Learning and Aggregating Lane Graphs for Urban Automated Driving

Martin Büchner1* Jannik Zürn1* Ion-George Todoran2 Abhinav Valada1 Wolfram Burgard3
1University of Freiburg 2Woven by Toyota 3University of Technology Nuremberg

Abstract

Lane graph estimation is an essential and highly challenging task in automated driving and HD map learning. Existing methods using either onboard or aerial imagery struggle with complex lane topologies, out-of-distribution scenarios, or significant occlusions in the image space. Moreover, merging overlapping lane graphs to obtain consistent large-scale graphs remains difficult. To overcome these challenges, we propose a novel bottom-up approach to lane graph estimation from aerial imagery that aggregates multiple overlapping graphs into a single consistent graph. Due to its modular design, our method allows us to address two complementary tasks: predicting ego-respective successor lane graphs from arbitrary vehicle positions using a graph neural network and aggregating these predictions into a consistent global lane graph. Extensive experiments on a large-scale lane graph dataset demonstrate that our approach yields highly accurate lane graphs, even in regions with severe occlusions. The presented approach to graph aggregation proves to eliminate inconsistent predictions while increasing the overall graph quality. We make our large-scale urban lane graph dataset and code publicly available at http://urbanlanegraph.cs.uni-freiburg.de.

1. Introduction

Most automated driving vehicles rely on the knowledge of their immediate surroundings to safely navigate urban environments. Onboard sensors including LiDARs and cameras provide perception inputs that are utilized in multiple tasks such as localization [7, 21, 27], tracking [4], or scene understanding [20, 24, 26, 37] to aggregate representations of the environment. However, robust planning and control typically require vastly more detailed and less noisy world models in the form of HD map data [12]. In particular, information on lane parametrization and connectivity is essential for both planning future driving maneuvers as well as high-level navigation tasks. Creating and maintaining HD maps in the form of lane graphs is a time-consuming and arduous task due to the large amount of detail required in the annotation and the data curation process including map updates based on local environment changes such as construction sites.

Previous approaches to lane graph estimation have shown shortcomings in predicting lane graphs due to multiple deficiencies: On the one hand, methods using onboard imagery typically degrade at complex real-world intersections and under significant occlusions, e.g., when following another vehicle [5, 6]. On the other hand, methods based on aerial imagery show reduced performance when confronted with occlusions in the bird’s-eye-view (BEV) due to, e.g., vegetation or shadows, and suffer from catastrophic drift when unconstrained in out-of-distribution scenarios [30]. Previous works treat intersections and non-intersections inherently differently [15] and thus require elaborated heuristics and post-processing to merge single predictions into a consistent lane graph. Moreover, prior works do not focus on use cases where multiple predicted graphs must be merged into a single consistent solution, which is essential for enabling the automatic generation of highly detailed lane graphs of large contiguous regions.
Related to the aforementioned challenges, we propose a novel two-stage graph neural network (GNN) approach termed LaneGNN that operates on single aerial color images for lane graph prediction. Inspired by methods in the field of trajectory prediction [8], we formulate a bottom-up approach according to which we place a virtual agent into a local crop of the aerial image and predict reachable successor lane graphs from its positions. To transform multiple disjoint local solutions into a single global solution, we aggregate a global representation by iteratively inferring the lane graph from consecutive poses, ultimately imitating real-world driving behavior. This iterative approach not only increases the predicted area covered but also improves graph accuracy based on data association and rejection. Note that we do not require any human in the loop to perform the graph aggregation. We visualize the output of our graph aggregation procedure in Fig. 1, in which we superimpose the predicted graph on the aerial image input. Using this framework, we envision two applications: ego-centered successor path prediction and full lane graph estimation by aggregation.

To summarize, the main contributions of this work are:

- An innovative bottom-up approach to lane graph estimation in challenging environments that explicitly encodes graph-level lane topology from input aerial images in a scenario-agnostic manner.
- A novel graph aggregation scheme enabling robust and method-agnostic merging of graph-level predictions.
- The large-scale lane graph dataset UrbanLaneGraph comprising high-resolution aerial images aligned with dense lane graph annotations aggregated from the Argoverse2 dataset that we make publicly available.
- Extensive experiments and ablation studies demonstrating the significance of our findings.

