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Abstract

Incremental learning could be roughly divided into two
categories, i.e., class- and task-incremental learning. The
main difference is whether the task ID is given during eval-
uation. In this paper, we show this task information is in-
deed a strong prior knowledge, which will bring significant
improvement over class-incremental learning baseline, e.g.,
DER [39]. Based on this observation, we propose a gate
network to predict the task ID for class incremental infer-
ence. This is challenging as there is no explicit semantic re-
lationship between categories in the concept of task. There-
fore, we propose a multi-centroid task descriptor by assum-
ing the data within a task can form multiple clusters. The
cluster centers are optimized by pulling relevant sample-
centroid pairs while pushing others away, which ensures
that there is at least one centroid close to a given sample.
To select relevant pairs, we use class prototypes as prox-
ies and solve a bipartite matching problem, making the task
descriptor representative yet not degenerate to uni-modal.
As a result, our dynamic inference network is trained inde-
pendently of baseline and provides a flexible, efficient so-
lution to distinguish between tasks. Extensive experiments
show our approach achieves state-of-the-art results, e.g.,
we achieve 72.41% average accuracy on CIFAR100-B0S50,
outperforming DER by 3.40%.

1. Introduction
As a rapidly developing task in machine learning, incre-

mental learning [7, 27] (IL) aims to continually learn new

concepts (classes), where the training data comes as a se-

quence of tasks with each including a couple of new classes

at a time. Such training strategy allows the network to incre-

mentally learn novel knowledge [28] and has become more

prevalent in real-world applications.

†Corresponding authors.
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Figure 1. (a): Illustration of DER (Left) and our dynamic infer-

ence method (Right). (b): Step accuracy on CIFAR100-B0S10

with DER under three different evaluation procedures: i) Given

Task ID: use t-th branch to infer the sample in t-th task ii) All

branches: concatenate all branches like original DER; iii) Ran-

dom Path: randomly select one branch for inference.

Generally speaking, incremental learning could be

roughly divided into two categories, i.e., Task-IL vs. Class-
IL [35]. It depends on whether the task ID is given during

inference. For example, Task-IL could use this task ID in-

formation to search prediction in a narrowed label space and

is considered to be easier than Class-IL. Consequently, the

accuracy of Task-IL is always outperforming Class-IL, and

we can consider task ID as strong prior knowledge for in-

cremental learning.

That motivates us to think about a critical problem, can
we utilize task ID to improve the performance of Class-IL
approaches? To answer this question, we select Class-IL

SOTA method DER [39] as our baseline shown in the left

of Fig. 1(a). Once a new task arrived, DER expands the cur-

rent network with a new task-specific branch Φ. This multi-

branch architecture allows us to conveniently adapt DER to

a Task-IL approach. That is, when a couple of categories

are trained in a specific task, a test sample belonging to this

task would be sent to the corresponding branch for infer-

ence. So we compare the results of DER by giving task ID

or directly using the original inference strategy over DER

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7298



and show the step accuracy in Fig. 1(b). It is amazing that

even though the training procedure is the same, the accuracy

gap between Task-IL and Class-IL is significantly large.

Based on this observation, we propose to design a gate

network by automatically predicting task ID for class in-

cremental inference, which is named dynamic inference in

this paper. A straightforward solution to this aim is to treat

the task ID prediction problem as a classification task. But

it’s rather difficult since there is no explicit semantic rela-

tionship between categories in the concept of task. So the

data in one task has high variance and also lacks criteria to

discriminate them.

To address the aforementioned issues, we propose a new

multi-centroid task descriptor, by assuming data within a

task can form multiple clusters. Their centers, i.e., cen-

troids, and then optimized to representatively describe a

task. By pulling every relevant sample-centroid pair while

pushing others away, it ensures that there is at least one cen-

troid close to the given sample, which enables our network

to distinguish between tasks. To select relevant pairs, we

use class prototypes as proxy and solve a linear sum assign-

ment problem [21], i.e., bipartite matching problem such

that for a given sample, we are able to find its matched cen-

troid based on the prototype-centroid matching results.

During inference, we compare each instance feature and

the task descriptor and then find the most relevant branch

for inference. The whole framework (dynamic inference

network) is trained independently of the baseline, which al-

lows our approach to be flexibly integrated into trained DER

or other multi-branch models. We validate our approach on

three commonly used benchmarks, including CIFAR-100,

ImageNet-100, and ImageNet-1000. The results demon-

strate the effectiveness of our approach, which obtains state-

of-the-art results.

