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Abstract

Soft prompt learning has recently emerged as one of the
methods of choice for adapting V&L models to a down-
stream task using a few training examples. However, cur-
rent methods significantly overfit the training data, suffer-
ing from large accuracy degradation when tested on un-
seen classes from the same domain. To this end, in this
paper, we make the following 4 contributions: (1) To alle-
viate base class overfitting, we propose a novel Language-
Aware Soft Prompting (LASP) learning method by means of
a text-to-text cross-entropy loss that maximizes the proba-
bility of the learned prompts to be correctly classified with
respect to pre-defined hand-crafted textual prompts. (2) To
increase the representation capacity of the prompts, we pro-
pose grouped LASP where each group of prompts is opti-
mized with respect to a separate subset of textual prompts.
(3) We identify a visual-language misalignment introduced
by prompt learning and LASP, and more importantly, pro-
pose a re-calibration mechanism to address it. (4) We show
that LASP is inherently amenable to including, during train-
ing, virtual classes, i.e. class names for which no visual
samples are available, further increasing the robustness of
the learned prompts. Through evaluations on 11 datasets,
we show that our approach (a) significantly outperforms all
prior works on soft prompting, and (b) matches and sur-
passes, for the first time, the accuracy on novel classes ob-
tained by hand-crafted prompts and CLIP for 8 out of 11
test datasets. Code will be made available here.

1. Introduction
Large-scale pre-training of neural networks has recently

resulted in the construction of a multitude of foundation
models for Language [7,25] and Vision & Language (V&L)
understanding [1, 13, 24, 34]. Unlike the previous genera-
tion of neural networks, such models can better capture the
distribution of the world from which new favorable prop-
erties and characteristics emerge. Of particular interest to
this work are V&L models trained with contrastive learn-
ing (i.e. CLIP-like models [13, 18, 24, 33, 34]), which have

enabled seamless few-shot and even zero-shot adaptation to
new downstream tasks and datasets. Specifically, this pa-
per proposes a simple yet highly effective way to drastically
improve soft prompt learning for the few-shot adaptation of
the V&L model to a given downstream task.

Similarly to their NLP counterparts [16, 17, 24], prompt
engineering and learning has emerged as one of the
most powerful techniques for adapting a V&L to new
tasks. Initially, in [24], a set of manually-defined hand-
engineered templates (or prompts) like a photo of a
{cls name}, or a black and white photo of
a {cls name} were passed through the text encoder of
the V&L model to create class-specific weights for category
cls name that can be used for zero-shot recognition. Fol-
lowing research in NLP [16, 17], subsequent work [35, 36]
has proposed replacing the manually picked templates with
a sequence of learnable vectors, also coined soft prompts,
which are fed as input to the text encoder along with the
class name cls name. The soft prompts are learned from
a few training examples with the entire V&L model kept
frozen. The whole process can be seen as parameter effi-
cient fine-tuning of the model on a small training dataset.

However, a clearly identifiable problem with prompt
learning is base class overfitting: while the accuracy on
the classes used for training (base classes) significantly in-
creases, the accuracy on unseen, during training, (novel)
classes significantly drops. This is to some extent expected,
as soft prompts are learned from few examples belonging to
the base classes. Notably, on novel classes, direct, zero-shot
recognition using hand-engineered prompts outperforms all
existing soft prompt learning methods.
Key idea: To alleviate base class overfitting, in this work,
we propose a solution motivated by the following obser-
vation: since prompt learning improves the accuracy on
base classes, but prompt engineering is significantly bet-
ter on novel classes, we propose to learn the soft prompts
by adding a cross entropy text-to-text loss that enforces the
learned prompts to be close, in embedding space, to the
textual ones, thus exploiting the intrinsic information cap-
tured by the text encoder. The proposed text-to-text loss en-
ables language-only optimization for V&L model adaption
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for the first time. This is in contrast with prior soft-prompt
learning methods that only capture V&L interactions.
Key contributions: Based on the above, we propose a
novel framework for soft prompt learning which we call
Language-Aware Soft Prompting (LASP). Our main con-
tributions within the LASP framework are as follows:
• We propose, for the first time, language-only optimiza-

tion for V&L model adaption. Specifically, we propose
a novel text-to-text cross-entropy loss that maximizes the
probability of the learned prompts to be correctly classi-
fied with respect to the hand-engineered ones and show its
effectiveness in terms of alleviating base-class overfitting.

• To increase the representation capacity of the prompts,
and inspired by grouped convolution and multi-head at-
tention, we propose a grouped language-aware prompt
representation where each group of prompts specializes
to a different subset of the pre-defined manual templates.

