
Source-free Adaptive Gaze Estimation by Uncertainty Reduction

Xin Cai1,2, Jiabei Zeng1, Shiguang Shan1,2,3, Xilin Chen 1,2

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100090, China
2University of Chinese Academy of Sciences, Beijing, 100090, China

3Peng Cheng Laboratory, Shenzhen, 518055, China
{caixin20s,jiabei.zeng,sgshan,xlchen}@ict.ac.cn *

Abstract

Gaze estimation across domains has been explored re-
cently because the training data are usually collected under
controlled conditions while the trained gaze estimators are
used in nature and diverse environments. However, due to
privacy and efficiency concerns, simultaneous access to an-
notated source data and to-be-predicted target data can be
challenging. In light of this, we present an unsupervised
source-free domain adaptation approach for gaze estima-
tion, which adapts a source-trained gaze estimator to unla-
beled target domains without source data. We propose the
Uncertainty Reduction Gaze Adaptation (UnReGA) frame-
work, which achieves adaptation by reducing both sample
and model uncertainty. Sample uncertainty is mitigated by
enhancing image quality and making them gaze-estimation-
friendly, whereas model uncertainty is reduced by minimiz-
ing prediction variance on the same inputs. Extensive ex-
periments are conducted on six cross-domain tasks, demon-
strating the effectiveness of UnReGA and its components.
Results show that UnReGA outperforms other state-of-the-
art cross-domain gaze estimation methods under both pro-
tocols, with and without source data. The code is available
at https://github.com/caixin1998/UnReGA.

1. Introduction
Gaze encodes rich information about the attention and

psychological factors of an individual. Techniques that use

eye tracking to infer human intentions and understand hu-

man emotions have found an increasingly wide utilization in

fields including human-computer interaction [20,35,36], af-

fective computing [11], and medical diagnosis [21,46]. The

most prevalent way to estimate human gaze is using com-

mercial eye trackers, which suffer from high cost or custom

invasive hardware. To overcome the limitation on devices

and environments, researchers have made great progress on
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Figure 1. (a) The source-trained model shows high uncertainty on

samples from different domains. (b) Statistics of errors and model

uncertainty by the same gaze estimator on different samples. The

error increases as the uncertainty grow. (c) To accomplish unsu-

pervised source-free domain adaptation, the UnReGA reduces the

sample uncertainty by enhancing the input images and reduces the

model uncertainty by minimizing the prediction variance.

appearance-based gaze estimation methods with the devel-

opment of deep learning [4, 6, 12, 56, 57].

Notwithstanding the achievements, the appearance-

based gaze estimators meet the most challenging problem

that their performance drops significantly when they are

trained and tested on different domains, e.g., the domains

with different subjects, image quality, background environ-

ments, or illuminations. Usually, gaze estimators are trained

on the data collected under controlled conditions where true

gaze is feasible to be measured and recorded by the de-

ployed devices. Then, these gaze estimators would be ap-

plied under a much different and uncontrolled environment.

To adapt the source-data-trained model to the target data,

researchers propose methods to narrow the gap between the

different domains [16, 34, 42, 45]. Most of the methods re-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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quire data from both the source and target domains during

the adaptation. However, in the application of gaze esti-

mation, the source data is likely to be neither available nor

efficient during the adaptation. First, most gaze models

are trained with face images which might be not accessi-

ble due to privacy or bandwidth issues. Secondly, process-

ing source data might not be computationally practical in

real-time gaze estimation on the target domain. Therefore,

we formulate gaze estimation as an unsupervised source-

free domain adaptation problem, where we cannot access

the source data when fitting the model to the target.

To address the source-free domain adaptation issue, we

propose to adapt the source-trained gaze estimators to the

target domain by reducing both the sample uncertainty and

model uncertainty on the unlabeled target data. Sample un-
certainty captures noise inherent in the input images, such

as sensor noise and motion blur, which is also referred to as

aleatoric uncertainty [24]. Model uncertainty is determined

by the inconsistency of predication or model perturbations,

which is also referred to as epistemic uncertainty [15, 24].

