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Abstract

This paper proposes a self-supervised approach to learn
universal facial representations from videos, that can trans-
fer across a variety of facial analysis tasks such as Facial
Attribute Recognition (FAR), Facial Expression Recognition
(FER), DeepFake Detection (DFD), and Lip Synchroniza-
tion (LS). Our proposed framework, named MARLIN, is a
facial video masked autoencoder, that learns highly robust
and generic facial embeddings from abundantly available
non-annotated web crawled facial videos. As a challenging
auxiliary task, MARLIN reconstructs the spatio-temporal
details of the face from the densely masked facial regions
which mainly include eyes, nose, mouth, lips, and skin to
capture local and global aspects that in turn help in encod-
ing generic and transferable features. Through a variety of
experiments on diverse downstream tasks, we demonstrate
MARLIN to be an excellent facial video encoder as well
as feature extractor, that performs consistently well across
a variety of downstream tasks including FAR (1.13% gain
over supervised benchmark), FER (2.64% gain over unsu-
pervised benchmark), DFD (1.86% gain over unsupervised
benchmark), LS (29.36% gain for Frechet Inception Dis-
tance), and even in low data regime. Our code and models
are available at https://github.com/ControlNet/MARLIN.

1. Introduction
Facial analysis tasks [34, 43, 70, 85] provide essential

cues for human non-verbal behavior analysis, and help un-
fold meaningful insights regarding social interaction [36],
communication [40], cognition [68] with potential appli-
cations in Human-Computer Interaction (HCI) and Affec-
tive Computing domains. Recently, we have witnessed sig-
nificant progress in deep neural network models to solve
facial analysis tasks such as Facial Attribute Recognition
(FAR) [34, 85], Facial Expression Recognition (FER) [48],
DeepFake Detection (DFD) [70], and Lip Synchronization
(LS) [43]. While these deep models can achieve remark-
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Figure 1. Overview of the proposed Masked Autoencoder for fa-
cial Representation LearnINg aka MARLIN. MARLIN aims to
learn a universal facial representation from abundantly available
non-annotated facial video data.

able performance, they often require large-scale annotated
datasets, which is not only a resource-expensive and time-
consuming process but also infeasible for some applications
requiring domain expertise for annotation (e.g. FER).

To this end, self-supervised pre-training [26, 37, 71] has
lately emerged as an effective strategy to address the lim-
itations of fully supervised methods, as it enables generic
representation learning from non-annotated data, that can
then be transferred across tasks having limited labels.
For images of natural scenes and objects, self-supervised
learning approaches using self-distillation [14], contrastive-
learning [18, 19], solving pre-text tasks such as jigsaw puz-
zle [53], and more recently autoencoding [37,71] have even
outperformed the supervised learning approaches.

Despite the promises offered by these self-supervised
methods in learning scalable and generic representations
for natural scene images and videos, these have not yet
been investigated for learning representations from facial
video data. Facial representation learning requires track-
ing of fine-grained face specific details which might not
be perfectly captured by linear tube masking [71]. Un-
til now, most of the existing approaches associated with
facial analysis tasks are highly specialized and develop
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task-specific models trained in a fully supervised manner
[46, 54, 63], with very few recent efforts towards learning
generic image-based facial encoding [10,84]. These closely
related works [10, 84] either focus on exploring training
dataset properties in terms of size and quality [10] or per-
forming pre-training in visual-linguistic way [84]. These
works [10, 84] are hard to scale since they use static image-
level facial information and the image-caption pairs are
highly associated with context information rather than face.

In this paper, our goal is to learn universal and task-
agnostic representations in a self-supervised manner for
face-related downstream tasks (see Fig. 1). For this pur-
pose, we employ a masked autoencoder [37, 71] with a
facial-guided masking strategy that learns to reconstruct
spatio-temporal details of a face from densely masked fa-
cial regions using non-annotated videos. Unlike existing
approaches for natural scene videos [71], where the tube-
masking is initialized with a static part of the video without
any semantic information, our approach dynamically tracks
face and then develops a facial part-guided tube mask-
ing strategy using an off-the-shelf face parser i.e. FaceX-
Zoo [75]. Thus, we pose a more challenging task that en-
courages the model to learn spatio-temporal representations
to cover local as well as global information. Inspired by
prior works [27, 60] showing high-quality reconstruction
results along with rich and generic latent features, we in-
corporate adversarial loss on top of masked encoding to
enhance reconstruction quality. Our experimental results
show that our proposed framework, MARLIN, learns highly
generic facial encoding that scale and transfers well across
diverse facial analysis tasks such as FER, DFD, FAR, and
LS and achieve favorable performance gain w.r.t. state-of-
the-art benchmarks. In summary, our main contributions
are:

• We propose, MARLIN, a universal and task-agnostic
facial encoder that learns robust and transferable facial
representation from abundantly available non-annotated
web-crawled facial videos in a self-supervised fashion.

