then in general for the multi-
class case in [16] (Theorem 1) that l(t, y) is an unbiased
estimator for `, i.e.

Eỹ|y[l(t, ỹ)] = `(t, y).

Lemma 4.5. Let ` be a bounded loss function, with ` 2
[0, µ], s.t. there exists a Lipschitz function ↵, with Lipschitz
constant L, so that `(f(x), y) = ↵|f(x)� y|. Let bRl(f) be
the empirical risk for the loss l and let Rl,D be the risk for
loss l under the distribution D, with l unbiased estimator
for the loss `. We denote by l̂ the backward loss obtained
using bT .

sup
f2F

|R̂
l̂
(f)�Rl,D(f)|


"
L�min( bT 2) +

µ�min(D)

�min(T̂ )2

r
1

n
ln
�4C
�

�
#
Rn(F)g(C).

with g(C) = 6C2(
p
C + 1)

Theorem 4.6. Let l be an unbiased estimator for ` defined
as in Eq. (21a), Denoting f̂ = argmin

f

( bR
l̂
(f)). It holds that

R`,D(f̂)�min
f2F

R`,D(f)


"
2L�min( bT 2) +

µ�min(D)

�min(T̂ )2

r
1

n
ln
�4C
�

�
#
Rn(F)g(C)

with g(C) = 6C2(
p
C + 1)

The proofs of Lemma 4.5 and Theorem 4.6 can be find
in Appendix C. We observe that in all the previous theo-
rems, the bounds found are always decreasing as one over
the square root of the number of samples. The above the-
orem gives us a performance bound for the classifier found
minimizing the backward loss l, i.e. the unbiased estimator
of the loss ` on the noisy dataset. The bounds found de-
pend on, the Rademacher complexity of the function space
and the Lipschitz constant of the loss function.The impor-
tance of these bounds lies in the fact that they allow us to
obtain performance bounds for a model trained with noisy
data that depends on values that we can estimate from the
noisy dataset.In particular, there is no dependence on the
true noise transition matrix of the annotators, as in other
work [15] which is instead a quantity that cannot be known
a priori having access only to the training data. More in de-
tail the bound depends on the estimate noise transition ma-
trix, the number of classes in the dataset, the Rademacher
complexity and the Lipschitz constant, which we can take
as known a priori and on the distribution of ground truth,
which in many cases it makes sense to assume uniform.
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5. Cohen’s 

We can also consider the case where an estimate of the
IAA matrix M is not available and we only have access to
a scalar representation of the inter-annotator agreement like
Cohen’s . In this case we can only estimate one parameter
and hence the matrix T has to be parameterized by a single
parameter that can be estimated.

One particular example is the case where the noise is
uniform among classes. Under these hypotheses, T is a ma-
trix with all values 1 � p on the diagonal and p

C�1 off the
diagonal.

Lemma 5.1 (Relationship between p and ). In the case
of classification with uniform noise for two homogeneous
annotators with noise rate p, i.e if a is one annotator,
P(ya = i|y = j) = p if i 6= j. If the distribution of the
ground-truth labels is uniform, it holds that:

p = (1� C
�1)(1�

p
) (22)

with  the Cohen’s kappa coefficient of the two annotators
(see Appendix A).

Proof. The proof can be found in Appendix C.6.

If T is assumed to be of the form described above (with
all diagonal elements equal to 1 � p and all off-diagonal
entries equal), it has one eigenvalue equal to 1 and all the
rest are equal to 1�pC(C�1)�1 (this follows from the fact
that in this case T can be written as a weighted summation
of the identity and a rank-one matrix). Hence using Eq. (22)
we get that �min(T ) =

p
. The bounds from Theorem 4.6

holds replacing �min(T ) with
p
. This allows us to obtain

bound for the generalization gap of a classifier trained with
backward loss even in the case where a single statistic on
agreement between annotators is provided.

6. Experimental results

We performed experiments to validate the effectiveness
of the method we propose for estimating bT by studying the
error in the estimation as a function of the number of sam-
ples. We also performed experiments to show how the esti-
mated T can be leveraged to train classifiers in the presence
of noise labels. In particular we performed experiments
for a classification task on a synthetic dataset and on the
CIFAR10-N dataset, comparing the performance of a clas-
sifier trained using labels obtained by some baseline aggre-
gation method with the performance of a classifier trained
using the distribution of posteriors obtained from the esti-
mation of T (Eq. (18)) as soft-labels.