We formulate it as the variance of different estimators’ pre-

dictions on the same sample. We assume that reducing the

two uncertainties helps to reduce the gaze estimator’s er-

rors across different domains due to three observations: 1)

Estimators show high model uncertainty on samples that

are distributed far away from the training data and show

low uncertainty on the nearby samples [24, 28]. As shown

in Fig. 1(a), the ETH-XGaze-trained estimator has average

model uncertainties of 0.66, 0.98, and 1.21 on the samples

from ETH-XGaze [53], MPIIGaze [57], EyeDiap [14], re-

spectively. EyeDiap has the most different distribution from

ETH-XGaze and shows the highest model uncertainty. 2)

Reducing the sample uncertainty pulls together the source

and target data, and accordingly reduces the estimator’s

model uncertainty on target data. In Fig. 1(a), the model un-

certainties on MPIIGaze/EyeDiap decrease when we reduce

the sample uncertainty by image enhancement, because by

doing this, we reduce the image quality discrepancy be-

tween MPIIGaze/EyeDiap and ETH-XGaze. 3) Model un-

certainty empirically shows a positive correlation with gaze

estimation error in cross-domain scenarios. Fig. 1(b) plots

how the errors change with model uncertainty. We train 10

gaze estimators from ETH-XGaze and then, for each sam-

ple in MPIIGaze, we compute the model uncertainty and the

mean error of the estimators’ predictions. We sort the sam-

ples by the model uncertainty in ascending order and group

them by every 10-th percentile. The height of each bar in

Fig. 1(b) denotes the averaged mean error over the samples

within each group. As can be seen, the top 10 percent of the

model uncertainty corresponds to the smallest error.

To this end, we propose an Uncertainty Reduction

Gaze Adaption (UnReGA) framework that accomplishes

the source-free adaptation by minimizing both the sample

and model uncertainty. As illustrated in Fig. 1(c), we first

transfer the input images into a gaze-estimation-friendly do-

main by introducing a face enhancer to enhance input im-

ages without changing the gaze. Rather than low-quality

images, high-quality images convey more details about the

eyes and contribute to less sample uncertainty and better

generalization ability of the source-trained gaze estimators.

Next, we update an ensemble of source gaze estimators by

minimizing the variance of their predictions on the unla-

beled target data. Finally, we merge the updated estimators

into a single model during inference. Our empirical exper-

iments demonstrate that the updated estimator outperforms

the not-adapted source estimator on the target domain.

Our contributions are summarized as:

1. We formulate gaze estimation as an unsupervised

source-free domain adaptation problem and propose

an Uncertainty Reduction Gaze Adaption (UnReGA)

framework that adapts the trained model to target do-

main without the source data by reducing both the sam-
ple uncertainty and model uncertainty.

2. We propose the variance minimization and pseudo-

label supervision mechanisms in UnReGA to address

the adaptation issue without source data for regres-

sion tasks, while most existing source-free adapta-

tion methods are designed for classification tasks. We

validate the effectiveness of the two mechanisms in

source-free adaptive gaze estimation.

3. We evaluate the efficacy of UnReGA and its com-

ponents on cross-domain gaze estimation tasks. Ex-

tensive experiments show UnReGA outperforms other

state-of-the-art cross-domain gaze estimation methods

under both protocols, with and without source data.

2. Related Work
Cross-domain Gaze Estimation: With the development

of deep learning, many efforts are made in appearance-

based gaze estimation [1,7,9,12,37,38,55] to reduce predic-

tion errors on public gaze datasets [12,14,23,40], e.g., MPI-

IGaze [57], ETH-XGaze [53] and GazeCapture [26]. How-

ever, training data for these estimators are often collected

under controlled conditions, limiting their applicability in

diverse real-world scenarios. Therefore, recent studies have

explored gaze estimation methods across domains.

According to the availability of the source and unlabeled

target data, we review the cross-domain gaze estimation

methods under three settings: domain generalization [44],

unsupervised domain adaptation with source data [49], un-

supervised domain adaptation without source data [32].

