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Abstract

This paper studies implicit surface reconstruction lever-
aging differentiable ray casting. Previous works such as
IDR [34] and NeuS [27] overlook the spatial context in 3D
space when predicting and rendering the surface, thereby
may fail to capture sharp local topologies such as small
holes and structures. To mitigate the limitation, we pro-
pose a flexible neural implicit representation leveraging hi-
erarchical voxel grids, namely Neural Deformable Anchor
(NeuDA), for high-fidelity surface reconstruction. NeuDA
maintains the hierarchical anchor grids where each vertex
stores a 3D position (or anchor) instead of the direct em-
bedding (or feature). We optimize the anchor grids such
that different local geometry structures can be adaptively
encoded. Besides, we dig into the frequency encoding
strategies and introduce a simple hierarchical positional
encoding method for the hierarchical anchor structure to
flexibly exploit the properties of high-frequency and low-
frequency geometry and appearance. Experiments on both
the DTU [8] and BlendedMVS [32] datasets demonstrate
that NeuDA can produce promising mesh surfaces.

1. Introduction
3D surface reconstruction from multi-view images is one

of the fundamental problems of the community. Typical
Multi-view Stereo (MVS) approaches perform cross-view
feature matching, depth fusion, and surface reconstruction
(e.g., Poisson Surface Reconstruction) to obtain triangle
meshes [9]. Some methods have exploited the possibility of
training end-to-end deep MVS models or employing deep
networks to improve the accuracy of sub-tasks of the MVS
pipeline. Recent advances show that neural implicit func-
tions are promising to represent scene geometry and ap-
pearance [12, 14–16, 18–21, 27, 28, 33, 34, 37]. For exam-
ple, several works [6, 27, 30, 34] define the implicit surface
as a zero-level set and have captured impressive topologies.
Their neural implicit models are trained in a self-supervised
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Figure 1. We show the surface reconstruction results produced by
NeuDA and the two baseline methods, including NeuS [27] and
Intsnt-NeuS [17, 27]. Intsnt-NeuS is the reproduced NeuS lever-
aging the multi-resolution hash encoding technique [17]. We can
see NeuDA can promisingly preserve more surface details. Please
refer to Figure 5 for more qualitative comparisons.

manner by rendering faithful 2D appearance of geometry
leveraging differentiable rendering. However, the surface
prediction and rendering formulations of these approaches
have not explored the spatial context in 3D space. As a re-
sult, they may struggle to recover fine-grain geometry in
some local spaces, such as boundaries, holes, and other
small structures (See Fig. 1).

A straightforward solution is to query scene properties
of a sampled 3D point by fusing its nearby features.
For example, we can represent scenes as neural voxel
fields [3, 13, 22, 24, 25] where the embedding (or feature)
at each vertex of the voxel encodes the geometry and
appearance context. Given a target point, we are able to
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Figure 2. We elaborate on the main differences between the hierarchical deformable anchors representation and some baseline variants.
From left to right: (1) Methods such as NeuS [27], volSDF [33], and UNISUFR [19] sample points along a single ray; (2, 3) Standard
voxel grid approaches store a learnable embedding (or) feature at each vertex. Spatial context could be simply handled through the feature
aggregation operation. The multi-resolution (or hierarchical) voxel grid representation can further explore different receptive fields; (4)
Our method maintains a 3D position (or anchor point) instead of a feature vector at each vertex. We optimize the anchor points such that
different geometry structures can be adaptively represented.

aggregate the features of the surrounding eight vertices.
As the scope of neighboring information is limited by
the resolution of grids, multi-level (or hierarchical) voxel
grids have been adopted to study different receptive
fields [17, 21, 25, 28, 30, 36]. These approaches do obtain
sharper surface details compared to baselines for most
cases, but still cannot capture detailed regions well. A
possible reason is that the geometry features held by the
voxel grids are uniformly distributed around 3D surfaces,
while small structures are with complicated typologies and
may need more flexible representations.