2. Related Works

In recent years, the prediction of topological road features such as road graphs and lane graphs have been extensively studied. In our discussion, we differentiate between road graph learning and lane graph learning. While road graphs encode the topological connections between road segments, lane graphs describe the locations and connectivity between all lanes, resulting in a spatially much denser graph. Many prior works focus on vehicle trajectory prediction, conditioned on HD map features such as lane centerline and boundary positions [9, 10, 28]. These models do not aim at exclusively predicting the road or lane graph structure from onboard vehicle images or aerial images but instead at predicting future vehicle states such as position and orientation.

Road Graph Learning: Prior works investigate estimating road graphs from both onboard sensors [18] and from aerial images [1, 22, 34] or focus on extracting pixel-level road segmentation from images and extracting graphical road representations, i.e., using morphological image operators or graph neural networks to extract the connectivity between different roads within the image [1, 19]. Other approaches investigate iterative methods and interpret road graph prediction as a sequential prediction task [2, 22].

Lane Graph Learning from Vehicle Data: Some earlier works in lane graph learning from onboard vehicle sensors such as cameras and LiDAR formulate lane extraction as an image-based lane centerline regression task [16], Homayounfar et al. [17] aggregate onboard LiDAR data on highways and leverage a recurrent neural network to generate highway lane graphs in an iterative manner. Zhou et al. [35] utilize the OpenStreetMap database and a semantic particle filter to accumulate projected semantic predictions from a vehicle ego-view into a map representation. Zhang et al. [31] propose an online road map extraction system for a sensor setup onboard a moving vehicle and construct a graph representation of the road network using a fully convolutional neural network. More recently, Can et al. proposed two different methods [5, 6] for lane connectivity learning in intersection scenarios from onboard camera images.

Lane Graph Learning from Birds-Eye-View Data: Despite the advantages of leveraging readily available aerial data for training lane graphs, only a few works considered using aerial images as an input modality for the graph learning task. Zürn et al. [36] propose a lane centerline regression model jointly with a Graph R-CNN backbone to predict nodes and edges of the lane graph from a local aggregated bird’s-eye-view image crop. More recently, He et al. [15] propose a two-stage graph estimation pipeline. They first extract lanes at non-intersection areas and subsequently predict the connectivity of each pair of lanes, and extract the valid turning lanes to complete the map at intersections.

In contrast to existing works, we do not estimate the complete lane graph visible in a given crop but only the part of the graph that is reachable from a virtual agent pose located within the crop, simplifying the graph estimation problem based on reduced topological complexity. Furthermore, we leverage a GNN to explicitly model the relationships between graph nodes, allowing us to leverage recent developments in the field of geometric deep learning. This explicit graph encoding and prediction allows us to formulate a model that does not internally differentiate between intersection areas and non-intersection areas, in contrast to some related works. Additionally, we propose a novel large-scale dataset for lane graph estimation from aerial images, allowing the research community to easily evaluate and compare their approaches.

3. Dataset

To evaluate our approach on challenging real-world data, we compiled the UrbanLaneGraph dataset. It is a first-of-its-
Figure 2. Overview of our LaneGNN model \mathcal{M} predicting successor lane graphs. As a pre-training step, we train lane centerline and ego lane centerline regressor models. The ego lane regression S_{ego}^{ego} is used as a prior for sampling proposal nodes V in corridors that have a high likelihood of entailing the successor graph. The model learns a binary classification of node and edge scores while also predicting the probability of a node being an endpoint of a given lane segment.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>City</th>
<th>Lane Splits/Merges</th>
<th>Total Length [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UrbanLaneGraph (from Argoverse2)</td>
<td>Palo Alto</td>
<td>4752</td>
<td>796.4</td>
</tr>
<tr>
<td></td>
<td>Austin</td>
<td>8495</td>
<td>531.7</td>
</tr>
<tr>
<td></td>
<td>Miami</td>
<td>7642</td>
<td>850.8</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh</td>
<td>14610</td>
<td>1314.3</td>
</tr>
<tr>
<td></td>
<td>Washington D.C.</td>
<td>2066</td>
<td>739.6</td>
</tr>
<tr>
<td></td>
<td>Detroit</td>
<td>5424</td>
<td>990.5</td>
</tr>
<tr>
<td>LaneExtraction [15]</td>
<td>Boston, Seattle,</td>
<td>2262</td>
<td>398.6</td>
</tr>
<tr>
<td></td>
<td>Phoenix, Miami</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Key statistics of our UrbanLaneGraph dataset, aggregated from the Argoverse2 dataset [29], used for our experiments, compared with other recent datasets for lane graph estimation.