For domain generalization, the target domain is unknown

so we do not adapt the gaze estimator to a specific domain

but improve its generalization ability across different do-

mains during the training. Park et al. [37] proposed to learn
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gradient backpropagation

Figure 2. Illustration of the UnReGA framework with three stages. In the training stage on source data (top), we train the face enhancer

and the gaze estimator using source data. In the source-free adaptation stage(middle), we update the set of gaze estimators from different

training iterations by two mechanisms (variance minimization and pseudo-label supervision) to reduce the model uncertainty and preserve

the gaze estimation ability. In the inference stage on target data (bottom), we predict the gaze by the mean estimator.

a rotation-aware latent representation of gaze and Cheng et
al. [5] proposed to extract domain-agnostic gaze feature to

improve the methods’ generalization capabilities.

For domain adaptation with source data, existing meth-

ods utilize labeled source data and unlabeled target data.

These methods simultaneously minimize prediction errors

on the source data while adapting the model to the target

domain using various techniques, e.g., adversarial learning

[45], outlier guidance [34], and contrastive regression [3].

For domain adaptation without source data, optimizing

gaze estimators’ performance on both source and target do-

mains simultaneously is impractical. Although the strate-

gies in [3, 34] are feasible to adapt the model to the target

domain, their performance drops when the supervision from

the source domain is absent. Because without the supervi-

sion of the true gaze, the models lose their gaze estima-

tion ability. To address this, Bao et al. [2] proposed a self-

training strategy by keeping rotation consistency on aug-

mented target images for adaptation without source data.

Source-free Domain Adaptation: The domain adapta-

tion problem without source data is also explored in other

computer vision tasks, e.g., image classification [29,32], se-

mantic segmentation [13, 27] and object detection [30, 31].

To solve this problem, existing works leverage the knowl-

edge hidden in the source model by pseudo-labeling [13,

32], feature alignment [10, 50, 51], self-supervised learn-

ing [3,18,33,41], batch normalization adaptation [39] et al.

Most of the methods are designed for classification prob-

lems but might fail in regression. Our proposed method ad-

dresses the issue in gaze estimation, which is a regression

problem. We are inspired by the work [24], which com-

putes uncertainty with an ensemble of models to measure

the domain shift, to reduce cross-domain gaze errors by re-

ducing uncertainty. Similarly, regarding entropy as a mea-

sure of uncertainty, the source-free adaptation method us-

ing Entropy Minimization [13, 32, 43, 58] accomplishes the

adaptation by reducing uncertainty in classification tasks.

3. Uncertainty Reduction Gaze Adaptation
We present the Uncertainty Reduction Gaze Adaptation

(UnReGA) framework to solve the unsupervised source-

free domain adaptation problem for gaze estimation.

3.1. Problem Definition
Let Ds = {(Isi ,gis)}Ns

i=1 be the source domain data,

where Isi and gs
i represent the i-th image and its true gaze

label, respectively. The source domain consists of Ns sam-

ples, which are typically obtained under controlled condi-
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tions where ground truth labels are available. Let Dt =
{Iti}Nt

i=1 denote the target domain images captured under

different conditions in real-world scenarios. The goal of

unsupervised source-free domain adaptation is to estimate

the gaze of the target images when we cannot access to the

source and target data simultaneously. Thus, we train the

source models on the source data without knowledge of the

target data and then adapt these models to the unlabelled

target data in absence of the source data.

3.2. UnReGA Framework
To solve the unsupervised source-free domain adaptation

in gaze estimation, we propose an Uncertainty Reduction

Gaze Adaptation (UnReGA) framework, which makes the

pre-trained gaze estimators suitable for the target data by re-

ducing their uncertainties on the target. Fig.2 illustrates the

UnReGA framework, which comprises three stages: source

model training, source-free adaptation and inference on tar-

get data. In the training on source data, we train the face en-

hancer and the gaze estimator with the enhanced images as

input. The face enhancer reduces the sample uncertainty by

improving the input images’ quality and makes them more

suitable for gaze estimation across domains. We keep a set

of trained gaze estimators at different iterations during the

training process for the next adaptation stage. In source-

free adaptation, the set of gaze estimators is updated by the

variance minimization mechanism and pseudo-label mech-

anism. The two mechanisms reduce the model uncertainty

on target data and preserve the models’ ability in accurate

gaze estimation. In inference, by taking the mean parame-

ters of the updated estimators, the set of models is merged

into a single one, which is used to predict the gaze for target

images. Below, we present details of the three stages.