Contributions: Motivated by the above analysis, we intro-
duce Neural Deformable Anchor (NeuDA), a new neural
implicit representation for high-fidelity surface reconstruc-
tion leveraging multi-level voxel grids. Specifically, we
store the 3D position, namely the anchor point, instead of
the regular embedding (or feature) at each vertex. The input
feature for a query point is obtained by directly interpolating
the frequency embedding of its eight adjacent anchors. The
anchor points are optimized through backpropagation, thus
would show flexibility in modeling different fine-grained
geometric structures. Moreover, drawing inspiration that
high-frequency geometry and texture are likely encoded by
the finest grid level, we present a simple yet effective hier-
archical positional encoding policy that adopts a higher fre-
quency band to a finer grid level. Experiments on DTU [8]
and BlendedMVS [32] shows that NeuDA is superior in re-
covering high-quality geometry with fine-grains details in
comparison with baselines and SOTA methods. It’s worth
mentioning that NeuDA employs a shallower MLP (4 vs. 8
for NeuS and volSDF) to achieve better surface reconstruc-
tion performance due to the promising scene representation
capability of the hierarchical deformable anchor structure.

2. Related Work

Neural Implicit Surface Reconstruction Recently, neural
surface reconstruction has emerged as a promising alter-
native to traditional 3D reconstruction methods due to its
high reconstruction quality and its potential to recover
fine details. NeRF [16] proposes a new avenue combining
neural implicit representation with volume rendering
to achieve high-quality rendering results. The surface
extracted from NeRF often contains conspicuous noise;
thus, its recovered geometry is far from satisfactory. To
obtain an accurate scene surface, DVR [18], IDR [34],
and NLR [10] have been proposed to use accurate object
masks to promote reconstruction quality. Furthermore,
NeuS [27], UNISURF [19], and volSDF [33] learn an
implicit surface via volume rendering without the need for
masks and shrink the sample region of volume rendering to
refine the reconstruction quality. Nevertheless, the above
approaches extract geometry features from a single point
along a casting ray, which may hinder the neighboring
information sharing across sampled points around the
surface. The quality of the reconstructed surface depends
heavily on the capacity of the MLP network to induce
spatial relationships between neighboring points. Thereby,
NeuS [27], IDR [34], and VolSDF [33] adopt deep MLP
network and still struggle with fitting smooth surfaces and
details. It is worth mentioning that the Mip-NeRF [1]
brings the neighboring information into the rendering
procedure by tracing an anti-aliased conical frustum instead
of a ray through each pixel. But it is difficult to apply this
integrated positional encoding to surface reconstruction
since this encoding relies on the radius of the casting cone.

Neural Explicit Representation The neural explicit repre-
sentation that integrates traditional 3D representation meth-
ods, e.g. voxels [13,24,35] and point clouds [31], has made
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great breakthroughs in recent years. This explicit repre-
sentation makes it easier to inject the neighborhood infor-
mation into the geometry feature during model optimiza-
tion. DVGO [24] and Plenoxels [22] represent the scene
as a voxel grid, and compute the opacity and color of each
sampled point via trilinear interpolation of the neighboring
voxels. The Voxurf [30] further extends this single-level
voxel feature to a hierarchical geometry feature by concate-
nating the neighboring feature stored voxel grid from dif-
ferent levels. The Instant-NGP [17] and MonoSDF [36] use
multiresolution hash encoding to achieve fast convergence
and capture high-frequency and local details, but they might
suffer from hash collision due to its compact representation.
Both of these methods leverage a multi-level grid scheme to
enlarge the receptive field of the voxel grid and encourage
more information sharing among neighboring voxels. Al-
though the voxel-based methods have further improved the
details of surface geometry, they may be suboptimal in that
the geometry features held by the voxel grids are uniformly
distributed around 3D surfaces, while small structures are
with complicated typologies and may need more flexible
representation.