• We identify a visual-language misalignment introduced
by prompt learning and LASP which impacts the gener-
alization. More importantly, we propose a re-calibration
mechanism based on (a) Layer Normalization fine-tuning
and (b) learning a class-agnostic bias to address it.

• Thanks to our language-only learning framework, we pro-
pose training LASP with virtual classes by including, dur-
ing training, class names for which no visual samples are
available. Importantly, we show that this further increases
the robustness of the learned prompts.

Main results: Our methods set a new state-of-the-art for
few-shot and zero-shot image classification on 11 datasets,
significantly outperforming all soft prompting prior works.
Importantly, we present, for the first time, a prompt learn-
ing method that outperforms, for the majority of the test
datasets (8 out of 11), the very strong baseline based on
hand-crafted prompts and CLIP for the recognition of novel
classes (i.e. zero-shot setting).

2. Related work
Contrastive V&L Models: Recently, large scale V&L pre-
training with contrastive learning has been used to train
foundation models resulting in robust representations, trans-
ferable to new tasks both under few-shot and zero-shot set-
tings [13, 18, 24, 33, 34]. Such networks consist of a vi-
sion encoder (typically a ViT [8]) and a Transformer-based
text encoder [30]. Highly parameterized instantiations of
such architectures are trained on large corpora of image-
caption pairs (e.g. [24] uses 400M and [13] 1B pairs) using
contrastive learning. We used CLIP [24] as the foundation
model for our method.
Prompt Learning is about adapting pre-trained founda-
tional models on (downstream) tasks, typically in a zero-
shot or few-shot setting. Firstly proposed in the context
of Language Models (LM), prompting was initially about

prepending hand-crafted instructions/examples to the task
input so that the LM generates the appropriate output con-
ditioned to the input [4, 25]. In [27, 28], the main idea is
to reformulate the downstream task as a cloze task using
hand-crafted patterns (or templates), thus avoiding the need
to train a task-specific classifier. As finding the optimal pat-
terns is laborious, recent works have attempted to address
this by learning a set of soft (continuous) prompts [16, 17].

In V&L foundation models, like CLIP, the class names
are used to create hand-crafted prompts [24] that are fed as
input to the text encoder, enabling zero-shot visual recogni-
tion. CoOp [36] extends work on soft prompt optimization
to the V&L domain by learning a set of M prompts which
are used as input to the text encoder alongside the class
name. The prompts are learned by minimizing the classi-
fication error on a training set consisted of the given base
classes. One major limitation of CoOp is weak generaliza-
tion: the learned prompts overfit the base classes and do not
work well when tested on novel classes. To alleviate this,
CoCoOp [35] proposes a dynamic version of [36] where a
small network is trained to produce a visual feature from
the input image that is added to the learned prompts, hence
making them input specific (i.e. dynamic). ProDA [19]
adopts a probabilistic approach by modelling the distribu-
tion of the prompts at the output of the text encoder as
a multivariate Gaussian distribution. The estimated mean
is used during inference. Finally, UPL [12] uses CLIP to
generate pseudo-labels on the target dataset and then self-
training to learn the soft prompts. Finally, ProGrad [37]
aims to adapt the V&L model to each target domain by en-
couraging it “not to forget” CLIP’s zero-shot predictions us-
ing a KL visual-text loss between the CLIP’s logits and their
model’s logits (i.e. they use visual features). The weights
are then updated in the direction perpendicular to CLIP gra-
dients. In contrast, our loss is a pure text-to-text loss, fur-
ther allowing for the incorporation of virtual classes. Un-
like [37], we outperform CLIP on novel classes.

The proposed LASP framework alleviates base class
overfitting and significantly improves upon the previously
reported best results without resorting to a dynamic ap-
proach as in CoCoOp [35]. In its basic version, LASP de-
ploys a text-to-text loss that enforces the learned prompts to
be “close” to a set of manually defined textual prompts in
the text encoder space. Importantly, the basic LASP can be
extended in three important ways: (1) by allowing the incor-
poration of virtual classes, i.e. novel class name information
for which no (visual) training data is available (LASP-V).
This is shown to significantly improve the robustness of the
learned prompts at no extra cost during inference; (2) by al-
lowing the use of a grouped prompt representation within
the proposed language-aware training which is shown to in-
crease the representation capacity of the learned prompts;
(3) by performing further optimization of the visual encoder
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so that the visual and text embeddings are realigned result-
ing in significant accuracy gains. Notably, our approach is
very efficient (as efficient as [36]) as opposed to [35] which
requires recomputing all the class-related text embeddings
every time a new image is to be classified.