The main contributions of our work are: 1) Based on

the idea of Task-IL, we propose a standalone gate network

to automatically predict task ID for class incremental in-

ference. The prediction is efficient, has no restrictions on

test data, and is able to distinguish between tasks for large-

scale Class-IL at the first time. 2) We propose a trainable

multi-centroid task descriptor to describe the complicated

task distribution. To make this descriptor representative, we

solve a prototype-centroid bipartite matching problem to se-

lect relevant sample-centroid pairs for optimization. 3) Ex-

tensive experiments on large-scale benchmark CIFAR-100,

ImageNet-100 and ImageNet-1000 demonstrate the superi-

ority of our approach compared with the state-of-the-art.

2. Related Work

Class-IL is a long-standing problem and many works

have investigated the essence of continual learning. In this

section, we will give a brief introduction to these works.

Rehearsal methods [3, 4, 24, 32, 38, 43] explicitly save

and retrain on a small part of data from old tasks. Because

of its high performance, it has been applied in most Class-

IL methods. Regularization methods add an extra regular-

ization term to the loss function to mitigate forgetting, it

can be divided into to two categories: 1) Weight regular-

ization approaches [2, 5, 19, 22, 40]. 2) Data regularization

approaches [10, 11, 17, 23, 34] with distillation [16].

Dynamic methods [12,25,26,30,33,37,39] dynamically

add new task-specific parameters for new tasks and keep the

parameters related to old tasks fixed to eliminate forgetting.

Recently, DER [39] achieves SOTA performance on Class-

IL. It proposes a dynamic expansion of the representation

by adding a new task-specific branch to the super feature ex-

tractor. Its inference strategy is to concatenate all branches’

output together, but, intuitively, as each branch is special-

ized for a task, it’s better to activate only the corresponding

branch for inference. However, task ID is unavailable for

Class-IL.

Also, some works have proposed to infer task ID during

evaluation but most of them depend on specific network ar-

chitecture, or can not deal with larger scale datasets e.g., Im-
ageNet. For instance, iTAML [31] uses the averaged task-

wise maximal activation to predict task ID. Yet it assumes

all samples inside a test batch share the same task ID, which

is a strong and unpractical constraint. CCGN [1] uses a task

predictor which concatenates each subnetworks’ feature to

infer the task ID, which is treated to be a classification task.

However, it only works on simple datasets like MNIST. In-

stead, our dynamic inference network has no restrictions on

test data and is able to distinguish between tasks for large-

scale Class-IL problems.

3. Methods
In this section, we present our dynamic inference strat-

egy for Class-IL, aiming to achieve a good balance between

stability and plasticity.

3.1. Problem Setup and Method Overview
Under the context of Class-IL, it consists of a sequence

of T tasks [D1, D2, ..., DT ]. Each task t includes a train-

ing and test data Dt = (Dt
train, D

t
test) with label space

Y t = [yt1, y
t
2, ..., y

t
n]. Different session has no overlapped

categories so when i �= j we have Y i �= Y j . During test-

ing, the model is evaluated on the test data from all previous

tasks Dtest = D1
test ∪ D2

test ∪ ... ∪ Dt
test and the learned

model is supposed to predict well in the whole label space.

Notice that the task ID is not given during inference. Our

method adopts the rehearsal strategy, which saves a part of

old data in memory Mt at the end of each session and the

memory is merged with the data from the new task to form

a new dataset Dt = Mt ∪Dt
train.

We use a similar learning procedure from DER [39]

with some modifications. In DER, it trains a supernet

with multiple branches for dynamical incremental learning.
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Figure 2. Pipeline of dynamic inference network. (left): During training, we solve a prototype-centroid bipartite problem and get the

matched pair (colored square). This matched pair is then used for LCen to optimize the centroid and generates similarity vectors for

knowledge distillation loss Lkd. (right): During evaluation, we use the gate network G to compute the weight for each branch by selecting

the task-wise maximal feature-centroid similarity value.
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Figure 3. (a): Comparison of average accuracy on whether task ID

is given during inference, which is consistent with Fig. 1(b). (b):

Two tasks [tiger, lion, plate] and [cycle, motorcycle, cup] trained

with different descriptors: class prototype (Left), multi-centroid

(Right). The bold line indicates the boundary between tasks and

the ellipse illustrated the corresponding relationship between class

and centroids. It is observed that the tasks can’t be discriminated

by the class prototype, while our centroid descriptors are represen-

tative.