• As a challenging auxiliary task, we propose to reconstruct
the spatio-temporal details of the face from the densely
masked facial regions. The proposed facial region-guided
tube masking (aka Fasking) strategy aims to learn local
and global aspects from facial videos which in turn help
encode generic and transferable features.

• Through extensive quantitative and qualitative analysis,
we show that MARLIN learns rich, generic, transferable,
and robust facial representation, that performs consis-
tently well across a variety of downstream tasks includ-
ing FAR (1.13% gain over supervised benchmark), FER
(2.64% gain over unsupervised benchmark), DFD (1.86%
gain over unsupervised benchmark), LS (29.36% gain for
Frechet Inception Distance) and even in few shot settings.

Table 1. Facial Analysis Tasks. Overview of different face related
tasks and relevant datasets down the lane.

Datasets # Samples Env. Fmt. Task Year
LFW [39] 13,233 Wild Img. Identification 2008
VGG-FACE [54] 2.6M Wild Img. Identification 2015
CelebA [50] 202,599 Wild Img. Attributes 2015
YouTubeFace [78] 3,425 Wild Vid Identification 2011
LRS2 [22] 144,482 Wild Vid Lip Sync. 2017
CelebV [79] 5 Wild Vid Reenact 2018
CMU-MOSEI [83] 23,453 Wild Vid Emo, Senti 2018
FaceForensics++ [62] 1,004 Wild Vid DeepFake 2019
VoxCeleb2 [23] 150,480 Wild Vid Speaker 2018
CelebV-HQ [85] 55,666 Wild Vid Attribute 2022

2. Related Work

Masked AutoEncoder. Masked autoencoder learns robust
and transferable representations based on the hypothesis of
reconstruction of the masked region. Masked autoencod-
ing is motivated by context encoders [56] and denoising en-
coders [73]. After success of BERT [26] based masking,
the vision community has also explored different design
choices of masked auto encoding such as pixel level mask-
ing [17, 37, 80], token level masking [29] and deep feature
based masking [6, 77], using vision Transformers [44, 52].
Similarly, for modeling spatio-temporal patterns of the in-
put data, masked motion modelling [69] and tube mask-
ing [71] strategies have been incorporated recently. Along
this line, MARLIN masks and reconstructs domain-specific
facial parts to learn universal facial representation.
Facial Representation Learning. Till date, most of the
existing facial analysis approaches are conducted in a
task-specific way with fully supervised manner [46, 54,
63] on manually annotated data to enhance performance.
Any state-of-the-art model’s performance on benchmarked
datasets is impacted by the quality and quantity of anno-
tated data used during training. Tab. 1 shows an overview of
the task-specific large-scale facial image or video datasets
that have been curated over the past decade [1] to facil-
itate research in Face Verification (LFW [39], MS-celeb-
1M [34], VGG-FACE [54], VGGFace2 [13]), Facial At-
tribute Recognition(CelebA [50], CelebV-HQ [85]), Facial
Emotion Recognition (CMU-MOSEI [83]), DeepFake De-
tection (FF++ [62]) and Lip Synchronization (LRS2 [22]).
However, data curation encounters several challenges such
as requirements of specialized hardware (e.g. for FER and
action unit data), the discrepancy in data distribution that
prevent merging of multiple datasets [10], and most impor-
tantly time consuming and resource expensive annotation
process. To eliminate these drawbacks, some of the exist-
ing approaches [20, 81, 82] adopt data augmentation strat-
egy via image or video synthesis as the surge in face gen-
eration technology fueled by Generative Adversarial Net-
work (GAN) [20, 67, 81, 82] and other generation tech-
niques [16, 35] aids realistic face generation even with the
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control over facial attributes. These generation techniques
add variation in training set quantitatively, but in some cases
it still lags in qualitative aspects due to domain specific in-
consistency and more importantly high network complexity.

To this end, there are very few recent works that aim to
learn image-based task specific facial encoding with limited
supervision [3,9,10,65,84,84,86,86]. The most closely re-
lated existing works [10,84] either focus on exploring train-
ing dataset properties in terms of size and quality [10] or
performing pre-training in visual-linguistic way [84]. These
works [10, 84] are hard to scale since they use static im-
age level facial information and the image-caption pairs are
highly correlated with context information rather than face.
In this work, we aim to develop a generic, universal, and
task-agnostic facial encoder that learns from web-crawled
non-annotated data. Our experimental analysis shows that
MARLIN can align the latent space manifold to any desired
downstream task specific label space. Thus, MARLIN has
the capability to act as a strong facial encoder or feature
extractor in many low-resource real world applications.