3. Method
3.1. Background

Prompt engineering enables zero-shot visual recognition
using V&L models trained with contrastive learning (CLIP
in this work) as follows: Given a set V of C class names,
class namec, c ∈ {1, . . . , C}, a prompt, i.e. a manu-
ally designed template concatenated with the class name
like hc =a photo of a {class namec}, is passed
through the V&L’s text encoder gT (.) to compute the class
specific text feature (weight) thc = gT (hc). Moreover, an
image x to be classified is passed through the V&L’s image
encoder gI(.) to compute image specific feature f = gI(x).
A probability distribution over the class labels is given by:

Ph(y|x) =
exp

(
cos(thy , f)/τ

)
∑C

c=1 exp
(
cos(thc , f)/τ

) , (1)

where τ is a temperature factor and cos the cosine similar-
ity. Finally, the class for x is given by ỹ = argmax Ph(y|x).
Note that, to compute thc , no training with class specific im-
age data is required, thus enabling zero-shot recognition for
any given class name.
Soft prompt learning [16, 17, 36] is concerned with pa-
rameter efficient fine-tuning of a pre-trained V&L model by
learning a sequence of M learnable vectors pm ∈ Rd,m =
{1, . . . ,M} using a few labelled samples. Specifically, the
manually picked prompt hc is replaced by a new learn-
able one rc formed by concatenating the sequence of pm

with the word embedding wc of class namec, that is:
rc = {p1,p2, . . . ,pM ,wc}, and, finally, a class specific text
feature trc = gT (rc) is obtained. A probability distribution
over the class labels is:

Pr(y|x) =
exp

(
cos(try, f)/τ

)
∑C

c=1 exp
(
cos(trc , f)/τ

) . (2)

The prompts can be learned by minimizing the cross-
entropy loss:

LV L = −
C∑

c=1

logPr(c|x)yc. (3)

Note that the V&L model remains entirely frozen during
training. Moreover, as the soft prompts are typically shared
across all classes, they can be directly used for zero-shot
evaluation on additional novel classes.

3.2. Language-Aware Soft Prompting (LASP)

Despite its strong performance on base classes, vanilla
soft prompt learning (see Sec. 3.1) under-performs on novel
classes (i.e. zero-shot setting). While CoCoOp [36] par-
tially alleviates this by conditioning on the image feature,
its accuracy for the zero-shot setting is still trailing that
of CLIP with hand-crafted prompts. Moreover, it requires
passing the prompts for all classes through the text encoder
every time a new image is to be classified.

In this work, we propose, for the first time, language-
only optimization for V&L downstream adaption. This is
in contrast with prior soft-prompt learning methods that
only capture V&L interactions. Specifically, since the hand-
engineered textual prompts outperform the learnable soft
prompts for the zero-shot setting, then, in order to avoid
base-class overfitting and strengthen generalizability, we
propose that the learnable ones should be trained so that
they can be correctly classified in language space where the
class weights are given by the textual prompts. In other
words, the model is forced to correctly classify the learn-
able prompts into the corresponding hand-crafted ones.

To this end, a second cross entropy loss is used to mini-
mize the distance between the encoded learned soft prompts
and the encoded textual ones. Specifically, recall that thc =
gT (hc) is the class weight for class c obtained by encod-
ing the corresponding textual prompt. Assuming that L
manually defined textual prompts are available 1, we have
th,lc , l = 1, . . . , L. Moreover, tr is an encoded learnable
prompt to be classified in one of the C classes. Finally, the
probability of prompt tr being classified as class y is:

Prh(y|tr) =
1

L

L∑
l=1

exp
(
cos(th,ly , tr)/τ

)
∑C

c=1 exp
(
cos(th,lc , tr)/τ

) . (4)

The language-aware training loss is computed similarly to
the V&L loss:

LTT = −
C∑

c=1

logPrh(c|tr)yc, (5)

with the overall training objective defined as:

L = αV LLV L + αTTLTT , (6)

where αV L and αTT are user-defined scaling coefficients
controlling the magnitude of the LV L and LTT losses, re-
spectively. Overall, we call the proposed learning formu-
lation Language-Aware Soft Prompting (LASP). See also
Fig 1. Interpretations: LASP can be interpreted in a num-
ber of ways:

1The original CLIP prompts serve as textual prompts without any
tweaking or change. Note, that our method can even work with random
sentences (see Sec. 4.2).
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Figure 1. Overall idea. While standard prompt learning is based on image-text interactions (LV L loss; Eq. 3), LASP additionally models
text-text interactions using the proposed Text-to-Text loss LTT (Eq. 5). There are G groups of learned prompts pj

i passed through the
text encoder to form G text embeddings tj summarizing the input. The LTT loss is then applied over the different groups of the text
embeddings and the textual prompts. Moreover, to alleviate data distribution shift and visual-language misalignment, the LN layers of
the visual encoder are fine-tuned and the embeddings are “corrected” at the output space by the learnable vector b, shared for all classes.
The text encoder remains entirely frozen. Notably, LASP can be trained with virtual classes by including, during training, class names for
which no visual samples are available.