Once a task t arrived, DER expands the current supernet

[Φ1, . . . ,Φt−1] with a new branch Φt. Each added branch

Φt includes a feature extractor Ft and a classifier Ht, where

the output channel of Ht is consistent with the class number

in task t. The final prediction of DER is obtained by con-

catenating all features from Ft and sending this feature into

a uniform classifier. However, we find this concatenation is

heavy and has less improvement. So we directly concate-

nate the output of Ht instead of the features, with a softmax

operator. This allows us to reduce the number of network

parameters and yield better performance.

Although DER achieves SOTA results, we notice that

DER is not explainable in the test stage as they just simply

concatenate all the outputs of Φt. In fact, each branch Φt is

added when t-th task arrived. Hence, intuitively, this branch

would be beneficial for this task because Φt is specialized in

the current classification task by feeding the corresponding

data.

As discussed in the introduction, by giving task ID, we

can only activate t-th branch Φt for inference (the output of

Ht). As shown in Fig. 3(a), a large accuracy improvement

compared with DER baseline is observed. That motivates us

to design a gate network G to infer task ID. To achieve this

aim, we meet a critical challenge: the task ID of each test

sample is hard to obtain since we randomly select samples

to constitute the concept “task”, where there is no semantic

relationship among tasks.

So we propose a dynamic inference network to overcome

this issue and the overview is shown in Fig. 2. During train-

ing, we introduce the trainable multi-centroid task descrip-

tor Ct to abstract the t-th task in the upper of the figure.

Then, we use a novel task-wise hungarian bipartite match-

ing strategy to select the matched centroid for each sam-

ple. This matched pair is then used for a metric loss LCen

optimized by pulling relevant sample-centroid pairs while

pushing others away, which makes the centroid represen-

tative. Besides, by comparing the instance feature and our

descriptor, we can get a similarity vector for knowledge dis-

tillation loss Lkd. During evaluation, the similarity between

instance feature and descriptor can be used to find the most

relevant branch for inference.
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3.2. Multiple Centroid Task Descriptor
Multi-centroid Task Descriptor. We assume that data

within a task can form multiple clusters, and the cluster cen-

ters, i.e., centroids, are supposed to be discriminative for

tasks. A straightforward solution is to leverage the class

prototypes as the task descriptor. But as illustrated in the

left panel of Fig. 3(b), some visual similar categories e.g.,
cup and plate, are grouped into different tasks, and thus it

is hard to recognize them since the prototype is not trained

for describing a task and thus the task gap is bounded by the

semantic prototypes.

In this sense, we propose a multi-centroid task descrip-

tor, which is a list of trainable tensor [C1, C2, ..., CT ]. Ct

are the task descriptor of t-th task in the shape of M ×Kt,

where M denotes the dimension of features and Kt is the

number of centroids in the t-th task. Every column cti in

Ct represents one centroid of the t-th task. In our settings,

Kt is proportional to |Y t| and usually larger or smaller than

|Y t| (the number of classes in t-th task).

Descriptor Training. To make this descriptor more rep-

resentative, we assume for any sample, there exists a posi-

tive centroid with high relevance while others should be low

relevance, such that this descriptor is able to distinguish dif-

ferent tasks. To this end, we establish a metric loss on the

centroid descriptor:

LCen = −(
exp(f · c+)∑
j exp(f · cj) ), (1)

where f donotes the feature extracted by gate G, c+ donotes

the matched positive centroid defined later and cj is the j-th

centroid from the whole centroids list [C1, C2, ..., CT ].

In our implementation, we use the prototypes as the

proxy to do batch-wise prototype-centroid matching, so in

each batch, we can find the sample’s matched centroid ac-

cording to its corresponding class. Formally, given a batch

of training data, we first compute the mean feature of each

class as the prototype of the class:

P = [p1, p2, ..., p|Y |], (2)

where Y is the label space in this batch.