3. MARLIN
Our objective is to learn robust and transferable uni-

versal facial representation from abundantly available non-
annotated facial video data [78]. If we think holistically,
face specific tasks involve two different aspects: a) facial
appearance related attributes such as parts of the face (nose,
eyes, lips, hair, etc.), facial shape and texture which mainly
need spatial investigation; and b) facial action such as emo-
tion, Facial Action Coding System (FACS), lip synchroniza-
tion which requires temporal information. Thus, spatio-
temporal modeling is highly desirable in order to learn
strong, robust, and transferable representation. To this end,
our proposed framework, MARLIN, adopts a facial region
guided masking strategy which poses a challenging auxil-
iary reconstruction task for self supervised representation
learning (See Fig. 2). To facilitate learning from masked
auto-encoder, we mainly choose the YouTube Faces [78]
dataset that uses web-crawled facial videos from YouTube
having variation in terms of different real life conditions.

3.1. Facial Representation Learning

Preliminaries. MARLIN consists of an encoder (FϕE ), de-
coder (FϕD ) and discriminator (FϕΓ ) with embedding pa-
rameters ϕE , ϕD and ϕΓ, respectively. Given a training
dataset D = {Vi}Ni=1 where N is the number of videos
in the dataset and V ∈ RC×T0×H0×W0 (C, T0, H0, W0

are channel, temporal depth, height and width of the raw
video, respectively). From the raw input video V , we track
and crop the facial regions [75] followed by random tem-
poral sampling represented as v ∈ R(C×T×H×W ) (T , H ,
W are the modified temporal depth, height, and width of
the derived video clip, respectively). The derived video clip

Algorithm 1 Facial-region Guided Masking Procedure

Require: v ∈ R(C×T×H×W ), r
1: seg map← FaceXZoo(v) ▷ Face-Parsing,
seg map∈{background,skin,left-eye,
right-eye,nose,mouth,hair}

2: P ={left-eye, right-eye, nose, mouth,
hair} ▷ Prioritize Regions

3: k = T
t ×

H
h ×

W
w ▷ # of tokens for each v (3D cube

tokens have dimension of t× h×w each)
4: n← r× k ▷ Number of masked tokens
5: X̃v ← {} ▷ Initialize visible tokens
6: patches ={background,skin,*shuffle(P)}

▷ Ordered list
7: for patch in patches do
8: X̃v ← {patch}
9: if len(X̃v) == (k− r) then

10: break
11: end if
12: end for
13: X̃m ← X̃ − X̃v ▷ X̃ is all tokens from v

v is further mapped to (k − n) visible and n masked to-
kens denoted as {X̃v ∈ R(k−n)×e, X̃m ∈ Rn×e} by facial-
region guided masking strategy (Fϕf

) with a pre-defined
masking ratio r = n

k . Here, e is the embedding dimen-
sion and k is the total number of tokens derived from v, i.e.
k = T

t ×
H
h ×

W
w , given 3D cube tokens have dimension of

t × h ×w each. Thus, MARLIN injects facial region spe-
cific domain knowledge in the aforementioned token space
to guide the representation learning via masking.

The visible tokens X̃v are mapped to the latent space z
by the following mapping function FϕE : X̃v → z. The la-
tent space feature z is further fed to the decoder FϕD which
reconstruct z to the n masked tokens X

′

m by the following
mapping Fϕd

: z→ X
′

m. In the decoder, the corresponding
visible and masked 3D cubes contain the flatten raw pixels
denoted as e = Cthw. In brief given the visible tokens X̃v ,
we reconstruct the masked tokens by the following function:

X
′

m = FϕD ◦ FϕE (X̃v) (1)

Reconstructing spatio-temporal facial patterns from raw
pixels is quite challenging, we deploy a discriminator
FϕΓ

with the adversarial training for better synthesis.

3.2. Self-Supervised Representation Learning.

The self supervised pre-training strategy of MARLIN
consists of three main components described below:
a) Facial-region Guided Tube Masking (Fasking). In or-
der to capture spatio-temporal correspondence, we have de-
ployed facial region specific tube masking strategy follow-
ing [71]. We dynamically track and mask facial compo-
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Figure 2. Architectural overview of MARLIN (Best viewed in color). MARLIN mainly consists of (a) Representation Learning Module,
(b) Facial Region guided Tube Masking, and (c) Downstream Adaptation. (a) Representation Learning Module: MARLIN learns the facial
representation from the unlabeled, web crawled video data in a self-supervised fashion (highlighted in Blue). (b) Facial Region guided
Tube Masking: With the aid of facial region guided tube masking (highlighted in Yellow), MARLIN gets joint spatio-temporal attention
which in turn facilitates downstream performance. The Face guided tube masking strategy injects domain knowledge into the pipeline. (c)
Downstream Adaptation: For facial task specific downstream adaptation, MARLIN utilizes Linear Probing (LP) and Fine-Tuning (FT) to
show the robustness, generalizability, and transferability of the learned feature (highlighted in Green).

nents across temporal axis for each spatio-temporal cube.
Our facial regions based tube-masking strategy ensures the
same facial region is masked throughout the temporal cube,
thus posing a challenging reconstruction task and promot-
ing learning local and global facial details (See Alg. 1).
As the masked spatio-temporal cubes look like deformable
bending tubes, we termed it as Facial region-guided tube
masking aka Fasking.