LASP as a regularizer: Although the learned prompts con-
stitute a small number of parameters, especially in the few-
shot setting, the resulting models (prompts) are prone to
overfitting to base classes [36]. As the proposed language-
aware loss encourages the learned prompts to be close in
embedding space to the textual ones, LASP can be nat-
urally viewed as a regularizer that prevents the learned
prompt-conditioned features from diverging too much from
the hand-crafted ones.
LASP as language-based augmentation: Current soft
prompt learning methods restrict augmentation to the vision
domain, where random transformations, such as rotation,
color jittering or scaling, increase the robustness of the sys-
tem, especially for cases with limited number of training
samples. However, no augmentations are performed in the
language domain. Ideally, we want the prompt-conditioned
text embedding to be robust too, capturing the full space
of each class. In practice, we can achieve this by tar-
geted prompting, where we can specify certain character-
istics and/or apply text-based transformations to the class
name, e.g.: “A sketch of dog” or “A rotated photo of a dog”.

At train time, as reflected by Eq. 4, we compute the class
label distribution per l−th template and then average over
all templates. Hence, we opt not to mix across templates
during training as we want the model to focus on class in-
formation solely. For example, the model could distinguish
easier between a “a sketch of a dog” and “a photo of a wolf”
compared to “a sketch of a dog” and “a sketch of a wolf”,
as in the former case, the style could be used as an addi-
tional queue. We validated this in preliminary experiments
(intermixing the templates was found to hurt performance

by 0.5% on novel classes).
LASP for discriminative class centroids: By optimizing
w.r.t both image and text, our method produces class cen-
troids that are more discriminative and have a higher sep-
aration margin. This can be visualized in Fig. 2 where we
plot the cosine distance between the embeddings of each
class. Our approach learns class centroids that have a higher
cosine distance than those of our baseline, CoOp.
LASP as data-free distillation: Typically, knowledge distil-
lation requires a training set of images, where a teacher net-
work provides a training signal for the student [11]. LASP’s
text-to-text loss can be also interpreted as a data-free distil-
lation (i.e. does not use any image data) where the learnable
prompts define the “samples”. As CLIP learns a joint V&L
space, similar concepts are close together across both do-
mains. Hence, optimizing against a concept or object in the
language domain, using the proposed loss, should also help
make a step in the visual domain, improving the classifica-
tion of the images.

3.3. Grouped LASP

Grouped convolutions [15] and multi-head attention [30]
have been shown to learn strong representations. The
groups or the number of heads, respectively, can be also
interpreted as a set of experts that are then combined to
produce a strong feature. Drawing inspiration from this,
we propose a grouped prompt representation, where each
group is optimized with respect to a separate subset of tex-
tual prompts. Effectively, the prompts from each group will
learn a transformation specialized to its corresponding sub-
set (analogous to the aforementioned techniques that also
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(a) Eurosat; Ours (0.516) vs CoOp (0.491)

(b) DTD; Ours (0.644) vs CoOp (0.488)

Figure 2. Cosine distance between the class embeddings pro-
duced by the CLIP text encoder on Eurosat and DTD for LASP
and CoOp. Class centroids situated further apart are more sep-
arable as the underlying image features are identical across both
methods. Brighter colors indicate bigger distances. The numbers
shown are the average cosine distance between the classes.

specialize to a part of the signal). In particular, we split the
set of L templates into G equally sized sub-sets. Moreover,
each sub-set is associated with a sequence of M prompts
rgc = {pg

1, . . . ,pg
M ,wc}, g = 1, . . . , G each producing a

class specific text feature tr,gc = gT (r
g
c). Finally, our text-

to-text loss in Eq. 5 becomes:

LTT−G = −
G∑

g=1

C∑
c=1

logP g
rh(c|t

g)yc, (7)

with P g
rh computed for each group similarly to Eq. 4. We

note that the splits were created randomly. As the text tem-
plates are in general semantically independent, no preferred
grouping arises. At test time, the final result is computed by
taking the average of the cosine similarity scores between
each group and the visual feature f .