kind dataset for large-scale lane graph estimation from aerial images. The dataset contains aerial images from the cities of Austin, Miami, Pittsburgh, Palo Alto, Detroit, and Washington DC. The images have a resolution of 15 cm per pixel. To obtain the corresponding lane annotations, we leverage the Argoverse2 dataset [29] which entails lane graphs for large sections of the respective cities. The lane graphs in the Argoverse2 dataset are provided on a per-scenario basis, covering only small local areas in one graph. Therefore, we collect all local lane graphs of each city and aggregate them into one globally consistent graph per city, thereby removing inconsistent or redundant nodes or edges. The annotated regions feature a diverse range of environments including urban, suburban, and rural regions with complex lane topologies. Accumulated over all cities, the overall length of all lanes spans over 5,000 km. We split each city into disjoint training and testing regions. We list key dataset statistics in Tab. 1, indicating the scale of our generated dataset compared with other recently proposed datasets containing graph annotations. For more details on the dataset and exemplary visualizations, please refer to Sec. S.1 in the supplementary material.

4. Technical Approach

Our approach is divided into two stages: lane graph learning and lane graph aggregation. In the first stage (Sec. 4.1), we train our GNN model, denoted as LaneGNN, to predict the successor lane graph, entailing the nodes and edges that can be logically visited from the pose of a virtual vehicle agent. In the second phase (Sec. 4.2), we use our trained LaneGNN model to traverse a large map area. This is achieved by selecting an initial starting pose and predicting the successor lane graph from this pose. Subsequently, we iteratively estimate the traversable lane graph from the current pose and move forward along the predicted graph while aggregating. In the following, we detail both stages of our approach.

4.1. Lane Graph Learning

We formulate the task as a supervised learning problem where a successor lane graph G is estimated based on an aerial image I_{bev}. First, a directed graph $G_I = (V, E)$ covering relevant regions is constructed by sampling from likely regions of I_{bev} (see Fig. 2). For all our models and experiments we choose a spatial resolution of 256×256 pixels. The graph comprises a set of nodes $i \in V$ that are connected via directed edges $E \subseteq \{(i, j) | (i, j) \in V^2$ and $i \neq j \}$ that constitute potentially valid lane graph edges. The graph is attributed using both node features $X \in \mathbb{R}^{|V| \times D}$ and edge features $X_{e} \in \mathbb{R}^{|E| \times (D_{geo} + D_{bev})}$, where D_{geo} and D_{bev} denote the dimensionality of the involved edge features (see Sec. 4.1). The overall model estimates an output graph $\hat{G} = M(G_I | \theta)$, where M is parameterized by network model weights $\theta := (\theta_{reg}, \theta_{GNN})$.

Lane Regression and Graph Construction: We train two regression networks: Firstly, a centerline regression S_{lane} is used as a prior for sampling proposal nodes V in corridors that have a high likelihood of entailing the successor graph. The model learns a binary classification of node and edge scores while also predicting the probability of a node being an endpoint of a given lane segment.

that can be logically visited from the pose of a virtual vehicle agent. In the second phase (Sec. 4.2), we use our trained LaneGNN model to traverse a large map area. This is achieved by selecting an initial starting pose and predicting the successor lane graph from this pose. Subsequently, we iteratively estimate the traversable lane graph from the current pose and move forward along the predicted graph while aggregating. In the following, we detail both stages of our approach.