We begin with face parsing using FaceXZoo [75]
library which divides facial regions into the following
parts {left-eye, right-eye, nose, mouth,
hair, skin, background} (Fig. 2 (b)). Among
the facial regions, we prioritize the following set P =
{left-eye, right-eye, nose, mouth, hair}
over skin and background to preserve face specific local
and sparse features. In order to maintain pre-defined
masking ratio r, facial regions from the priority set P are
masked across frames first followed by {background,
skin} masking. Thus, Fasking generates n masked and
(k − n) visible tokens. Across all the frames of the input
v, we track specific facial regions from the pre-defined set
to encode and reconstruct spatio-temporal changes to the
model facial motion. The fasking strategy thus poses more
challenges to the reconstruction while encoding subject
specific appearance and fine-grained details.
b) Masked Autoencoder. After Fasking, (k − n) visible
tokens are given input to the Encoder FϕE which maps the
tokens to the latent space z. The visible tokens serve as a
reference to generate the masked counterpart of the face.
Thus, the decoder FϕDmaps the latent space z to the re-

constructed masked tokens X
′

m. Please note that similar to
VideoMAE [71], we adopt ViT [28] architecture as a back-
bone for MARLIN. A reconstruction loss (Lrecon) is im-
posed between masked cubes Xm and their reconstructed
counterparts X

′

m to guide the learning objective.
c) Adversarial Adaptation Strategy. To enhance the gen-
eration quality for rich representation learning, we incor-
porate adversarial adaptation on top of the masked auto-
encoder backbone. According to the prior literature [27,60],
adversarial training enhances generation quality which in
turn results in rich latent feature z. The discriminatorFϕΓas
shown in Fig. 2 is an MLP based network which imposes
adversarial loss Ladv between Xm and their reconstructed
counterparts X

′

m.

3.3. Overall MARLIN Loss

Alg. 2 summarizes the training process for the MARLIN
framework. MARLIN mainly imposes (a) Reconstruction
Loss and (b) Adversarial Loss to facilitate the training.
(a) Reconstruction Loss. Given an input masked tokens
X̃m, the masked auto-encoder module reconstruct it back to
X

′

m. To this end, we minimize mean squared error loss in
the 3D token space to update the weights of the (FϕΓ

◦FϕE◦
Fϕf

) branch. The loss is defined as

Lrecon =
1

N

N∑
i=1

||X(i)
m −X

′(i)
m ||2 (2)

where N is the total number of data in D, X(i)
m and X

′(i)
m

are the masked token and reconstruction of i-th data in D.
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Algorithm 2 Training procedure for MARLIN

Require: Fϕf
, FϕE , FϕD , FϕΓ

, Fθ, D, r, Ddown

1: while not converged do ▷ MARLIN pre-training
2: v ← sample batch(D)
3: {X̃m, X̃v} ← Fϕf

(v, r) ▷ Fasking (See Algo 1)
4: X

′

m ← FϕD ◦ FϕE (X̃v) ▷ Train FϕΓ

5: {ϕΓ} ← ▽{ϕΓ}L(d)(Xm, X
′

m)

6: X
′

m ← FϕD ◦ FϕE (Xv) ▷ Train FϕE , FϕD

7: {ϕE , ϕD} ← ▽{ϕE ,ϕD}L(g)(Xm, X
′

m)
8: end while
9: while not converged do ▷ Downstream Adaptation

10: {v,y} ← sample batch(Ddown)
11: X̃ ← tokenize v
12: y

′ ← Fθ ◦ FϕE (X̃) ▷ Adapt downstream label
13: if Linear Probing then ▷ Linear Probing
14: {θ} ← ▽{θ}Ldown(y, y′)
15: else ▷ Fine-Tuning
16: {ϕE , θ} ← ▽{ϕE ,θ}Ldown(y, y′)
17: end if
18: end while

(b) Adversarial Loss. The adversarial adaptation considers
the Wassenstain GAN loss [5] for better reconstruction of
spatio-temporal facial patterns which in turn helps in learn-
ing rich representation. The loss is defined as follows:

L(d)
adv =

1

Nn

N∑
i=1

(
∑

x′
m∈X

′(i)
m

FϕΓ
(x

′

m)−
∑

xm∈X
(i)
m

FϕΓ
(xm))

(3)

L(g)
adv = − 1

Nn

N∑
i=1

∑
x′
m∈X

′(i)
m

FϕΓ
(x

′

m) (4)

Thus, the overall learning objective L is formulated as fol-
lows, where λW is the weighting parameter:

L(g) = Lrecon + λWL(g)
adv (5)

L(d) = L(d)
adv (6)

During MARLIN’s pre-training phase, L(d) updates the pa-
rameters ϕdis and L(g) updates the parameters ϕe, ϕd.