3.4. Re-aligning LASP

Combating data distribution shift: for some downstream
tasks, it is possible that there is a data distribution shift be-
tween the downstream image dataset and the one used by
CLIP during training. Hence, we would like this aspect to
be captured by the downstream adaptation method. To this
end, some optimization of the visual encoder can be per-
formed; nevertheless this can very easily result in base class
overfitting if, after the training, the V&L embeddings are
pushed away from the joint space learned by CLIP. For ex-
ample, preliminary results with visual adapters have shown
that they hurt zero-shot accuracy. On the contrary, we found
that Layer Normalization (LN) [2] fine-tuning is a much

more robust way to adapt the visual encoder. Overall, we
propose fine-tuning the LN of the CLIP encoder as a way to
combat distributional shift.
Combating V&L misalignment: Because after LN fine-
tuning the V&L are not guaranteed to continue to be
aligned, we also propose to learn a “correction” at the out-
put of the text encoder in the form of a learnable offset
(bias) that aims to re-align the two modalities. Let W be
the set of weights of the linear classifier obtained by pass-
ing the learned prompts from the text encoder. We propose
to learn a vector b ∈ Rd that is simply added to W, that
is W = W + b. Importantly, the learned offset is shared
among all classes, and in this way it can be readily applied
for the case of novel classes too.

3.5. LASP with Virtual Classes (LASP-V)

A direct observation that can be drawn from Eq. 4 is that,
in practice, we do not have to use only the class names for
which we have labelled image data, as the value of LTT is
independent of the input image. To this end, we propose
to learn the prompts using both annotated image-text pairs
and class names outside the base set (for which we have
no images available). We call this setting as training LASP
with virtual classes. Our setting combines the best of both
words: the guidance from the few annotated image samples
and the zero-shot generalizability of language-based train-
ing. As our results show, LASP with virtual classes can
significantly improve the robustness of the prompts learned.
We refer to this variant of our method as LASP-V.

Note that training with virtual classes does not violate the
zero-shot setting [31]2. Moreover, from a practical perspec-
tive, if the novel class names are not known during initial
training, the model can be simply retrained in a zero-shot
manner when they become available.

4. Experiments
Following [25, 35], we mainly evaluated the accuracy of

our approach on generalization to novel classes (i.e. zero-
shot recognition) for 11 datasets in total. Each dataset is
split into two equal partitions with disjoint classes, named
base and new. We trained our model using text-image
pairs from the base classes and test on both base and new
classes. For other types of experiments including cross-
dataset transfer and domain generalization, see Supp. Mat.
Datasets: We used 11 in total, namely: ImageNet [6],
Caltech101 [9], Oxford-Pets [22], Stanford Cars [14],
Flowers102 [21], Food101 [3], FGVC Aircraft [20],
SUN397 [32], DTD [5], EuroSAT [10] and UCF-101 [29].
Models: For all experiments, unless otherwise specified,
we used a pretrained CLIP model with a ViT-B/16 image

2according to [31] “Zero-shot learning aims to recognize objects whose
instances may not have been seen during training.”
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encoder, M = 4 learnable prompts and 16 samples per
class. The number of groups G (when used) is set to 3.
In all experiments, we report the average across 3 runs.
Training: Largely, we followed the training procedure de-
scribed in CoOp [36] and CoCoOp [35] (i.e. same image
augmentation, SGD with initial learning rate of 0.002 and
a cosine annealing scheduler with 1 epoch of warm-up). In
Eq. 6, αV L was set to 1 and αT to 20. The number of textual
templates L was set to 34. The templates were taken from
CoOp and CLIP (see Supp. Mat. for a full list). All training
and testing was done on a single NVIDIA V100 GPU (ex-
cept for Imagenet where 4 GPUs were used). The code was
implemented using PyTorch [23].
Methods compared: We report the performance of LASP
and its improved version trained with virtual classes (LASP-
V). For LASP-V, the class names only of the novel classes
are used during training as virtual classes. We also study the
impact of adding other types of virtual classes. The direct
baseline that our method is compared with is CoOp [36], as
we add the proposed components on top of it. Note that both
methods have exactly the same inference (as our method
adds in addition a text-to-text loss during training). We also
compare with ProDA [19] and CoCoOp [35] which con-
ditions the prompts on image features and hence induces
significant additional computation during inference.

4.1. Comparison with state-of-the-art

Standard setting of [35]: Table 1 compares our approach
with the current state-of-the-art. We conclude:
• Conclusion 1: In terms of harmonic mean, LASP out-

performs all methods by large margin. It outperforms,
on average, the second best (ProDA) by > 2%. The im-
provement on specific datasets is even bigger (e.g. > 3%
on Flowers102, > 11% on EuroSAT, > 3% on UCF101).

• Conclusion 2: On the novel classes, LASP outper-
forms all methods by large margin. It is the first re-
ported method outperforming CLIP by 0.68% (but notice
that CLIP performs very poorly on the bases classes). It
also outperforms ProDA (third best) by > 2.5%. Again,
compared to ProDA, the improvement on specific datasets
is even bigger (e.g. > 5% on Flowers102, > 3% on
Food101, > 11% on EuroSAT, > 6% on UCF101).