4.1. Lane Graph Learning

We formulate the task as a supervised learning problem where a successor lane graph G is estimated based on an aerial image I_{bev}. First, a directed graph $G_I = (V, E)$ covering relevant regions is constructed by sampling from likely regions of I_{bev} (see Fig. 2). For all our models and experiments we choose a spatial resolution of 256×256 pixels. The graph comprises a set of nodes $i \in V$ that are connected via directed edges $E \subseteq \{(i, j) | (i, j) \in V^2$ and $i \neq j \}$ that constitute potentially valid lane graph edges. The graph is attributed using both node features $X \in \mathbb{R}^{|V| \times D}$ and edge features $X_{e} \in \mathbb{R}^{|E| \times (D_{geo} + D_{bev})}$, where D_{geo} and D_{bev} denote the dimensionality of the involved edge features (see Sec. 4.1). The overall model estimates an output graph $\hat{G} = M(G_I | \theta)$, where M is parameterized by network model weights $\theta := (\theta_{reg}, \theta_{GNN})$.

Lane Regression and Graph Construction: We train two regression networks: Firstly, a centerline regression network predicting the likelihood map of lane centerlines S_{lane}, and secondly, a segmentation network predicting all reachable lanes S_{ego}^{ego} starting from the initial virtual agent pose at the bottom center of I_{bev}. We use identical PSPNet [33] architectures with a ResNet-152 feature extractor for this task. We sample equally-distributed node positions using Halton sequences [14] that are later filtered based on the obtained ego-lane segmentation mask S_{ego}^{ego}, which serves as a region of interest for sampling (see Fig. 2). Directed edges E among nodes are initialized for pairs of nodes with a Euclidean distance $d_{ij} \in [d_{min}, d_{max}]$. Initial node features X are crafted solely based on their 2D positions $x_i = (x_i, y_i)$, while geometric edge features are defined as...
Feature Encoding and Message Passing: In our approach, we estimate edge probabilities, node probabilities, and whether a node is terminal. While the nodes themselves hold only unidirectional information, we encode the notion of direction using the proposed edge feature as outlined above. We utilize a causal variant of neural message passing as proposed by Brasó et al. [3]. By imposing a causality prior, our network encodes predecessor and successor features during message passing. This formulation of message passing renders our approach direction-aware. Initial node and geometric edge features are encoded using multi-layer perceptrons f_{enc}^ℓ (MLP) while the aerial edge feature is transformed using a ResNet-18 architecture f_{enc}^ℓ. The geometric and aerial edge features are concatenated and fused subsequently to arrive at various node and edge embeddings $\mathbf{H}_v^{(0)}$ and $\mathbf{H}_e^{(0)}$:

$$
\mathbf{x}_{ij,\text{geo}} = \left(\tan^{-1}\frac{\Delta y_{ij}}{\Delta x_{ij}}, \sqrt{\Delta x_{ij}^2 + \Delta y_{ij}^2}, \mathbf{v}_{ij}, \mathbf{q}_{ij}\right),
$$

where Δx_{ij} and Δy_{ij} represent node position differences and $\mathbf{v}_{ij}, \mathbf{q}_{ij}$ are edge middle point coordinates. In addition to the geometric edge feature, we generate aerial edge features: Per edge, a small oriented region of \mathbf{I}_{bev} and the lane segmentation \mathbf{S}_{lane} is obtained based on the direction of the edge, which provides $\mathbf{X}_{ij,\text{bev}} = \left[\mathbf{I}_{\text{bev}}^e, \mathbf{S}_{\text{lane}}^e\right]$ with dimension $D_{\text{bev}} = 4 \times 32 \times 32$.

Note that the message crafting includes skip connections to initial node embeddings $\mathbf{h}_j^{(0)}$. Nodes are updated by combining the two features using concatenation:

$$
\mathbf{h}_i^{(l)} = f_v\left(\mathbf{h}_i^{(l-1)}, \mathbf{h}_i^{(l,\text{pred})}, \mathbf{h}_i^{(l,\text{succ})}\right).
$$

The ground truth graph G_{GT} as a learning target (s_i, t_i, e_{ij}) is generated based on the map annotations for the given cropped region and the corresponding closest nodes. This is further outlined in the supplementary material in Sec. S.3.