Point-based methods [2, 11, 31] bypass this problem,
since the point clouds, initially estimated from COLMAP
[23], are naturally distributed on the 3D surface with com-
plicated structures. Point-NeRF [31] proposes to model
point-based radiance field, which uses an MLP network to
aggregate the neural points in its neighborhood to regress
the volume density and view-dependent radiance at that lo-
cation. However, the point-based methods are also limited
in practical application, since their reconstruction perfor-
mance depends on the initially estimated point clouds that
often have holes and outliers.

3. Method
Our primary goal is to flexibly exploit spatial context

around the object surfaces to recover more fine-grained ty-
pologies, as a result, boost the reconstruction quality. This
section begins with a brief review of NeuS [27], which is
our main baseline, in Sec. 3.1. Then, we explain the de-
formable anchor technique in Sec. 3.2, and present the hi-
erarchical position encoding policy in Sec. 3.3. Finally,
we present the objectives and some optimization details of
NeuDA in Sec. 3.4.

3.1. Preliminaries: NeuS

NeuS [27] is one of the promising neural implicit sur-
face reconstruction approaches that smartly takes advan-
tage of both the IDR [34] and NeRF [16] formulations. It
represents the geometry as the zero-level set of signed dis-
tance function (SDF) S =

{
x ∈ R3|f(x) = 0

}
, and allevi-

ates the discernible bias issue of standard volume rendering
to learn a better SDF representation. The signed distance

function is parameterized with a 8-layer MLP F(x; θ) =
(f(x; θ), z(x; θ)) ∈ R× R256, where z(x; θ) is the learned
geometric property from the 3D point (or position) x ∈ R3.
And a 4-layer MLP M(x, d, n, ẑ; γ) ∈ R3 is adopted to
approximate the color from the factors such as the view di-
rection d, normal n, and geometric feature ẑ = z(x; θ).

To render a pixel, a ray {p(t) = o+ td|t > 0} is emit-
ted from the camera center o along the direction d passing
through this pixel. The rendered color Ĉ for this pixel is
accumulated along the ray with N discrete sampled points:

Ĉ =

N∑
i=1

Tiαici, Ti =

i−1∏
j=1

(1− αj) (1)

where Ti denotes accumulated transmittance. αi represents
discrete opacity. To ensure unbiased surface reconstruction
in the first-order approximation of SDF, NeuS defines the
opacity as follows:

αi = max
(
Φs(f(p(ti)))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
, 0

)
(2)

Here, Φs(x) is constructed based on the probability density
function, defined by Φs(x) = (1 + e−sx)−1. The s value
is a trainable parameter, and 1/s approaches to zero as the
optimization converges.

3.2. Deformable Anchors (DA)

Our motivation for proposing the deformable anchors
technique is to improve the flexibility of the voxel grid rep-
resentation such that the spatial context in 3D space can be
better exploited. Overall, we assign a 3D position (or an-
chor point) rather than a feature vector at each vertex, as
depicted in Figure 3. We optimize the anchor points such
that they can adaptively move from the corners to the vicin-
ity of the abrupt geometry-changing area as training con-
vergences. In the following, we will take a sample point
p ∈ R3 along a specific ray as an example to explain the
DA representation in a single-level grid. We use 8-nearest
neighbor anchors to characterize the sample point.

Specifically, we first normalize the input coordinate of
p to the grid’s scale. The normalized coordinate is de-
noted as x. Then, we map the sample point to a voxel via
V = {v| ⌊x ∗N⌋ <= v < ⌈x ∗N⌉}. Here, N represents
the size of the grid, and the anchor points are stored at the
eight vertices of a voxel. Finally, we can conveniently ob-
tain the input feature, which would be fed into F in Fig-
ure 3, by interpolating the frequency embedding of these
eight adjacent anchors:

ϕ(p, ψ(G)) =
∑
v∈V

w(pv) · γ(pv +△pv),

ψ(G) = {pv,△pv|v ∈ G} .
(3)
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Figure 3. Left: An intuitive explanation of the deformable anchors (DA) approach. The anchor points (v) surrounding the target point
p would more flexibly encode the local geometry as the model converges. Right: Overall, NeuDA shares a similar architecture with
NeuS, except for the DA part ψ(G) (Sec. 3.2), the involved HPE policy (Sec. 3.3), and a normal regularization term Lnorm [26]. Another
difference is that NeuDA is capable of a shallower SDF network F (4 vs. 8 for NeuS).