• Conclusion 3: On new classes, LASP with virtual
classes has significant impact for specific datasets.
These include datasets with informative class names like
EuroSAT and DTD where the improvement over LASP is
∼ 5.5% and ∼ 4.0%, respectively.

Generalized zero-shot setting: The current evaluation pro-
tocol used in [35] computes the accuracy considering the
base and new classes in isolation. A more realistic evalua-
tion protocol should consider the classes across both subsets

Table 1. Comparison with the state-of-the-art on 11 datasets.
We provide the results of LASP and LASP trained with virtual
classes (LASP-V). ∆ denotes the absolute improvement of our
best variant, LASP-V, over the previous best result.

Dataset Set
CLIP CoOp CoCoOp ProDA LASP LASP-V

∆
[24, 36] [36] [35] [19] (Ours) (Ours)

Average
Base 69.34 82.69 80.47 81.56 82.70 83.18 +0.49
New 74.22 63.22 71.69 72.30 74.90 76.11 +1.89

H 71.70 71.66 75.83 76.65 78.61 79.48 +2.83

ImageNet
Base 72.43 76.47 75.98 75.40 76.20 76.25 -0.22
New 68.14 67.88 70.43 70.23 70.95 71.17 +0.74

H 70.22 71.92 73.10 72.72 73.48 73.62 +0.52

Caltech101
Base 96.84 98.0 97.96 98.27 98.10 98.17 -0.10
New 94.0 89.91 93.81 93.23 94.24 94.33 +0.33

H 95.40 93.73 95.84 95.86 96.16 96.21 +0.35

OxfordPets
Base 91.17 93.67 95.20 95.43 95.90 95.73 +0.30
New 97.26 95.29 97.69 97.83 97.93 97.87 +0.04

H 94.12 94.47 96.43 96.62 96.90 96.79 +0.16

Stanford
Cars

Base 63.37 78.12 70.49 74.70 75.17 75.23 -2.89
New 74.89 60.40 73.59 71.20 71.60 71.77 -3.12

H 68.85 68.13 72.01 72.91 73.34 73.46 +0.55

Flowers102
Base 72.08 97.60 94.87 97.70 97.0 97.17 -0.53
New 77.80 59.67 71.75 68.68 74.0 73.53 -4.27

H 74.83 74.06 81.71 80.66 83.95 83.71 +2.0

Food101
Base 90.10 88.33 90.70 90.30 91.20 91.20 +0.50
New 91.22 82.26 91.29 88.57 91.70 91.90 +0.61

H 90.66 85.19 90.99 89.43 91.44 91.54 +0.55

FGVC
Aircraft

Base 27.19 40.44 33.41 36.90 34.53 38.05 -2.39
New 36.29 22.3 23.71 34.13 30.57 33.20 -3.09

H 31.09 28.75 27.74 35.46 32.43 35.46 0.0

SUN397
Base 69.36 80.6 79.74 78.67 80.70 80.70 +0.10
New 75.35 65.89 76.86 76.93 78.60 79.30 +2.37

H 72.23 72.51 78.27 77.79 79.63 80.0 +1.73

DTD
Base 53.24 79.44 77.01 80.67 81.4 81.10 +1.53
New 59.9 41.18 56.0 56.48 58.6 62.57 +3.10

H 56.37 54.24 64.85 66.44 68.14 70.64 +4.20

EuroSAT
Base 56.48 92.19 87.49 83.90 94.60 95.0 +2.81
New 64.05 54.74 60.04 66.0 77.78 83.37 +17.37

H 60.03 68.9 71.21 73.88 85.36 88.86 +14.98

UCF101
Base 70.53 84.69 82.33 85.23 84.77 85.53 +0.30
New 77.50 56.05 73.45 71.97 78.03 78.20 +0.70

H 73.85 67.46 77.64 78.04 81.26 81.70 +3.66

(i.e. base and novel) jointly. Detailed results for this setting
are provided in the Supp. Mat., but, in general, the same
conclusions as above hold.

4.2. Ablation studies

Effect of different LASP components: LASP proposes a
number of contributions which are evaluated incrementally.
The start point is the proposed Text-to-Text loss of Eq. 5.
On top of this, we incrementally apply the grouped prompt
representation (Eq. 7), and then the re-alignment module
(Sec. 3.4). This gives rise to LASP. Finally, we add virtual
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Table 2. Effect of different LASP components. Text-to-Text is
Eq. 5, only. On top of this, we incrementally apply the grouped
prompt of Eq. 7, and the re-alignment module of Sec. 3.4. Up to
this point, this is equiv. to LASP. Finally, we add virtual classes
(equiv. to LASP-V). Baseline is CoOp.