4.2. Iterative Temporal Graph Aggregation

In the second stage of our approach, we aggregate local successor graphs into a globally consistent lane graph. First, we prune the predicted per-crop lane graph, and second, we iteratively aggregate the sparse graphs. In the following, we detail both components.
We interpret each split point as an element of an exploration search problem from a starting node to possibly multiple predicted terminal nodes (see Sec. 4.1). Predicted lane split points should coincide with actual split points. Thus, different branches should share the same set of edges up to a split point. We use Dijkstra’s algorithm to iteratively find high-score paths between the initial pose and terminal nodes, ordered from high to low scores until all terminal nodes are reached. Edge scores contained in found paths are set to zero. In Fig. 4, we visualize the output of this step.

Aggregation: We iteratively aggregate predicted successor lane graphs \(G_{\text{pred}} = (V_{\text{pred}}, E_{\text{pred}}) \) into a globally consistent and complete graph \(G_{\text{agg}} = (V_{\text{agg}}, E_{\text{agg}}) \) as depicted in Fig. 3. The predicted successor graph \(G^t_{\text{pred}} \) is added to the current aggregated graph \(G_{\text{agg}}^{t-1} \) at time step \(t \): \(G^t_{\text{agg}} \leftarrow \text{aggregate}(G^t_{\text{pred}}, G^t_{\text{agg}}^{t-1}) \). Plausible branches of \(G_{\text{pred}} \) are merged into \(G_{\text{agg}} \) and thus extend the aggregated graph with every iteration if new grounds are covered in the respective crops. The next virtual agent pose is extracted from the set of forward-facing edges of \(G_{\text{agg}} \) given the current pose. Only edges with a significant weight due to previous aggregations are selected for this set. As the node positions differ slightly with each model forward pass we observe roughly similar paths in the lateral sense wrt. the ground-truth graph. However, along the longitudinal dimension of a branch, we observe deviations in node position, which must be circumvented when aggregating the graph. Based on this, we only take the lateral deviation wrt. \(G_{\text{agg}} \) into account when merging \(G^t_{\text{pred}} \). Thus, \(G^t_{\text{agg}} \) is only updated in a lateral sense while the longitudinal misalignment of the two sets of nodes is neglected (see also Sec. S.5 in the supplementary material). The nodes of \(G_{\text{pred}} \) have a weight of 1 while a node of \(G^t_{\text{agg}} \) holds a weight equal to the number of merges it has observed so far. If a novel node \(i \in V_{\text{agg}} \) is not close to any other node in \(k \in V_{\text{agg}} \) it is added to the aggregated graph including its incident edges. This ultimately allows a weighting-based merging of arbitrary pairs of graphs, which is used for global lane graph estimation (see Sec. 5.4).

We observe that the more graphs we aggregate, the more we are certain about the significance of particular graph branches. Following a weighting-based approach allows us to set certain thresholds that allow modification of \(G_{\text{agg}} \). Thus, implausible graph branches, semantically similar parallel paths, redundant edges, and isolated nodes are deleted based on confidence and distance as well as angle criteria (see Fig. 3). As a result, we are able to decrease the number of false positive split and merge points to obtain more consistent global graphs. We observe that this approach greatly improves lane graph prediction accuracy in difficult occluded and out-of-distribution scenarios since the sum of model predictions covering the same region shed light onto what potentially constitutes, e.g., a valid and an invalid branch.

Multiple forward passes naturally lead to a multitude of lane split points (both true positive and false positive splits). We interpret each split point as an element of an exploration frontier. A queue of unexplored, high-probability graph branches is maintained, which is queried in a depth-first manner as soon as the currently traversed branch terminates. Following the weighting-based approach, a branch is only explored if its depth-limited oriented successor tree weight exceeds a certain level of confidence. Due to this flexible approach, we can essentially handle arbitrary lane graph topologies with a single holistic approach. For more details on the graph pruning and aggregation procedures, please refer to the supplementary material. Finally, we apply multiple iterations of Laplacian smoothing to \(G_{\text{agg}}^t \) which modifies the original node positions in order to even out position irregularities caused by sampling while keeping the adjacency represented by \(E_{\text{agg}}^t \) constant.