where G denotes the anchor grid, ψ(G) is a set of de-
formable anchors that, in the beginning, are uniformly dis-
tributed at voxel vertices, and γ(pv + △pv) is a frequency
encoding function. We use cosine similarity as weight
w(pn) to measure the contributions of different anchors to
the sampled point:

w(pn) =
ŵ(pn)∑
n ŵ(pn)

, ŵ(pn) =
p · pn

∥p∥ ∥pn∥
. (4)

Given the definition of deformable anchors above, we
can approximate the SDF function f(x; θ), normal n̂(x; θ),
and geometric feature z(x; θ) of the target object as follows:

F(x; θ) = F (ϕ (p, ψ(G)) ; θ)

= (f(x; θ), n̂(x; θ), z(x; θ)) .
(5)

3.3. Hierarchical Positional Encoding

We employ multi-level (or hierarchical) anchor grids
to consider different receptive fields. Following previous
works [27,33], we utilize positional encoding to better cap-
ture high-frequency details. But as we have several levels
of anchor grid (8 levels in this paper), applying the standard
positional encoding function [16] to each level followed by
a concatenation operation would produce a large-dimension
embedding. We argue that different anchor grid levels could
have their own responsibilities for handling global struc-
tures or capturing detailed geometry variations.

Mathematically, given an anchor point pl ∈ R3 in a spe-
cific level l, the frequency encoding function γ(pl) follows

the below formulation:

γ(pl) =
(
sin(2lπpl), cos(2lπpl)

)
. (6)

The frequency function γ(pl) is applied to the three coordi-
nate values in pl individually. Then, the interpolation opera-
tion in Eqn. 3 would return a small 6-dimension embedding
ϕ(p̂l) for each anchor grid level. Finally, we concatenate
multi-level embedding vectors to obtain the hierarchical po-
sitional encoding:

H(p) = (ϕ(p̂0), ϕ(p̂1), ..., ϕ(p̂L−1)), (7)

where L is the total grid level which is set to 8 in our experi-
ments if not specified. The encoded hierarchical feature will
be fed into the SDF network to predict the signed distance
f (H(p); θ).

3.4. Objectives

We minimize the mean absolute errors between the ren-
dered and ground-truth pixel colors as the indirect supervi-
sion for the SDF prediction function:

Lc =
1

R
∑
r∈R

∥∥∥C(r)− Ĉ(r)
∥∥∥, (8)

where r is a specific ray in the volume rendering formula-
tion [16], and C(r) is the corresponded ground truth color.

We adopt an Eikonal term [7] on the sample points to
regularize SDF of f (H(p); θ) as previously:

Lreg =
1

RN
∑
r,i

(∥∇f(H(pr,i))∥2 − 1)2, (9)
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ScanID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

w/ mask

IDR [34] 1.63 1.87 0.63 0.48 1.04 0.79 0.77 1.33 1.16 0.76 0.67 0.9 0.42 0.51 0.53 0.90
Voxurf [30] 0.65 0.74 0.39 0.35 0.96 0.64 0.85 1.58 1.01 0.68 0.6 1.11 0.37 0.45 0.47 0.72
NeuS [27] 0.83 0.98 0.56 0.37 1.13 0.59 0.60 1.45 0.95 0.78 0.52 1.43 0.36 0.45 0.45 0.77

Instant-NeuS [17, 27] 0.60 1.03 0.39 0.35 1.38 0.64 0.69 1.45 1.48 0.82 0.53 1.15 0.38 0.60 0.48 0.80