3.4. Downstream Adaptation

Our proposed MARLIN framework learns robust and
transferable facial representation from the facial video in
a self-supervised way. Following the standard evaluation
protocols, we adopt Linear Probing (LP) and Fine-Tuning
(FT) for downstream adaptation for different face relevant

tasks (See Fig. 2 inference module). Given any task spe-
cific downstream dataset Ddown = {vj ,yj}Nj=1, we deploy
linear fully-connected (FC) layers with embedding parame-
ters θ to align the latent space to the downstream task spe-
cific label space on top of encoder module FϕE . For linear
probing, we freeze the backbone network FϕE and only up-
date the Fθ. On the other hand for FT, we fine-tune the
whole module i.e. (FϕE◦Fθ). When MARLIN is used as a
feature extractor for LP, it uses a sliding temporal window
to extract features Z of the input face cropped video V as
shown in Fig. 2 (c). The details of different downstream
facial tasks are described below:
Facial Attribute Recognition (FAR) predicts the presence
of appearance and action attributes such as gender, race,
hair color, and emotion of a given face video. The problem
of predicting facial attributes can be posed as a multi-label
learning problem highly dependent on rich spatial encod-
ing. For the downstream adaptation purpose, we use 28,532
train, 3,567 val, and 3,567 test videos from the CelebV-
HQ [85] dataset. Following the prior works [33, 50, 84], we
report average accuracy(↑), Area Under the Curve (AUC↑)
over all attributes.
Facial Expression Recognition (FER) task encodes
spatio-temporal facial muscle movement patterns to predict
emotion (6-class) and sentiment (7-class and 2-class) of the
concerned subject given a facial video. We evaluate the per-
formance of MARLIN on CMU-MOSEI dataset [7] which
is a conversational corpus having 16,726 train, 1,871 val,
and 4,662 test data. Following the prior works [7, 25], we
use overall accuracy(↑) as metrics.
Deepfake Detection (DFD) task predicts spatio-temporal
facial forgery given a facial video from FF++(LQ)
dataset [62]. For downstream adaptation, we use 3,600
train, 700 val, and 700 test sample videos from FF++(LQ)
dataset [62]. Following prior literature [12, 58, 76], we use
accuracy(↑) and AUC(↑) as the evaluation metrics.
Lip Synchronization (LS) is another line of research that
require facial region specific spatio-temporal synchroniza-
tion. This downstream adaptation further elaborates the
adaptation capability of MARLIN for face generation tasks.
For adaptation, we replace the facial encoder module in
Wav2Lip [57] with MARLIN, and adjust the temporal win-
dow accordingly i.e. from 5 frames to T frames. For eval-
uation, we use the LRS2 [22] dataset having 45,838 train,
1,082 val, and 1,243 test videos. Following the prior liter-
ature [57, 74], we use Lip-Sync Error-Distance (LSE-D ↓),
Lip-Sync Error-Confidence (LSE-C ↑) and Frechet Incep-
tion Distance (FID ↓) [38] as evaluation matrices.

4. Experiments and Results
We have comprehensively compared our method on dif-

ferent downstream adaptation tasks from quantitative (See
Sec. 4.2) and qualitative (See Sec. 4.3 perspectives. Ad-
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Table 2. Facial Attribute Recognition. Our proposed framework,
MARLIN, trained on YTF [78] dataset and Linear Probed/Fine-
Tuned on CelebV-HQ [85] benchmark dataset in terms of
accuracy↑ and area under the curve↑. * shows supervised methods
trained on the CelebV-HQ [85] dataset.

Method Appearance Action Overall
Acc.↑ AUC↑ Acc.↑ AUC↑ Acc.↑

R3D [72]* 92.34 0.9424 94.57 0.9173 93.45
MViTv1 [30]* 92.90 0.9452 95.13 0.9233 94.01
MViTv2 [49]* 92.77 0.954 95.15 0.9239 93.96
VideoMAE (FT) [71] 92.91 0.9529 95.37 0.9284 94.14
MARLIN (LP) 91.90 0.9373 95.25 0.9278 93.57
MARLIN (FT) 93.90 0.9561 95.48 0.9406 94.69

ditionally, we have performed extensive ablation studies to
provide justification for our design choices.