5. Experimental Results

In the following, we present our experimental findings. We first define and illustrate three tasks on which we benchmark our method. Subsequently, we describe the evaluation metrics and compare against other methods as well as our own baselines. We provide extensive qualitative and quantitative evaluations on our UrbanLaneGraph dataset.

5.1. Proposed Tasks

We propose three distinct and complementary tasks. In the first task, successor lane graph prediction (Successor-LGP, Sec. 5.3), we aim at predicting a feasible ego-reachable successor lane graphs from the current pose of the virtual agent. The purpose of the Successor-LGP task is to measure
the prediction quality of potential future driving paths when no HD map coverage is available. In the second task, full lane graph prediction (Full-LGP, Sec. 5.4), we evaluate the quality of regionally aggregated lane graphs in the context of HD map estimation. This task aims at measuring the predictive power of our full two-stage model performing lane graph inference and graph aggregation in conjunction. For such purposes, the full ground truth lane graph of a given map area is compared to the aggregated predictions of our model. Finally, we carry out a high-level path planning task (Sec. 5.5) on the predicted lane graphs, intended to analyze the fidelity of routes planned on the predicted graphs.

5.2. Evaluation Metrics

We leverage multiple complementary metrics for performance evaluation as detailed below.

Graph IoU: This metric measures the intersection-over-union (IoU) of two graphs rendered as a binary image [36], where pixels closer than \(d = 5 \) pixels are assigned the label 1 and the remaining pixels the label 0. Equivalent to the evaluation of semantic segmentation models, we determine the IoU values for the non-zero pixels.

The APLS metric sums the differences in optimal path lengths between nodes in the ground truth graph \(G \) and the proposal graph \(G' \) [25]. The APLS metric scales from 0 (worst) to 1 (best). Formally, it is defined as

\[
APLS = 1 - \frac{1}{N_p} \sum \min \left\{ 1, \left| \frac{d(v_1, v_2) - d(v'_1, v'_2)}{d(v_1, v_2)} \right| \right\},
\]

where \(v_i \) and \(v'_i \) are nodes in \(G \) and \(G' \), respectively. \(N_p \) denotes the number of paths in \(G \) and \(d(\cdot, \cdot) \) is the path length. For more details, please refer to [25].

TOPO / GEO metrics: Following previous works in road network extraction and lane graph estimation, we use the GEO metric and the TOPO metric. For definitions and details on these metrics, please refer to [15] and to the supplementary material.

Split Detection Accuracy (SDA): This metric evaluates how accurately a model predicts the lane split within a circle of radius \(R \) pixels from a given ground truth lane split.

5.3. Successor Lane Graph Prediction

In the following, we evaluate LaneGNN by ablating and comparing it with two baselines on the Successor-LGP task: morphological skeletonization of the ego-lane regression as well as a modified LaneGraphNet [36] to be used for successor lane graph prediction. We list quantitative results in Tab. 2. Our results demonstrate that none of the baseline methods are capable of estimating accurate lane graphs given the challenging topology of the lane graphs in the dataset. The LaneGraphNet [36] model fails to model the graph for many samples, yielding low scores in all metrics. Despite its simplicity, the skeletonized regression model achieves the highest APLS score and comparably high GEO/TOPO scores. However, it fails to accurately predict lane split points, resulting in low SDA scores. Increasing the number of nodes of the skeleton leads to many more false positive splits and thus deteriorates further.