To prevent the selected positive centroid collapsed to the

same centroid and thus the multi-centroid behaves like a

uni-centroid. We add a constraint that no two classes share

the same centroid(To ensure the number of classes is less

than the number of centroids, we use a sampling strategy

to only select a part of categories of samples.). It trans-

forms the problem of finding a positive sample into solving

a linear sum assignment problem, i.e., bipartite matching
problem. Formally, we search for a permutation of an index

for centroids Ct to establish the best bipartite matching for

prototype-centroid pairs whose sum of similarity is maxi-

mized.

σ = argmax
σ

|Y t|∑

i

ptic
t
σ(i), (3)

where pti is the prototype of i-th class in t-th task. We use

Hungarian algorithm [21] to efficiently compute the optimal

permutation. Every query image’s positive centroid then is

assigned based on which prototype it belongs to. Besides,

we treat all the remaining centroids as negative pairs. In this

way, the prototype is calculated and sampled batch by batch,

and the matching result is dynamically updated, allowing

the centroids to be well-trained.

3.3. Adaptive Mixture of Subnetworks
During evaluation, we use the dynamic inference net-

work to select the branch. The weight of a task-specific

branch is obtained by first computing the similarity value

between the instance feature and all centroids belonging to

one task and then choosing the maximal value.

wt = max(dt1, d
t
2, ..., d

t
|Kt|), (4)

where dti denotes the similarity between instance feature

and the i-th centroid in t-th task. Then we use softmax

with temperature ζ = 12 to normalize the weights and get a

smoothed weight vector w′.

w′(t|x) = Softmax(w/ζ). (5)

The final prediction is the weighted concatenation of the

output of each branch.

p = Softmax([w′
1Φ1(x)), w

′
2Φ2((x)), ..., w

′
tΦt(x)]).

(6)

3.4. Optimizing
Instead of training the supernet and dynamic inference

network jointly, our training pipeline consists of two stages:

1) firstly, we train the supernet by expanding the new

branches for the coming tasks; 2) secondly, we train the

multi-centroid dynamic inference network for evaluation.

Supernet Training. Like DER, we train the supernet

with cross-entropy loss by using the merged dataset (mem-

ory data and new data):

Lce = − log(p(y = yi|xi))). (7)

We also follow DER to use an auxiliary classification loss,

which for the new data, encourages the network to predict

their labels, and for the memory data, enforces the network

to classify them into one extra class by treating all old con-

cepts as one category. Finally, we re-train the classifier to

mitigate the bias towards the new task by using a class-

balanced subset D̃t [18,42]. Notice that after the first train-

ing stage, we fix the parameters of the supernet. This allows

our approach to be flexibly integrated into existing trained

DER or other multi-branch models.
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Dynamic Inference Network Training. To train the dy-

namic inference network, we find the number of training

samples from the old task is not sufficient. Therefore, we

use the data augmentation technique in CEC [41], to syn-

thesize a new training set. It augments the samples already

used for training the supernet, so we don’t introduce any ex-

tra training samples. Here RandAugment [6] is selected as

it includes many data augmentation techniques. Intuitively,

the prediction of supernet on this new training set will be

slightly drifted and this additional diversity would also fa-

cilitate our centroid descriptor learning.

We also find distillation from the supernet is beneficial in

enhancing the accuracy of the dynamic inference network.

Hence, we add another supervision by distilling the output

of the supernet, where the semantic information contains

rich task information. Specifically, in Eq. (4), we compute

the similarity between instance features and all task descrip-

tors and collect the result into a similarity vector d. The

learned similarities d is then encouraged to recover the se-

mantic labels by using this distillation loss. However, the

dimension of d is not aligned with the output of supernet,

i.e., the number of classes. Thus, we use an MLP subnet-

work to align them. The distillation loss is:

Lkd = −
|Y |∑

i

exp(li/λ)∑
j exp(lj/λ)

log
exp(d′i/λ)∑
j exp(d

′
j/λ)

, (8)

where l is the output of the supernet and d′ is the aligned

similarity vector d by MLP.

Besides, the sample number of old tasks and new tasks is

unbalanced. It exhibits a long-tailed label distribution. So

we use a variant softmax loss proposed in logit adjustment

[29] by assigning a large margin to rare class to improve the

rare class accuracy. The distillation loss in Eq.(8) and the

centroid metric loss in Eq.(1) becomes:

Lkd = −
|Y |∑

i

exp(li/λ)∑
j exp(lj/λ)

log
exp((d′i + τ log π′

i)/λ)∑
j exp((d

′
j + τ log π′

j)/λ)
,

LCen = −log(
exp(f · c+ + τ log π+)∑
j exp(f · cj + τ log πj)

), (9)

where τ is a hyperparameter and the default value is 1. π′
i

is the frequency of i-th class and πi is the frequency of i-th
centroid defined as:

πi =
1

Kt

nt∑
j nj

, (10)

where nt is the sample number of task t.