4.1. Experimental Protocols

Datasets. We evaluate the MARLIN framework on differ-
ent facial analysis tasks described in Sec. 3.4. In brief, we
use CelebV-HQ [85] for facial attribute and action predic-
tion, CMU-MOSEI dataset [7] for conversational emotion
and sentiment prediction, FF++(LQ) dataset [62] for deep-
fake detection and LRS2 [22] for lip synchronization.
Settings. For fair comparisons, we follow the dataset spe-
cific experimental protocols mentioned in the task specific
prior literature [7, 22, 33, 50, 62, 84]. Other than traditional
evaluation, we perform few shot adaptation strategy as well
to show the robustness and transferability of MARLIN.
Implementation Details. We implemented the method on
PyTorch [55] with Nvidia RTX A6000 GPU. First of all,
given any temporal chunk of a facial video, consecutive
frames are highly redundant. Therefore, to consider seman-
tically meaningful frames having significant motion across
frames, we adopt the minimum temporal stride value to be
2. Given an input video (having dimension 3× 16× 224×
224), the cube embedding layer generates 8 × 14 × 14 3D
tokens of dimension 2×16×16 to preserve spatio-temporal
patterns. Using the Fasking strategy (See Algo. 1), MAR-
LIN densely masks these tokens with a pre-defined masking
ratio. Our empirical analysis suggests that MARLIN works
favorably with a high masking ratio (90%). MARLIN’s ob-
jective is to generate the masked part from the sparse visible
tokens. After Fasking, each token is mapped to the latent
space embedding dimension of 768. From this latent em-
bedding, the masked part is reconstructed in the 3D token
space that can further be mapped to the original video. For
fair comparison, we use ViT-B as the backbone encoder,
although the impact of other ViT-variants are depicted in
ablation study. The pre-training hyperparameters are as fol-
lows: the base learning rate is linearly scaled with respect to
the overall batch size, lr = base learning rate ×
batch size/256. For self-supervised pre-training, we
use AdamW optimizer with base learning rate 1.5e−4, mo-

Table 3. Facial Expression and Sentiment Recognition. Down-
stream adaptation results on MOSEI dataset [7] for Emotion, sen-
timent (7-class), and sentiment (2-class). Our proposed method,
MARLIN, outperforms visual modality based emotion prediction
methods. Please note that SOTA for UMON [25] and GMF [4]
utilize three modalities and thus, not directly comparable. Here,
YTF: YouTubeFace [78] and LAV represents linguistic, audio, and
visual modality, respectively. * denotes supervised methods.

Tasks Pre-train Method Mod. Acc.↑

Emotion

– MViTv1 [49]* V 80.45
– UMONS [25]* LAV 80.68
– GMF [4]* LAV 81.14

YTF [78] VideoMAE [71] V 80.39
YTF [78] MARLIN V 80.60

Sentiment
(7-Class)

– MViTv1 [49]* V 33.35
YTF [78] VideoMAE [71] V 33.78
YTF [78] MARLIN V 34.63

Sentiment
(2-Class)

MOSEI [7] and CAE-LR [45] V 71.06IEMOCAP [11]
YTF [78] VideoMAE [71] V 72.96
YTF [78] MARLIN V 73.70

mentum β1 = 0.9, β2 = 0.95 with a learning rate scheduler
(cosine decay) [51]. For linear probing, we use Adam op-
timizer with β1 = 0.5, β2 = 0.9 and base learning rate
1e−4, weight decay 0. For fine-tuning, we use Adam opti-
mizer with β1 = 0.5, β2 = 0.9 and base learning rate 1e−4
without any weight decay.

4.2. Quantitative Analysis

4.2.1. Comparison with SOTA Facial Analysis Tasks.
We compare the performance of MARLIN with different
downstream facial analysis tasks following standard task
specific evaluation protocols [7, 22, 33, 50, 62, 84].
Facial Attributes. In Tab. 2, we compare the LP and FT
adaptation performance of MARLIN with the popular trans-

Table 4. Deepfake Detection. We compare the Fine-Tuning (FT)
results on MARLIN for FaceForensic++ [62] dataset. * denotes
supervised methods.

Pre-train Method Acc.(%)↑ AUC↑
– Steg.Features [32]* 55.98 –
– LD-CNN [24]* 58.69 –
– Constraied Conv. [8]* 66.84 –
– CustomPooling CNN [61]* 61.18 –
– MesoNet [2]* 70.47 –
– Face X-ray [47]* – 0.6160
– Xception [21]* 86.86 0.8930
– F3-Net [58]* 93.02 0.9580
– P3D [59]* – 0.6705
– R3D [72]* – 0.8772
– I3D [15]* – 0.9318
– M2TR [76]* – 0.9395
– ST-M2TR [76]* – 0.9531

YTF [78] VideoMAE [71] 87.57 0.9082
YTF [78] MARLIN 89.43 0.9305
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Table 5. Lip Synchronization. We compare Linear Probing (LP)
and Fine-Tuning (FT) results on the LRS2 [22] dataset.