3.3. Training on Source Data
We collaboratively train a gaze-estimation-friendly

keeping-gaze face enhancer and gaze estimator during the

training stage. The collaboration improves the generaliza-

tion ability of the gaze estimator on different domains, al-

though they are trained on the source data without knowl-

edge of the target domain. Fig. 3 shows how we train the

face enhancer and gaze estimator. We first pretrain the gaze

estimator and the face enhancer respectively, and then fine-

tune the face enhancer and the gaze estimator sequentially.

Pretrain the gaze estimator: We employ a ResNet18

[17] as the gaze estimator G(·; θ). It is pretrained on the

annotated source data Ds = {(Isi ,gs
i )}Ns

i=1 by minimizing

the discrepancy between the prediction and the true gaze:

min
θ

(Is
i ,g

s
i )∈Ds

‖G(Isi ; θ),gs
i ‖1, (1)

where G(Isi ; θ) and gs
i is the prediction and the true label

of the original source image Isi , respectively.

Pretrain the face enchancer: We employ a general im-

age super-resolution model Real-ESRGAN [47] as the face

true
gaze

face facefaf  
enhancer

gaze 
estimator

source

high quality

degraded

enhaancernce

enhanced

real or
fake?

Pretrain face enhancer

degradation 

Finetune gaze estimator

in

enhanced

in

consistent
in gaze

Finetune face enhancer

Pretrain
gaze estimator

Figure 3. Training strategy on source data. First, we pretrain a face

enhancer with a set of high-quality images(in green part). Second,

we finetune the face enhancer by adding the gaze consistent con-

straints for both the labeled source images and unlabelled images

(in the blue rectangle). Third, we finetune the gaze estimator with

an enhanced source (in the grey part).

enhancer F(·;φ) by removing the last up-sample module of

Real-ESRGAN and ensuring the input and output to be of

the same resolution. The green part in Fig. 3 illustrates how

we pretrain F(·;φ) on a high-quality image dataset. Given

the high quality image Ih, we degrade its quality through

degradation methods in [47]. Then, we fed the degraded

image I l into the face enhancer and obtain the enhanced on

Ĩ l. Similar to [47], to train the face enhancer, we force the

generated image Ĩ l and the original Ih to be consistent and

un-distinguishable by minimizing a reconstruction loss and

adopting an adversarial mechanism.

Finetune the face enchancer: Although recovering de-

tails of the face, the pretrained face enhancer is likely to

change the gaze by changing the eyes’ appearance. To keep

the gaze unchanged, we finetune the face enhancer by forc-

ing the enhanced images to have the same gaze as the label

or as the one from the original image. The blue rectangle

in Fig. 3 shows how we finetune the face enhancer. For the

image Is in the source domain, we enhance it into Ĩs by

the face enhancer and then predict its gaze using the gaze

estimator G(·; θ). We require the predictions G(Ĩs; θ) to be

consistent with the true gaze by minimizing the gaze esti-

mation loss �g over all the source data:

min
φ

�g = min
φ

(Is,gs)∈Ds
‖G(Ĩs; θ),gs‖1. (2)

For high-quality images, we optimize the reconstruction

loss and adversarial loss as we do in the pretraining stage.

Additionally, we force the original high quality Ih and the

enhanced low quality Ĩ l to have the same predictions by

minimizing the gaze consistent loss �gc:

min
φ

�gc = min
φ

Ih∈Dh
‖G(Ĩ l; θ),G(Ih; θ)‖1, (3)

where Dh is the set of high quality images. G(Ĩ l; θ) and

G(Ih) are gaze predictions of Ĩ l and Ih, respectively.

22038



In summary, we finetune the parameters φ of the face

enhancer by freezing the gaze estimator and minimizing the

sum of �g , �gc, and the losses �pre used in the pretraining

the face enhancer [47] as: minφ �g + �gc + �pre.

Finetune the gaze estimator: The grey part in Fig. 3

shows the finetuning procedure. Freezing the parameters of

the face enhancer, we update the parameter θ of the gaze

estimator to boost its performance on the enhanced images.

The objective is:

min
θ
�(Is,gs)∈Ds

‖G(Ĩs; θ),gs‖1, (4)

where Ĩs is the enhanced source image.

After training on source data, we obtain a keeping-gaze

face enhancer and a gaze estimator that predicts gaze for

the enhanced images. It is noted that we keep a set of gaze

estimators from different iterations during the finetuning of

the gaze estimator, which will be used in the next stage of

source-free adaptation.