Finally, we optimizie LCen and Lkd in Eq. (9) to obtain

our dynamic inference network.

4. Experiment
4.1. Experimental Setup

In this section, we conduct extensive experiments to ver-

ify the effectiveness of the proposed method. In the next,

we will introduce our experimental setups, main results, ab-

lation study and show some visualization results.

Datasets. We evaluate our method on widely used Class-

IL datasets: CIFAR-100, ImageNet-100, and ImageNet-

1000. CIFAR-100 [20] consists of 60,000 32x32 color im-

ages of 100 classes with 500 images for training and 100 im-

ages for evaluation per class. ImageNet-1000 [8] is a large-

scale dataset with 1000 classes which consists of 1,281,167

colour images for training and 50,000 images for valida-

tion. ImageNet-100 is a subset of ImageNet-1000 by se-

lecting 100 classes from the whole dataset. Here we use

the same class subset in previous work like DER [39] and

PODNet [11].

Evaluation Protocols. The general evaluation protocol

is followed by DER. Our data are split as 1) CIFAR100-
B0: we split the 100 classes in CIFAR-100 into 5, 10, 20,

and 50 tasks with equal class numbers. We store 2000

images for rehearsal. 2) CIFAR100-B50: the model is

pretrained using 50 randomly selected classes and the re-

maining 50 classes are divided into 2, 5, and 10 tasks with

equal class numbers. We store 20 images per class in mem-

ory. 3) ImageNet100-B0: we split 100 classes in Ima-

geNet100 into 10 tasks each consisting of 10 classes and the

rehearsal memory size is 2000 images. 4) ImageNet100-
B50, the model is pretrained using 50 classes and the re-

maining classes come in 10 steps with equal size. We store

20 images per class for rehearsal. 5) ImageNet1000-B0:

the 1000 classes are split into 10 tasks and each task con-

tains 100 classes. We store 20000 images in total for re-

hearsal. For CIFAR-100, we run experiments on three class

orders and report the average and standard deviations of top-

1 accuracy. For ImageNet, we report the top-1 and top-5

average accuracy and last step accuracy.

Implementation Details. We follow DER [39] to use

modified ResNet-18 [15] as feature extractor Ft in super-

net. For ImageNet-100 and ImageNet-1000, we use stan-

dard ResNet-18 as basic networks. We use the same archi-

tecture as Ft to implement the gate network G. The num-

ber of centroids is simply set the same as the class number

of tasks, where careful tuning would bring performance im-

provement. For bipartite matching, we sample a few classes

randomly such that the class number is less than the cen-

troid number, which ensures that every class prototype has

one centroid to match with. The optimizer is SGD with

learning rate of 0.1, momentum of 0.9, and weight decay of

5×10−4. The batch size for CIFAR-100 and ImageNet-100

is 256 and 1024 for ImageNet-1000. The epoch number is

The rehearsal setting used in our paper is the same as most rehearsal

approaches, such as DER [39], iCaRL [32].
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Methods Venue 5 Steps 10 Steps 20 Steps 50 Steps

#P Avg #P Avg #P Avg #P Avg
Bound 11.2 80.40 11.2 80.41 11.2 81.49 11.2 81.74
iCaRL CVPR’17 11.2 71.14±0.34 11.2 65.27±1.02 11.2 61.20±0.83 11.2 56.08±0.83

UCIR CVPR’19 11.2 62.77±0.82 11.2 58.66±0.71 11.2 58.17±0.30 11.2 56.86±3.74

BiC CVPR’19 11.2 73.10±0.55 11.2 68.80±1.20 11.2 66.48±0.32 11.2 62.09±0.85

WA CVPR’20 11.2 72.81±0.28 11.2 69.46±0.29 11.2 67.33±0.15 11.2 64.32±0.28

PODNet ECCV’20 11.2 66.70±0.64 11.2 58.03±1.27 11.2 53.97±0.85 11.2 51.19±1.02

RPSNet NeurIPS’19 60.6 70.5 56.5 68.6 - - - -

DyTox CVPR’22 10.7 − 10.7 67.33 10.7 67.30 10.7 64.39
FOSTER ECCV’22 11.2 72.56 11.2 72.90 11.2 70.65 − −
DER CVPR’21 33.6 76.80±0.79 61.6 75.36±0.36 117.6 74.09±0.33 285.6 72.41±0.36