Method LSE-D↓ LSE-C ↑ FID↓
Speech2Vid [41] 14.230 1.587 12.320
LipGAN [42] 10.330 3.199 4.861
Wav2Lip [57] 7.521 6.406 4.887
AttnWav2Lip [74] 7.339 6.530 –
Wav2Lip + ViT [28] 8.996 2.807 13.352
Wav2Lip + ViT + VideoMAE [71] 7.316 5.096 4.097
Wav2Lip + ViT + MARLIN 7.127 5.528 3.452

former (i.e. MViT-v1 [30] and MViT-v2 [49]) and CNNs
(i.e. R3D [72]) on CelebV-HQ [85] dataset. From the
table, it is observed that MARLIN’s FT version outper-
forms supervised MViT-v2 [49] transformer architecture by
1.13% (92.77% → 93.90%) for appearance attributes and
0.33% (95.15% → 95.48%) for action attributes. Similar
patterns are also been observed with the R3D CNN mod-
ule as well. We attribute MARLIN’s performance gain to
the pre-training strategy that encodes generic, robust, and
transferable features from any input facial video.
Emotion and Sentiment. In Tab. 3, we similarly com-
pare the LP and FT adaptation performance of conversa-
tional emotion and sentiment in terms of accuracy(↑) and
AUC(↑) on CMU-MOSEI [83] dataset. Please note that
the MARLIN is a visual modality only encoder. The results
suggest that MARLIN performs competitively with SOTA
methods [25, 45, 49], especially it outperforms unsuper-
vised SOTA CAE-LR [45] by 2.64% (71.06% → 73.70%)
on 2-class sentiment task. For emotion and 7-class senti-
ment as well, it outperforms supervised benchmarks [49]
marginally. These results also indicate that MARLIN learns
highly generic, robust, and transferable feature representa-
tion from pre-training.
DeepFake Detection. In Tab. 4, we compare the per-
formance of video manipulation on FaceForensics++ [62]
dataset and report results in terms of video-level
accuracy(↑) and AUC(↑). The results indicate that MAR-
LIN performs favorably against the supervised SOTA meth-
ods [2, 8, 15, 21, 24, 32, 47, 59, 61, 72]. This is the first
SSL work that uses only spatio-temporal visual informa-
tion anomaly to detect video manipulation. Unless F3-
Net, which uses frequency aware pattern over the tempo-
ral dimension to detect forgeries in a supervised fashion.
Whereas MARLIN irrespective of frequency pattern learns
facial representation and can detect anomalies from the
spatio-temporal signal.
Lip Synchronization. For a fair comparison, we adopt
the following experimental setups: 1) Wav2Lip+ViT: To
compare the contribution of ViT architecture [28] wrt
SOTA CNNs and MARLIN where the weights of ViT
is trained from scratch on LRS2 [22] dataset. 2)
Wav2Lip+ViT+VideoMAE: To compare the contribution
of vanilla VideoMAE with ViT backbone pre-trained on

Table 6. Few shot adaptation on different facial tasks. Compar-
ison of different methods for few shot adaptation.

Data→ MOSEI [7] FF++ [62] CelebV-HQ [85]
Task→ Emo. 7-Sen. 2-Sen. DeepFake Appr. Act.

Anno.% Acc.↑ Acc.↑ Acc.↑ AUC↑ AUC↑ AUC↑
100% 80.60 34.63 73.70 0.9305 0.9373 0.9278
50% 80.59 33.73 73.33 0.8681 0.9273 0.9270
10% 79.89 33.56 72.26 0.7459 0.8996 0.9201
1% 78.61 30.09 71.89 0.6252 0.8423 0.9063

YTF [78] dataset. 2) Wav2Lip+ViT+MARLIN: To compare
the contribution of MARLIN pre-trained on YTF [78] with
SOTA [57, 66, 74] and different design aspects. The exper-
imental results are depicted in Tab. 5 with LSE-D↓, LSE-C
↑ and FID ↓ as evaluation metrics following standard pro-
tocol [38, 57, 66, 74]. The improvement of lip sync score
(LSE-D↓: 7.521→ 7.127; FID ↓: 4.887→ 3.452) indicates
that MARLIN learns rich spatio-temporal patterns which
are transferable and robust. It is also interesting to observe
that MARLIN is adaptive to very fine grained features spe-
cific to the face as well.
4.2.2. Few-Shot Adaptation.
Few shot adaptation has recently gained attention due to its
adaptation capability with very low data regime [9, 65, 84,
86]. Following the standard evaluation protocol [9, 65, 84,
86], we also investigate the adaptation capability of MAR-
LIN. Given any downstream dataset, we use limited train set
labels to align the output manifold while keeping the test set
fixed via LP (MOSEI, CelebV-HQ) and FT (FF+) strategy.
From Tab. 6, a slight drop in performance is observed across
different tasks which further demonstrates that MARLIN
learns generic, transferable, and adaptive information.
4.2.3. Ablation Studies.
We have performed extensive ablation studies to show the

Table 7. Contribution of different modules, encoder architec-
tures, and masking strategies towards overall MARLIN frame-
work. Fasking: Facial Guided Masking, AT: Adversarial Training

Datasets→ MOSEI [7] FF++ [62]
Emo.
Acc.
(%↑)

7-Sent.
Acc.
(%↑)

2-Sent.
Acc.
(%↑)