Regarding different variants of LaneGNN, we find that, e.g., causal message passing (CMP) increases performance over standard message passing, which underlines the significance of the imposed causality prior for lane graph learning. In order to show the efficacy of computationally more demanding aerial image edge features (AerE) compared to uni-directional aerial image node features (AerN), we ablate on this in Tab. 2 as well. We observe stark increases across the TOPO, GEO and SDA metrics when utilizing aerial edge features. Lastly, we replace the ego-lane segmentation mask \(S_{ego} \) used for sampling with the standard lane segmentation mask. Our findings show that especially APLS, SDA, and Graph IoU drastically decrease as graph estimation becomes more difficult due to a generally enlarged sampling region (see Fig. 2).

These results are further illustrated in Fig. 5, where we show qualitative comparisons of predictions of our best-performing model with predictions from the two baselines. We find that the quality of predictions by LaneGraphNet [36] is generally low, rendering it unsuitable for the task. The skeletonized regression baseline is capable of following basic lane graph topologies, but lane split points cannot be resolved accurately. In contrast, our LaneGNN model is capable of modeling most graphs with high accuracy; both in intersection areas and in straight road sections.

Table 2. Quantitative results of our model including ablation studies, in comparison with baseline models for the Successor-LGP task on our UrbanLaneGraph dataset. P/R denotes Precision/Recall. For our LaneGNN model variants, we denote CMP as causal message passing, aerial node features as AerN, aerial edge features as AerE, and the ego-lane regression with \(S_{ego} \). For all metrics, higher values mean better results.

<table>
<thead>
<tr>
<th>Model</th>
<th>CMP</th>
<th>AerN</th>
<th>AerE</th>
<th>(S_{ego})</th>
<th>TOPO P/R ↑</th>
<th>GEO P/R ↑</th>
<th>APLS ↑</th>
<th>SDA20 ↑</th>
<th>SDA80 ↑</th>
<th>Graph IoU ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletonized Regression</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>0.597/0.613</td>
<td>0.578/0.601</td>
<td>0.315</td>
<td>0.020</td>
<td>0.185</td>
<td>0.180</td>
</tr>
<tr>
<td>LaneGraphNet [36]</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>0.549/0.677</td>
<td>0.548/0.671</td>
<td>0.188</td>
<td>0.168</td>
<td>0.323</td>
<td>0.312</td>
</tr>
<tr>
<td>LaneGNN (ours)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.562/0.656</td>
<td>0.562/0.655</td>
<td>0.192</td>
<td>0.151</td>
<td>0.298</td>
<td>0.320</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>0.545/0.693</td>
<td>0.545/0.688</td>
<td>0.200</td>
<td>0.188</td>
<td>0.311</td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>0.578/0.669</td>
<td>0.577/0.659</td>
<td>0.150</td>
<td>0.132</td>
<td>0.227</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.680/0.699</td>
<td>0.599/0.695</td>
<td>0.202</td>
<td>0.227</td>
<td>0.377</td>
<td>0.347</td>
</tr>
</tbody>
</table>

13420
Figure 5. Qualitative results on the Successor-LGP task. We compare predictions of our model with LaneGraphNet [36] and a morphological image skeletonization baseline. Predicted nodes are visualized with points while predicted edges are visualized as directed arrows. We illustrate failure cases in the two rightmost columns. Best viewed zoomed in.

Table 3. Quantitative evaluation for the Full-LGP task on the test-set of our UrbanLaneGraph dataset. We compare a baseline model with graphs aggregated with a naïve aggregation scheme and our iterative temporal aggregation scheme. P/R denotes Precision/Recall. Higher values mean better results.

<table>
<thead>
<tr>
<th>Model</th>
<th>TOPO P/R ↑</th>
<th>GEO P/R ↑</th>
<th>APLS ↑</th>
<th>Graph IoU ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaneExtraction [15]</td>
<td>0.40/0.507</td>
<td>0.49/0.454</td>
<td>0.072</td>
<td>0.213</td>
</tr>
<tr>
<td>Aggregation (naïve)</td>
<td>0.36/0.654</td>
<td>0.52/0.727</td>
<td>0.101</td>
<td>0.376</td>
</tr>
<tr>
<td>Aggregation (ours)</td>
<td>0.48/0.670</td>
<td>0.64/0.699</td>
<td>0.103</td>
<td>0.384</td>
</tr>
</tbody>
</table>

results, please refer to the supplementary material, Sec. S.6.