Our − +11.2 78.15±0.58 +11.2 77.40±0.94 +11.2 76.20±1.18 +11.2 75.81±1.38

Table 1. Quantitative results on CIFAR100-B0 (average over 3 runs). The subscript denotes the variance. For DyTox, we use the corrected

results after the author fixed the rehearsal memory issue in implementation. #P means the average number of parameters in millions. Avg
means the average accuracy (%) over steps. +11.2 indicates the extra number of parameters brought by the gate network.

Methods Venue 2 Steps 5 Steps 10 Steps

#P Avg #P Avg #P Avg
Bound 11.2 77.22 11.2 79.89 11.2 79.91
iCaRL CVPR’17 11.2 71.33±0.35 11.2 65.06±0.53 11.2 58.59±0.95

UCIR CVPR’19 11.2 67.21±0.35 11.2 64.28±0.19 11.2 59.92±2.4

BiC CVPR’19 11.2 72.47±0.99 11.2 66.62±0.45 11.2 60.25±0.34

WA CVPR’20 11.2 71.43±0.65 11.2 64.01±1.62 11.2 57.86±0.81

PODNet ECCV’20 11.2 71.30±0.46 11.2 67.25±0.27 11.2 64.04±0.43

FOSTER ECCV’22 − − − − 11.2 67.95
DER CVPR’21 22.4 74.61±0.52 39.2 73.21±0.78 67.2 72.81±0.88

Ours − +11.2 76.72±0.62 +11.2 76.19±0.29 +11.2 75.43±0.38

Table 2. Quantitative results on CIFAR100-B50 (average over 3 runs). The subscript denotes the variance. #P means the average number

of parameters in millions. Avg means the average accuracy (%) over steps. +11.2 indicates the extra number of parameters brought by the

gate network.

varied due to the scale of datasets and the full hyperparam-

eter details are in the supplementary material.

4.2. Comparison with State-of-the-art
To demonstrate the effectiveness of our method, we com-

pare our model with other SOTA Class-IL methods. The

competitors include iCaRL [32], UCIR [17], BiC [38], WA

[43], PODNet [11], RPSNet [30], DER [39], DyTox [12],

FOSTER [37]. We summarize the results in Tabs. 1 to 3. All

results are borrowed from the corresponding papers. The re-

sult shows that our approach consistently outperforms other

SOTA methods under various datasets and protocols. For

example, Table.1 and 2 show that, our model surpasses cur-

rent SOTA method (DER [39]) by 1.35%, 2.04%, 2.11%,

3.40% for 5, 10, 20 and 50 steps on CIFAR100-B0 bench-

mark, respectively, while on CIFAR100-B50, the improve-

ments are 2.11%, 2.98%, 2.62%, respectively. A larger

incremental step is even harder for avoiding forgetting, but

the improvement by using our dynamic inference is even ex-

panded. Table 3 shows the results on ImageNet100-B0/B50.

It appears that our approach also achieves the SOTA per-

formance, e.g., 80.46% in term of average accuracy with

2.06% improvement on ImageNet100-B0 10 Steps.

Fig. 4 shows the results where the performance changes

as learning steps increase. It is observed that the accu-

racy of all the approaches drops due to the forgetting phe-

nomenon. However, on all datasets, our approach surpasses

other SOTA methods at every step and the relative perfor-

mance gain even grows as the number of steps increases.

4.3. Ablation Study and Analysis
In this part, we will analyze the characteristic of our dy-

namic inference strategy, such as the influences of the gate

network, and then conduct ablation studies to demonstrate

the effectiveness of each component in our approach.

Effectiveness of the Multi-centroid. To verify the ef-

fectiveness of the multi-centroid task descriptor, we com-

pare our approach by varying the number of centroids.