Acc.
(%↑)

AUC.
(↑)

Modules ↓
VideoMAE 80.39 33.78 72.96 87.57 0.9082
+ Fasking 80.55 34.58 73.54 87.29 0.9154
+ AT 80.58 34.05 73.17 88.00 0.9096
+ Both (MARLIN) 80.60 34.63 73.70 89.43 0.9305
Encoder Arch. ↓
ViT-S 80.38 33.40 72.69 87.43 0.8863
ViT-B 80.60 34.63 73.70 89.43 0.9305
ViT-L 80.63 35.28 74.83 90.71 0.9377
Masking Strategy ↓
Random 80.40 34.10 72.96 87.29 0.8797
Frame 79.33 33.99 72.90 86.57 0.8835
Tube 80.58 34.05 73.17 88.00 0.9096
Fasking 80.60 34.63 73.70 89.43 0.9305
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Figure 3. Impact of Masking Ratio Comparison of different
masking ratios for emotion and sentiment prediction in CMU-
MOSEI dataset [7]. Empirically, it suggests 90% masking works
best for MARLIN.

effectiveness of each component.
1) Masking ratio. We use different masking ratios in the
range [0.05 - 0.95] and repeat the pre-training followed by
LP on CMU-MOSEI [83] dataset. From Fig. 3, we see that
∼ 90% masking ratio is optimal for the MARLIN. With a
less masking ratio (i.e. ≤ 0.5 ), more information is avail-
able for the reconstruction task which degrades the feature
quality. Similarly, beyond ∼ 90%, the reconstruction task
becomes more challenging, leading to a performance drop.
With the empirical evidence, we set the masking ratio to
be ∼ 90% throughout all of our experiments. 2) Mask-
ing strategies. We further compare the proposed Fasking
strategy with existing masking strategies [31,71] i.e. Frame,
Random and Tube-Masking. The empirical results in Tab. 7
demonstrate that Fasking is better. 3) Different modules.
We progressively integrate each module and observe its im-
pact on downstream performance on CMU-MOSEI [83]
and FF++ [62] while keeping other components fixed. From
Tab. 7, we see that the addition of Fasking and Adversarial
Training (AT) improves the performance, reflecting the im-
portance of each component. 4) Encoder architectures.
To investigate the impact of the backbone encoder architec-
tures, and compare ViT-S, ViT-B, and ViT-L (See Tab. 7).
We observe that the larger model size enhances the perfor-
mance. For fair comparison, we use a ViT-B encoder.

4.3. Qualitative Aspects
In order to understand the effectiveness of the learned fea-
tures, we further conducted following qualitative analysis.
1) Facial Attributes. We visualize the important regions
that MARLIN focused on using Gradient-weighted Class
Activation Mapping (Grad-CAM) [64]. In Fig. 4 top, the
heat-map results are based on LP on top of MARLIN’s fea-
ture on CelebV-HQ [85] dataset (appearance task) and it in-
dicates that MARLIN focus on facial attributes such as hair,
spectacle, hat, etc. 2) Lip Synchronization. In Fig. 4 bot-
tom, we presents the generation results for lower part of
faces which is a challenging task. The top, middle and bot-
tom rows show ground truth, vanilla Wav2Lip [57]’s out-
put and MARLIN’s output along with the closeup looks,
respectively. Here, Wav2lip’s CNN encoder failed to lo-
cate the lip region (as shown in the Wav2lip row of Fig. 4
highlighted in red) whereas MARLIN despite pre-trained
on fasking strategy is adaptive enough to generate more ac-

{male, sunglasses, big nose, no_beard} {male, receding_hairline, sideburns}

{female, long_hair, arched_eyebrows} {male, sunglasses, no_beard}

Ground
Truth

Wav2Lip

MARLIN

Facial Attribute Recognition

Lip Synchronization

Figure 4. Qualitative Analysis. Top: Qualitative results for
MARLIN for facial attribute recognition task. Bottom: Qualita-
tive results for MARLIN for facial lip synchronization task.

curate spatio-temporal pattern for LS.

5. Conclusion
In this paper, we aim to learn a universal and generic fa-

cial encoder, MARLIN, which is adaptive, robust and trans-
ferable for different facial analysis tasks. As a challenging
auxiliary task, MARLIN reconstructs the spatio-temporal
details of the face from the densely masked facial regions to
capture local and global aspects which in turn helps in en-
coding generic and transferable features. Broader Impact.
We believe that MARLIN can act as a good feature extractor
for different downstream facial analysis tasks. Owing to the
rich facial features, it would be easy to deploy MARLIN in
low resource (e.g. mobile devices, Jetson Nano platforms)
devices for real world applications. Limitations. As the
model is trained on YouTube Face dataset [78], there could
be potential bias in terms of race and cultural background
of the identities. Potential bias can also be introduced in the
model as we use the existing face detection library [75]. We
will eliminate these limitations in our updated versions.
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