3.4. Source-free Adaptation
During the adaptation stage, we only have access to the

unlabelled target data and the source model without the

source data. To adapt the trained gaze estimators from

different iterations to the unlabelled target data, we unsu-

pervised update the estimators’ parameters by minimizing

the model uncertainty and preserving the models’ ability in

gaze estimation via pseudo-labels. The process of unsuper-

vised source-free adaptation is depicted in the middle row

of Fig. 2. Specifically, UnReGA enhances the quality of the

target image It using the trained FaceEnhancer, yielding the

enhanced image Ĩt. Then, Ĩt is fed into two branches: vari-

ance minimization and pseudo-label supervision.

Variance Minimization: In the upper branch(variance

minimization), UnReGA forces the set of source estimators

to have low model uncertainty on the enhanced target im-

age Ĩt. As discussed in the introduction, minimizing the

model uncertainty helps to reduce the estimation errors in

target data. Inspired by [28], we formulate model uncer-

tainty as the variance of the predictions by the set of mod-

els on the same input image. Let {G(·; θk)}Kk=1 denote the

set of trained estimators, where G(·; θk) is the k-th model

with learned parameters θk and K is the number of mod-

els. In this work, the K models are saved checkpoints from

K different training iterations when we finetune the gaze

estimator on the source. They have the same architecture

but different parameter values. We update the parameters

{θk}Kk=1 by minimizing the model uncertainty over target

data as:

min
{θk}K

k=1

�vm = min
{θk}K

k=1

1

K

K∑
k=1

(
ĝt
k − 1

K

K∑
k=1

ĝt
k

)2

, (5)

where ĝt
k = G(Ĩt; θk) denotes the prediction of the

enhanced target image Ĩt by the k-th model G(·; θk).
1
K

∑K
k=1 ĝ

t
k is the mean prediction by all the K models.

Pseudo-Label Supervision: To preserve the ability in

gaze estimation during adaptation, we introduce pseudo-

labels to supervise the gaze prediction in target. Since di-

rectly using the output of the gaze estimators in the variance

minimization branch as the pseudo label may accumulate

errors, we generate pseudo labels by employing the tempo-

ral average of the models to reduce the accumulated errors.

As can be seen in Fig. 2, we maintain a temporal average

version of each estimator G(·; θk) as G(·; θTk ) at the T -th

iteration during adaptation. The parameters θTk is updated

as:
θTk =

T

1 + T
θ
(T−1)
k +

1

1 + T
θTk . (6)

Then, the pseudo-label pt
T of the image Ĩt at the T -th it-

eration is defined as its mean predictions by the temporal

averaged estimators {G(·; θTk )}Kk=1:

pt
T =

1

K

K∑
i=1

ĝT
k =

1

K

K∑
i=1

G(Ĩt; θTk ), (7)

where ĝT
k = G(Ĩt; θTk ) is the prediction by the k-th tempo-

ral average model at the T -th iteration.

To preserve reliable gaze estimation, we require the pre-

dictions of the to-be-learned gaze estimators not to drift

away from the pseudo-label by minimizing:

�wpl =
1

K

K∑
i=1

ωt|ĝt
k − pt

T |, (8)

where ĝt
k is the prediction on Ĩt by the k-th estimator. ωt =

1/
√

�vm(It) weighs the reliability of each It’s pseudo-

label which has a negative correlation with the model un-

certainty of It. It is noted that we regard ωt as a coefficient

and do not back-propagate gradients through it.

Objective Function for adaptation: During the source-

free adaptation stage, only the set of source gaze estimators

{G(·; θk)}Kk=1 are updated by minimizing the sum of �vm
and �wpl over all the target data:

min
{θk}K

k=1

�It∈D′
t
[�vm(It) + γ�wpl(I

t)], (9)

where D′
t ⊆ Dt is a subset of target data, γ is the weight

parameter to balance two losses. It is noting that a small set

of target data is sufficient for the adaptation.