NeuDA 0.51 0.76 0.39 0.37 1.08 0.56 0.57 1.37 1.13 0.79 0.50 0.80 0.34 0.42 0.46 0.67

w/o mask

colmap0 [23] 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.4 2.05 1.00 1.32 0.49 0.78 1.17 1.36
UNISURF [19] 1.32 1.36 1.72 0.44 1.35 0.79 0.80 1.49 1.37 0.89 0.59 1.47 0.46 0.59 0.62 1.02

volSDF [33] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuralWarp [5] 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.2 1.06 0.68 0.66 0.74 0.41 0.63 0.51 0.68

Voxurf [30] 0.71 0.78 0.43 0.35 1.03 0.76 0.74 1.49 1.04 0.74 0.51 1.12 0.41 0.55 0.45 0.74
HF-NeuS [29] 0.76 1.32 0.70 0.39 1.06 0.63 0.63 1.15 1.12 0.80 0.52 1.22 0.33 0.49 0.50 0.77

NeuS [27] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84
Instant-NeuS [17, 27] 0.59 0.91 0.97 0.35 1.21 0.64 0.84 1.31 1.44 0.79 0.62 1.09 0.53 0.80 0.50 0.84

NeuDA† 0.53 0.74 0.41 0.36 0.93 0.64 0.58 1.33 1.08 0.75 0.48 1.03 0.34 0.41 0.42 0.67
NeuDA 0.47 0.71 0.42 0.36 0.88 0.56 0.56 1.43 1.04 0.81 0.51 0.78 0.32 0.41 0.45 0.65

Table 1. Quantitative Comparisons on DTU. We compare the proposed method to the main baselines, i.e., NeuS and Instant-NeuS, and
other SOTA methods using their released codes following their best configurations. NeuDA† means we remove the normal regularization
term in Eqn. 11. Overall, NeuDA yields remarkable improvements upon baselines, and achieves the best performance on the DTU dataset
under both the w/ mask and w/o mask settings.

whereN is the number of sample points along each ray, and
i denotes a specific sample point.

We optimize the BCE loss term if the ground truth masks
are incorporated into the training process:

Lmask = BCE(mr,

n∑
i

Tr,iαr,i), (10)

where mr is the mask label of ray r.
In addition to above terms, we study a normal regular-

ization loss [26] in NeuDA. Specifically, we auxiliarily pre-
dict a normal vector n̂r,i for each spatial point from F in
Figure 3. Hereby, we can tie the gradient of SDF to the
predicted normal via:

Lnorm =
∑
r,i

Tr,iαr,i ∥∇f(H(pr,i))− n̂r,i∥ (11)

As reported in Table 1 (NeuDA† vs. NeuDA), under the w/o
mask setting, Lnorm can slightly boost the mean CD score
from 0.67 to 0.65.

Finally, the full objective is formulated as:

L = Lc + λeikLreg + λnormLnorm + λmaskLmask.
(12)

In our experiments, the trade-off parameters λeik, λnorm,
and λmask are set to 0.1, 3× 10−5, and 0.1, respectively.

4. Experiments
This section conducts experiments to validate our

NeuDA method for surface reconstruction. First, we take
a brief introduction to the studied DTU [8] and Blended-
MVS [32] datasets in Sec. 4.1. Then, we make quantitative
and qualitative comparisons with baselines (e.g. Instant-
NeuS [17, 27]) and other SOTA neural surface reconstruc-
tion approaches in Sec.4.2. Finally, we present various ab-
lations to discuss NeuDA in Sec. 4.3. We refer to the sup-
plementary for more experimental results and discussions.

4.1. Datasets

DTU. The DTU dataset [8] consists of different static
scenes with a wide variety of materials, appearance, and
geometry, where each scene contains 49 or 64 images with
the resolution of 1600 x 1200. We use the same 15 scenes
as IDR [11] to evaluate our approach. Experiments are
conducted to investigate both the with (w/) and without
(w/o) foreground mask settings. As DTU provides the
ground truth point clouds, we measure the recovered
surfaces through the commonly studied Chamfer Distance
(CD) for quantitative comparisons.