5.4. Full Lane Graph Prediction

For the Full-LGP task, we compare our approach with LaneExtraction [15]. Since their used graph representation is incompatible with ours, we train it on their provided dataset. To allow for a fair comparison, we evaluate both our method and LaneExtraction only on scenes in the city of Miami, Florida, as it is contained in both of the datasets. We select a testing region that is not part of the training data for either of the models. To initialize our aggregation scheme, we select starting poses obtained from intermediate segmentation predictions including yaw angles of the LaneExtraction model. Tab. 3 lists the evaluation results for the Full-LGP task obtained with LaneExtraction [15] and the results obtained with our LaneGNN model in conjunction with two aggregation schemes: a naïve aggregation scheme baseline and our full aggregation scheme. The naïve aggregation scheme merges nodes in close proximity while not relying on unvalidated split/merge or parallel path removal as well as the lateral weighting-based merging (Sec. 4.2). Our experiments show that our aggregation scheme outperforms both the LaneExtraction model and the naïve aggregation scheme on nearly all evaluation metrics. We note that our method improves the TOPO/GEO precision metrics while maintaining similar recalls due to better handling of redundant nodes. Fig. 6 illustrates successive aggregations from our model while indicating the used initialization points from the LaneExtraction model. Since our aggregation approach does not differentiate between intersection and non-intersection regions, it does not deteriorate in regions that do not exactly fit this categorization. Furthermore, our model exhibits superior performance in reduced visibility settings introduced by stark illumination changes or road occlusions from vegetation, as illustrated in Fig. 6. One of the decisive assets of our bottom-up method is that it allows to explore regions that are missed by LaneExtraction [15] as they are entailed in their predicted segmentation masks. For more qualitative and quantitative results, please refer to the supplementary material, Sec. S.7.

5.5. Path Planning

To illustrate the efficacy of our aggregation scheme, we evaluate the quality of the lane graph on a planning task. We
generate 1000 randomly selected starting poses in the Miami graph test area from which a plan to a random goal within the graph must be found, using A* search. We place the points such that a maximal optimal route length of 200 m is not exceeded. To evaluate the planned routes, we compare the mean minimum distance (MMD) and the mean route endpoint distance (MED) between the paths on the predicted graph and the ground truth graph, respectively. We also report the success rate (SR), indicating the number of cases in which a path between start and goal exists. We list the results in Tab. 4. While the SR for our aggregation scheme and the LaneExtraction predictions is similar, the low MMD and MED values of our aggregation scheme indicate that our generated lane graph entails shorter and more direct paths, compared to LaneExtraction. We show additional results in the supplementary material, Sec. S.8.

5.6. Limitations

Due to its bottom-up architecture, the proposed approach performs well for most evaluated scenes in urban and suburban surroundings but struggles with highly complex graph topologies such as multi-lane intersections or roundabouts. Moreover, due to the iterative formulation of our aggregation scheme, the inference time of our approach increases with the number of nodes and edges. To speed up inference time, future work might include adaptively changing the distance between consecutive virtual agent positions and leveraging efficient neighborhood lookup methods such as k-d trees. Parallel execution of multiple agents would additionally boost run time to match top-down approaches and is feasible in terms of the proposed aggregation scheme.

6. Conclusion

In this work, we presented a novel lane graph estimation framework complemented with a novel dataset comprising aerial images. We showed that formulating the lane graph estimation problem as bottom-up graph neural network approach leveraging agent-centric views yields promising results. In addition, we presented a novel aggregation scheme to merge successive lane graphs to produce large-scale solutions. A first-of-its-kind dataset and benchmark for lane graph estimation from aerial images will enable further research in this field. Future work could address end-to-end training and exploiting further modalities such as onboard vehicle cameras for additional context information.

Acknowledgements: This work was partly funded by the German Research Foundation (DFG) Emmy Noether Program grant number 468878300, DFG grant number BU 865/10-2, and a hardware grant from NVIDIA.
References