Dataset Set
Baseline Text-to-Text +Grouped +Align + Virtual

[36] (LASP) (LASP-V)

Average
Base 82.69 81.26 81.87 82.70 83.18
New 63.22 71.54 73.48 74.90 76.11

H 71.66 76.09 77.44 78.61 79.48

ImageNet
Base 76.47 75.97 76.20 76.20 76.25
New 67.88 70.31 70.70 70.95 71.17

H 71.92 73.03 73.34 73.48 73.62

Caltech101
Base 98.0 97.70 97.97 98.10 98.17
New 89.91 94.08 94.27 94.24 94.33

H 93.73 95.85 96.08 96.16 96.21

OxfordPets
Base 93.67 95.13 95.63 95.90 95.73
New 95.29 96.23 97.87 97.93 97.87

H 94.47 95.68 96.73 96.90 96.79

Stanford
Cars

Base 78.12 72.46 73.50 75.17 75.23
New 60.40 71.80 72.1 71.60 71.77

H 68.13 72.19 72.93 73.34 73.46

Flowers102
Base 97.60 96.47 96.80 97.0 97.17
New 59.67 70.7 74.0 74.0 73.53

H 74.06 81.59 83.87 83.95 83.71

Food101
Base 88.33 90.30 91.0 91.20 91.20
New 82.26 90.73 90.87 91.70 91.90

H 85.19 90.51 90.93 91.44 91.54

FGVC
Aircraft

Base 40.44 32.63 33.05 34.53 38.05
New 22.3 30.46 31.80 30.57 33.20

H 28.75 31.57 32.41 32.43 35.46

SUN397
Base 80.6 80.20 80.55 80.70 80.70
New 65.89 75.56 77.11 78.60 79.30

H 72.51 77.81 78.79 79.63 80.0

DTD
Base 79.44 79.13 80.5 81.4 81.10
New 41.18 52.1 56.20 58.6 62.57

H 54.24 62.82 66.19 68.14 70.64

EuroSAT
Base 92.19 91.23 91.90 94.60 95.0
New 54.74 63.16 66.37 77.78 83.37

H 68.9 74.64 77.07 85.36 88.86

UCF101
Base 84.69 82.7 83.47 84.77 85.53
New 56.05 71.80 77.07 78.03 78.20

H 67.46 76.86 80.14 81.26 81.70

classes giving rise to LASP-V. Our baseline is CoOp. From
the results of Table 2, we conclude:
• Conclusion 4: Our idea in its plain form (Text-to-Text

loss) outperforms its direct baseline (CoOp) by a large
margin. Specifically, it improves upon CoOp by ∼ 4.5%
on average, demonstrating its effectiveness.

• Conclusion 5: All components are needed to obtain
high accuracy.

Effect of size and content of the textual prompts: Herein,
we study the effect of the size L and the content of the set of

the textual prompts used by our method in Eq. 4. For sim-
plicity, we report results using our Text-to-Text loss (Eq. 5),
only. The hand-crafted templates are increased to 100 by in-
cluding the rest of the prompts defined in CLIP [24], while
their number is reduced to 1 by using the following template
only: a photo of {}. Random templates are produced
by sampling grammatically plausible random sentences that
contain incoherent words, with length between 5 and 20
words. The class names are inserted at the end of these
random templates (for examples, see Supp. Mat.). All vari-
ations use the same training scheduler and hyperparameters,
except for the case of random templates, where αTT = 5.

Table 3 shows our results. We importantly note that the
accuracy on the base classes remains similar across all set-
tings (not shown in the table). Moreover, we conclude:
• Conclusion 6: The exact choice of the templates might

not be so significant for the few-shot setting.

• Conclusion 7: For the case of novel classes, both the
number and the content of the templates are impor-
tant to obtain high accuracy.

Effect of type of loss: In Table 6, we vary the choice of loss
in LASP, i.e. we replace the Cross-Entropy (CE) with an L2

and L1 loss. Again, for simplicity, we report results using
our Text-to-Text loss (Eq. 5), only.
• Conclusion 8: The proposed CE loss based formula-

tion outperforms other losses for LASP.

Effect of out-domain distractors: Motivated by the re-
cent work of [26] suggesting that CLIP’s performance drops
as the number of classes used for testing increases, we in-
troduce a new evaluation setting: Firstly, we select 4 test
datasets with clear disjoint domains: EuroSAT (10 satel-
lite terrain types), Food101 (101 food names), Flowers102
(102 flower names) and OxfordPets (37 dog and cat breed
names). At test time, we define the classifier across the
union of classes across all 4 datasets (250 classes in to-
tal). Note that LASP-V is the only method that benefits
from knowledge of this expanded vocabulary during train-
ing. From Table 4, we can conclude:
• Conclusion 9: The models are somewhat robust to out-

of-domain distractors. Specifically, the drop in accuracy
is moderate (typically 1-2%). The exception is EuroSAT
where the number of classes increases 25×. Importantly,
LASP-V manages to largely recover the lost accuracy.