When the number of centroids degrades to 1, it implies that

we directly assign a task ID to each sample and then opti-

mize the gate network as a classification task. It appears that

the multi-centroid task descriptor gets an almost 1.5% im-

provement over this classification method and the accuracy

increases as the number of centroids increases. Moreover,

compared with the class prototype descriptor, the multi-

centroid descriptor achieves superior accuracy even when

the centroid number is less than the class number. Here we

simply set the centroid number as the class number.

Tab. 4 shows the comparison between our approach and

CCCG [1]. CCCG is also designed to infer task ID by con-

catenating all features from branches and then send it into

a task classifier. We can see that CCGN doesn’t work well
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Methods Venue
ImageNet100-B0 ImageNet1000-B0

#P top-1 top-5
#P top-1 top-5

Avg Last Avg Last Avg Last Avg Last
Bound 11.2 - - - 95.1 11.2 89.27 - - -

iCaRL CVPR’17 11.2 - - 83.6 63.8 11.2 38.4 22.7 63.7 44.0
BiC CVPR’19 11.2 - - 90.6 84.4 11.2 - - 84.0 73.2
WA CVPR’20 11.2 - - 91.0 84.1 11.2 65.67 55.6 86.6 81.1
RPSNet NeurIPS’19 - - - 87.9 74.0 - - - - -

DyTox CVPR’22 11.0 71.85 57.94 90.72 83.52 11.4 68.14 59.75 87.03 82.93
FOSTER ECCV’22 11.2 78.40 69.91 − − 11.2 68.34 − − −
DER CVPR’21 61.6 77.18 66.70 93.23 87.52 61.6 68.84 60.16 88.17 82.86
Ours − +11.2 80.46 71.52 94.76 90.90 +11.2 70.80 62.30 88.65 84.14

Methods Venue
ImageNet100-B50

#P top-1 top-5

Avg Last Avg Last
Bound 11.2 81.20 81.5 - -

UCIR CVPR’19 11.2 68.09 57.3 - -

PODNet ECCV’20 11.2 74.33 - - -

TPCIL ECCV’20 11.2 74.81 66.91 - -

FOSTER ECCV’22 11.2 77.54 − − −
DER CVPR’21 67.2 78.20 74.92 94.20 91.30
Ours − +11.2 79.83 75.24 94.98 92.72

Table 3. Quantitative results on ImageNet100 and ImageNet1000 datasets. Left: ImageNet100-B0 and Imagenet1000-B0. Right:

ImageNet100-B50. For DyTox, we use the corrected results after the author fixed the rehearsal memory issue in implementation. #P
means the average number of parameters in millions. Avg means the average accuracy (%) over steps. Last denotes the last step accuracy

(%). +11.2 indicates the extra number of parameters brought by the gate network.

Figure 4. The step performance in term of accuracy on CIFAR100-B0S10/B0S20/B50S5 and ImageNet100-B0S10.

Methods CIFAR100-B0S10 CIFAR100-B50S10
Avg Last Avg Last

CCCG [1] 68.52 52.21 55.62 43.96

Ours 77.40 67.62 75.17 69.72

Table 4. Ablation study on dynamic inference by comparing multi-

centroid task descriptor and CCCG. Avg means the average accu-

racy (%) over steps. Last denotes the last step accuracy (%).

Gate DA KD LA Avg Last

75.38 65.23

� 75.64 64.21

� � 76.19 65.50

� � � 76.86 65.94

� � � 77.23 66.76

� � � 76.45 66.09

� � � � 77.40 67.62

Avg Last

DER 75.38 65.24

DER Logit Adjustment 74.84 64.61

DER with RA 76.88 67.06

DER with RA and Distill 76.75 66.53

Ours 77.40 67.62
Ours on DER Logit Adjustment 76.85 66.92
Ours on DER with RA 78.04 68.42

Table 5. Ablation results on different training strategies. Avg

means the average accuracy (%) over steps. Last denotes the last

step accuracy (%).

on CIFAR-100 and our method outperforms it by a large

margin.

Study on Training Strategy. In section 3.4, we intro-

duce three training strategies to improve the performance of

dynamic inference: 1) data augmentation (DA); 2) Knowl-

edge distillation (KD) from supernet; 3) Logit Adjustment

(LA). The results on CIFAR100-B0S10 in terms of average

accuracy and last step accuracy are shown in Tab. 5. We can

see that the dynamic inference would even degrade the last

step’s accuracy without any additional training strategies.