BlendedMVS. The BlendedMVS dataset [32] consists of a
variety of complex scenes, where each scene provides 31 to
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Figure 4. We show several rendered images here. NeuDA produces competitive renderings compared to Instant-NeuS [17,27]. Please refer
to Table 2 for case-by-case metrics.

ScanID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

NeRF [16] 26.24 25.74 26.79 27.57 31.96 31.50 29.58 32.78 28.35 32.08 33.49 31.54 31.0 35.59 35.51 30.65
VolSDF [33] 26.28 25.61 26.55 26.76 31.57 31.50 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.90 34.75 30.38
NeuS [27] 25.87 23.06 26.16 25.42 29.62 28.20 28.46 32.38 26.68 30.54 28.64 28.63 28.11 31.97 34.07 28.52

Instant-NeuS [17, 27] 30.32 25.40 30.18 32.08 31.75 29.46 29.53 33.59 27.97 32.65 32.70 31.57 30.25 35.61 36.84 31.33
NeuDA 29.38 24.53 27.42 27.06 33.17 33.42 29.08 34.92 28.69 32.51 33.03 29.53 29.09 36.06 35.68 30.90

Table 2. We follow the VolSDF setting [33] to report the train PSNR values of our renderings compared to previous works. The multi-
resolution hash encoding approach [17] might be a better option than NeuDA for producing high-quality renderings. It’s worth mentioning
that measuring the rendering quality is just a supplementary experiment, as our main goal is to reconstruct better surfaces.

143 multi-view images with the image size of 768 ×576.
We use the same 7 scenes as NeuS [27] to validate our
method. We only present qualitative comparisons on this
dataset, because the ground truth point clouds are not avail-
able.

4.2. Benchmark Comparisons

We mainly take NeuS [27] and Instant-NeuS [17, 27] as
our baselines. Here, Instant-NeuS is our reproduced NeuS
leveraging the multi-resolution hash encoding technique
[17]. We also report the scores of some other great implicit
surface reconstruction approaches such as UNISURF [19],
volSDF [33], and NeuralWarp [5]. Unlike other approaches,
NeuDA and Instant-NeuS parameterize the SDF function
with a slightly shallower MLP (4 vs. 8 for NeuS).

The quantitative scores are reported in Table 1. NeuDA
improves the baselines by significant margins under both
the w/ mask (+0.10 ∼ 0.13) and w/o mask (+0.19) set-
tings, and achieves the best mean CD score compared to
previous SOTA approaches. Specifically, NeuDA achieves
much better performance than Instant-NeuS, which could

be faithful support for our analysis that we may need more
flexible representation to model small structures that are
with complicated topologies. We share some qualitative
results in Figure. 9. NeuDA is promising to capture fine-
grained surface details. Especially, we can see that NeuDA
successfully preserves the hollow structures of the “BMVS
Jade” object, while NeuS fills most of the holes with incor-
rect meshes. In Table 2, we present the case-by-case PSNR
values following VolSDF [33] as a supplementary experi-
ment, where NeuDA yields a slightly lower mean PSNR
than Instant-NeuS. We argue that capturing better render-
ings is out of the scope of this paper.

4.3. Ablation Studies

In this section, we ablate several major components of
NeuDA under the w/ mask setting on the DTU dataset.

Deformable Anchors. Table. 3 discusses the effectiveness
of our core contribution, i.e., deformable anchors, for sur-
face reconstruction. “Row 2 vs. Row 3” indicates that stor-
ing the 3D position (or anchor) to each vertex of the voxel
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Figure 5. The qualitative explanation to ablations in Table 3.