Effect of in-domain distractors: Expanding on the idea
from the previous section, herein, we propose to test the
performance of the current soft prompting methods with
in-domain distractors. Unlike the case of out-of-domain
distractors, the in-domain distractors are selected such that
they are closely related to the current dataset/classes being
part of the same super-category. We performed experiments
on two datasets: Food101 and Flowers102. For Flowers102,
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Table 3. Effect of dictionary size and content on new classes. Accuracy on the base classes remains similar across all settings, hence it
is omitted. 34 templates were used for the paper’s main results. For simplicity, we report results using our Text-to-Text loss (Eq. 5), only.
Text-to-Text (R) denotes models trained using randomly constructed templates.

(a) DTD.

#Templates 1 34 100

Text-to-Text (R) 49.02 51.63 52.64
Text-to-Text 50.73 52.10 56.53

(b) EuroSAT.

#Templates 1 34 100

Text-to-Text (R) 55.01 59.9 62.1
Text-to-Text 56.97 63.16 65.13

(c) UCF101.

#Templates 1 34 100

Text-to-Text (R) 67.5 68.6 70.03
Text-to-Text 71.36 71.80 72.77

Table 4. Effect of out-domain distractors. w/o distractors are the results on the generalized zero-shot setting.

(a) EuroSAT.

Method w/o distractors with distractors

Base New H Base New H

LASP 86.25 64.63 73.89 86.0 55.80 67.68
LASP-V 90.0 65.73 75.97 90.8 59.87 72.16

(b) Food101.

Method w/o distractors with distractors

Base New H Base New H

LASP 87.17 87.53 87.34 87.01 86.90 86.95
LASP-V 87.17 87.63 87.39 86.99 87.10 87.04

(c) Flowers102.

Method w/o distractors with distractors

Base New H Base New H

LASP 90.97 67.8 77.69 90.0 67.1 76.68
LASP-V 93.20 69.93 79.9 92.05 69.08 78.92

(d) OxfordPets.

Method w/o distractors with distractors

Base New H Base New H

LASP 92.53 94.20 91.52 91.53 92.60 92.06
LASP-V 92.25 93.97 93.10 92.23 93.17 92.69

Table 5. Effect of in-domain distractors. w/o distractors are the results on the generalized zero-shot setting evaluation.

(a) Food101.

Method w/o distractors with distractors

Base New H Base New H

LASP 87.17 87.53 87.34 82.70 83.47 83.08
LASP-V 87.17 87.63 87.39 83.11 83.95 83.52

(b) Flowers102.

Method w/o distractors with distractors

Base New H Base New H

LASP 90.97 67.8 77.69 80.16 62.50 70.23
LASP-V 93.20 69.93 79.9 83.95 65.31 73.47

we added 65 new class names while, for Food101, 53 new
classes. Note again that, except for LASP-V, the classes
are only used at test time as distractors expanding the C-
way classifier by 65 and 53, respectively. The list of added
classes can be found in the Supp. Mat. From the results of
Table 5, we conclude:
• Conclusion 10: In-domain distractors significantly in-

crease the problem difficulty. Specifically, the drop in
accuracy is large (4-7%). LASP-V manages to recover
part of the lost accuracy.

Table 6. Effect of type of loss. For simplicity, we report results
using our Text-to-Text loss (Eq. 5), only.

Set CE L1 L2

Base 81.26 81.50 81.47
New 71.54 66.01 65.80

H 76.09 73.54 72.80

5. Conclusions
In this paper, we introduced LASP - a language aware

soft prompting method for V&L adaptation that is shown
to outperform prior work by large margin. Specifically, we
made the following contributions: Firstly, we introduced
a novel text-to-text loss that largely alleviates the problem
of base-class overfitting. Secondly, we proposed a grouped
language-aware prompting for learning more specialized
and stronger prompt representations. Thirdly, we identi-
fied a visual-language misalignment within LASP and pro-
pose a re-calibration mechanism to address it. Fourthly, we
showed that our approach, unlike prior work, is amenable
to, including during training, virtual classes, i.e. class
names for which no visual samples are available, signifi-
cantly increasing the robustness of the learned prompts. We
hope that LASP/LASP-V will serve as a strong baseline for
future works in the area of few-shot adaptation for V&L
models.
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