But when combining all of these approaches, the average

accuracy is enhanced from 75.38% to 77.40%, while the

last step accuracy is from 64.21% to 67.57%. Especially

without LA, the dynamic inference would predict a large

weight on the branch of new tasks, as the training samples

between old tasks and new tasks are highly unbalanced at

the end of training.

We also conduct experiments on a stronger DER trained

with RandAugment and distillation. DER is a simple base-

line that can’t be directly implemented with Distillation.

So we follow the Born Again Network [13] and conduct

a two-stage training, where in the second stage we copy and

freeze the model of the first stage as a teacher to distilla-

tion. It appears that DER with RandAugment has a small

improvement while distillation has a negative impact. With

this strong DER, our model can also gain a relatively large

improvement.

Study on Different Augmentation. As shown in

Fig. 5(c), we study the effects of data augmentation on

CIFAR100-B0S10. We choose augmentation from a candi-

date list including origin (use the original data augmentation

in DER), CutOut [9], rotation, RandAugment, and vertical

flip. It turns out that all these data augmentations improve

the performance compared with the baseline. Among them,

RandAugment achieves the highest accuracy.

Effect of Temperature. As illustrated in Fig. 5(d), we

investigate the effects of ζ used in Eq. (5) on CIFAR100-

B0S10. It appears that standard softmax (temperature ζ =
1) does harm to the performance. Also, as the temperature

value increases, the performance first climbs to the peak and

then slowly decreases. Intuitively, this phenomenon may
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(a) (b) (c) (d)

Figure 5. Ablation of different components. (a), (b): the average accuracy using different numbers of centroid on CIFAR100-

B0S10/B50S10 respectively. ”Class” in the x-axis indicates that we use class prototypes as our centroids. (c): the last accuracy under

different data augmentation. (d): the last accuracy under different softmax temperatures.

be attributed to the over-confident problem of neural net-

works [14], while a larger value of temperature results in a

smoothing prediction.

Reducing Inference Time With Task Descriptors. As

illustrated in Fig. 6(a), the inference time can be reduced

by activating the top-N similar branches by comparing

the instance feature and task descriptors. Specifically, at

the last step of CIFAR100-B0S50, by selecting the top-5

branches, inference time can be reduced to 10% of the base-

line method with only a slight drop in accuracy.

4.4. Visualization
Visualization of Confusion Matrix. As illustrated in

Fig. 6(b), we visualize the confusion matrix between the

first 60 classes and centroids on CIFAR100-B0S10. Ele-

ments in the confusion matrix indicate the number of sam-

ples from i-th class closest to the j-th centroid. We can see

that multiple classes in the same task share the same cen-

troid, which further demonstrates the ability to group simi-

lar features into one single cluster, which further highlights

the difference between multi-centroid and class prototype.

Visualization of Task Data. We make visualization ex-

periments by using t-SNE [36] on CIFAR100-B0S20. We

project the first two task features from the gate network

learned by uni-centroid (centroid number is set to 1, left),

multi-centroid (middle), and class prototype use class pro-

totype instead of trainable centroid (right) into a 2D plane.

As shown in Fig. 7, the features learned by uni-centroid

are indiscriminative and cannot represent the complicated

task distribution, while multi-centroid descriptor captures

this variance by grouping similar features into clusters and

the centroids are very representative for tasks. The features

learned by class prototypes are entangled together and are

not able to distinguish between tasks, which leads to a com-

plicated boundary while features learned by multi-centroid

descriptors retain a simpler boundary.

5. Conclusion
In this work, we proposed a standalone gate network

for class-incremental inference by predicting task ID during

evaluation. Considering the high variance of data within a

task, a novel multi-centroid task descriptor is introduced to

(a) (b)

Figure 6. (a): Inference time and accuracy on CIFAR-100 test set

using different numbers of activated branches. (b) Class-centroid

confusion matrix of first 60 classes on CIFAR100-B0S10.

Figure 7. The t-SNE visualization of the first 2 tasks on

CIFAR100-B0S20 with task boundary. Left: uni-centroid. Mid:

multi-centroid. Right: class prototypes.

capture the complicated data distribution. Experiments on

three major benchmarks show the effectiveness of our dy-

namic inferencing network even on large-scale datasets e.g.,
ImageNet-1000, and our method obtains SOTA results. Fur-

ther study would include using task descriptors for reducing

the parameters by merging similar branches.
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