Multi-Level Opt. Grid Feat. or Anc. Mean CD
√

Feat. 1.25√ √
Feat. 0.74√
Anc. 0.75√ √
Anc. 0.67

Table 3. We study the core “deformable anchors” technique (Row
4) by taking the standard multi-level feature grid method (Row
2) as the main baseline. “Feats. or Anc.” indicates that we store
a feature vector or an anchor point to each vertex. “Opt. Grid”
means whether to optimize the maintained voxel grid or not.

grid achieves similar performance to saving the feature vec-
tor (or embedding). In “Row 4”, we optimize the anchor
points in “Row 3” to secure the deformbale anchor repre-
sentation. Both “Row 3 vs. Row 4” and “Row 2 vs. Row 4”
shows that NeuDA is a more flexible scene representation
method for implicit surface reconstruction.
Hierarchical Position Encoding. Figure. 6 compares the
lightweight HPE strategy and the standard multi-level po-
sitional encoding (ML-PE) approach. We find HPE and
ML-PE perform equally on the DTU dataset. Both obtain
a mean CD score of 0.67 and produce similar topologies.
As analyzed before, it is possible that the standard encod-
ing function [16] may contain some redundant information
in the multi-level (or hierarchical) grid structure. Overall,
HPE is sufficient to represent high-frequency variation in
geometry.
How many levels? Figure 7 explores the impact on surface
reconstruction quality of different hierarchical levels L for
NeuDA. L is a trade-off hyper-parameter for model size and
capability. The performance increases with a higher level at
first. However, when setting L to 10, NeuDA produces a
slightly lower Chamfer Distance. A possible reason is that
there is much more redundant information in NeuDA-10,
which might be harmful to the SDF approximation.

Figure 6. ML-PE or HPE? ML-PE means we employ the
standard positional encoding function [16] instead of Eqn. 6 for
NeuDA. HPE performs equally to ML-PE, while returns a low-
dimension embedding vector.

Figure 7. We report the storage cost and surface reconstruction
quality w.r.t. the total grid levels.

Figure 8. Deformation Process of Anchor Points. The anchor
points (e.g. orange points) are uniformly distributed in the 3D
box at beginning and would move to object surfaces as training
convergences. Zoom in for better view.

5. Discussion & Limitation

One of the major limitations of this paper is that we fol-
low an intuitive idea to propose NeuDA and conduct empiri-
cal studies to validate its performance. Although we can not
provide strictly mathematical proof, we prudently respond
to this concern and provide qualitative proof by reporting
the anchor points’ deformation process in Figure 8.

Taking a slice of grid voxels as an example, we can
see the anchor points (e.g. orange points) move to object
surfaces as training convergences, resulting in an implied
adaptive representation. Intuitively, the SDF change has an
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Figure 9. Qualitative Comparisons on DTU and BlendedMVS (BMVS). NeuDA can produce promising typologies for all the studied
cases. Especially, it shows potential in handling fine-grained geometry structures such as small holes, curves, and other abrupt surface
areas. Zoom in for a better view.

increasing effect on geometry prediction as the anchor ap-
proaches the surfaces, while the SDF change of a position
far from the object has weak effects. Thus, the optimiza-
tion process may force those anchors (“yellow” points) to
move to positions nearly around the object surfaces to bet-
ter reflect the SDF changes. The deformable anchor shares
some similar concepts with deformable convolution [4] and
makes its movement process like a mesh deformation pro-
cess. Moreover, as each query point has eight anchors,
from another perspective, each anchor follows an individ-
ual mesh deformation process. Thereby, NeuDA may play
an important role in learning and ensembling multiple 3D
reconstruction models.

6. Conclusion

This paper studies neural implicit surface reconstruc-
tion. We find that previous works (e.g. NeuS) are likely

to produce over-smoothing surfaces for small local geome-
try structures and surface abrupt regions. A possible reason
is that the spatial context in 3D space has not been flex-
ibly exploited. We take inspiration from the insight and
propose NeuDA, namely Neural Deformable Anchors, as
a solution. NeuDA is leveraging multi-level voxel grids,
and is empowered by the core “Deformable Anchors (DA)”
representation approach and a simple hierarchical position
encoding strategy. The former maintains learnable anchor
points at verities to enhance the capability of neural im-
plicit model in handling complicated geometric structures,
and the latter explores complementaries of high-frequency
and low-frequency geometry properties in the multi-level
anchor grid structure. The comparisons with baselines and
SOTA methods demonstrate the superiority of NeuDA in
capturing high-fidelity typologies.
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