Estimation of T With these experiments we aim to vali-
date the theoretical results of Sec. 4.1. We generate various
matrices T that are symmetric, stochastic and diagonally

dominant, the exact details about the generation of T can
be found in Appendix D.1. For each annotator we produce
their prediction according to the matrix T . We run experi-
ments for the number of annotators H = 10, 7, 3, 2. We re-
port here the results for H = 10, and 4 classes, all the other
plots are in Appendix D.1. In Fig. 4 (as well as the the plots
in the Appendix) we can be observed that the error in the es-
timation decreases as 1p

n
with n number of samples, which

is in agreement with the bound provided in Theorem 4.3.
We also observed that, as expected, the estimation becomes
more accurate as the number of annotators increases.

Figure 1. Error in the estimation of T for 4 classes and 10 an-
notators. The plots are obtained by averaging different admissible
matrices T (see Appendix B) and averaged over matrices that have
the same minimum eigenvalues rounded to the first decimal.

Classification task with synthetic data We consider a
classification task with a synthetic dataset. The features are
generated uniformly in [0, 1]2. The assignment of labels (y)
is done by following the label distribution established for
each experiment, separating the space with lines parallel
to the bisector of the first and third quadrants More infor-
mation on how the class distributions are generated can be
found in Appendix D.2.

For each dataset annotations are generated according
to the noise transition matrix T . Various combinations
of T are tested that respect the assumptions of symmetry,
stochasticity and diagonally dominance, as well as being
commutative with D (more details can be found in Ap-
pendix B).The number of annotators is variable in the set
{3, 5}. See Appendix D.2 for implementations details.

Losses We use categorical cross entropy as loss function.
We use both hard labels and soft labels to train the models.

To train the models with hard labels an aggregation
method is needed to obtain one final label from the anno-
tators. We consider random and majority vote. In random
aggregation the final label is randomly picked from the la-
bels of the annotators. In majority vote the final label is the

3445



one with the most amount of votes (the mode), if the mode
is not unique, we randomly choose one of the most voted
classes. As soft-labels we consider the relative frequency
among annotators and the posterior distribution according
to Eq. (18). In the case of frequency for each sample we av-
erage the one-hot encoded annotations. Notice that random,
majority vote and frequency soft labels do not leverage the
estimate of T while the posterior does. In Fig. 2 we report
the results for 4 classes with distribution (0.4, 0.1, 0.4, 0.1)
and 3 annotators.

Figure 2. Comparison between performance of Cross Entropy
Loss using majority vote, random aggregation method or the
posteriors (posterior) and relative frequency (average) as soft la-
bels.On the y-axis the accuracy on a clean dataset and on the x-
axis the values of the minimum on the diagonal of T . Small val-
ues of the minimum diagonal value mean a noisy dataset, while the
minimum is 1 in the noise-free case. The results are obtained for
3 annotators and 4 classes, by averaging on different ammissible
matrices T (see Appendix B) that have the same minimum diago-
nal values rounded to the first decimal. The error bands show the
maximum and minimum performance for each method.

We use accuracy with respect to a clean dataset as per-
formance metric. Our results show that using the posteri-
ors distribution ,as soft labels, allows for better performance
than using the average of the labels assigned by annotators
and than using majority vote or random aggregation.

Our method is shown to be more robust to the noise and
is also the one with less variance in the results. This con-
firms our hypotheses that by leveraging the matrix bT better
classification accuracy can be achieved.

Experiments on CIFAR10-N The CIFAR10-N dataset1
contains CIFAR-10 train images with noisy labels annotated
by humans using Amazon Mechanical Turk. Each image is
labelled by three independent annotators. Table 1 shows the
accuracy achieved using the different aggregation methods.
For this experiment we used Resnet34 [10] with and with-
out pre-training. In both cases, our approach of aggrega-

1http://www.noisylabels.com

tion achieves the best performance. Note that in this dataset
there are no guarantees that the assumptions we made on
T are satisfied, however the method is still applicable with
positive results.

Aggregation Method Pretrained Not-Pretrained

random 0.718± 0.035 0.579± 0.023
majority vote 0.740± 0.017 0.590± 0.006

average 0.762± 0.012 0.637± 0.016
posteriors (ours) 0.794± 0.005 0.652± 0.014

Table 1. Test Accuracy on CIFAR10-N with Resnet34

7. Concluding remarks

We have addressed the problem of learning from noisy
labels in the case where the dataset is labeled by annota-
tors that occasionally make mistakes. We have introduced
a methodology to estimate the noise transition matrix T of
the annotators given the IAA. We further showed different
techniques to leverage this estimate to learn from the noisy
dataset in a robust manner. We have shown theoretically
that the methods we introduce are sound. We supported our
methodology with some experiments that confirms our es-
timation of the noise transition matrix is valid and that this
can be leveraged in the learning process to obtain better per-
formance.

Limitations The main limitation of our current approach
to estimate T is that it only considers the case where T is
symmetric and D assumed to be known and commute with
T . Extending the results to the case where T might not be
symmetric and different among annotators is one possible
future research direction.
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