3.5. Inference on target data
The last row of Fig. 2 shows the pipeline of inference.

Given a new image in the target domain, we predict the

gaze by sequentially passing it through the face enhancer

trained from source data(Sec. 3.3) and the mean estimator

G(·, θ�) of the K gaze estimators {G(·, θTk )}Kk=1 updated

on target data(Sec. 3.4). The mean estimator’s parameters

θ� = 1
K

∑K
k=1 θ

T
k is set as the mean value of those in

{G(·, θTk )}Kk=1. Using the mean parameters has less com-

putation cost than using the mean predictions and leads to

better generalization than a single model [19].

22039



Table 1. Angular gaze errors(◦) of the baseline method and the variants of UnReGA on six cross-domain tasks

Method
Average

Parameters

Image

Enhancement

Source-free

Adaptation
DE → DM DE → DD DE → DC DG → DM DG → DD DG → DC

Baseline × × × 7.50 7.88 7.81 7.23 8.02 9.49

ModelAvg � × × 7.18 � 4.2% 7.25 � 8.0% 7.31 � 6.4% 6.90 � 4.6% 7.32 � 8.7% 8.78 � 7.4%

EnhanceFace � � × 5.92 � 21.1% 6.31 � 19.9% 6.62 � 15.2% 6.52 � 9.9% 7.05 � 12.1% 7.83 � 17.5%

UnReGA− � × � 5.35 � 28.9% 6.06 � 23.1% 5.91 � 24.3% 5.58 � 22.8% 5.84 � 27.2% 6.80� 28.3%

UnReGA(w/o avg) × � � 5.15 � 31.3% 5.81 � 26.3% 5.84 � 25.2% 5.45 � 24.6% 5.78 � 27.9% 6.58� 30.7%

UnReGA � � � 5.11 � 32.3% 5.70 � 27.7% 5.75 � 26.4% 5.42 � 25.0% 5.80 � 27.7% 6.52� 31.3%

4. Experiments
Through extensive experiments on cross-domain gaze

estimation tasks, we investigate the effectiveness of the Un-

ReGA framework and its components. We also discuss the

advantage of uncertainty reduction.

4.1. Data Preparation
We employ five different gaze estimation datasets as five

different domains: ETH-XGaze(DE) [53], Gaze360(DG)

[23], GazeCapture(DC) [26], MPIIGaze(DM ) [57], and

EyeDiap(DD) [14]. ETH-XGaze and Gaze360 are chosen

as the source domains and the other three are target do-

mains. We train our models on each source domain and test

their adaptation performance on each target domain respec-

tively. In addition, we use FFHQ [22] as our high quality

face dataset Dh to train the face enhancer. ETH-XGaze is

collected in a laboratory environment with 18 SLR cameras.

It contains 756,540 high quality face images of 80 subjects.

Gaze360 is collected in both indoor and outdoor environ-

ments with a 360◦ camera. It contains images from 238

subjects with a wide distribution over gaze. Similar to [3,8],

we use 84900 images with frontal faces as the source data.

MPIIFaceGaze is collected in the daily environment with

laptops from 15 subjects. We use 3000 face images from

each subject as the target data. GazeCapture is collected in

the daily environment with mobile phones and tablets. Fol-

lowing [26], we employ 179,496 images from 150 subjects

as the target set. EyeDiap is collected in laboratory environ-

ments with screens and 3D floating balls. Following [2], we

use 6,400 images using screen targets as target set and are

manually checked by original authors. We process all the

face images using the normalization method [54] to elimi-

nate the variability of the camera’s degree of freedom.

4.2. Implementation Details
We implement our method using Pytorch. We use Real-

ESRGAN model [47] as the face enhancer and Resnet18

as the backbone of gaze estimators. During the training on

source data, we pretrain the face enhancer on FFHQ with

the same settings as in [47] and finetune it for 20000 iter-

ations with a batch size of 16. We train the gaze estimator

using the Adam [25] optimizer with a learning rate of 10−4

until 40 epochs. The batch size is 128. We chose K = 10
gaze estimators of the last 10 epochs. During the source-

free adaptation, we use the Adam optimizer with a learning

rate of 2 × 10−5 and set γ in Eq.(9) as 0.01. We randomly

choose 100 unlabelled samples from target domain and re-

ported average results of 100 repeated trials. The batch size

is 20 and the model is trained for 10 epochs.

4.3. Effectiveness of UnReGA Framework
The UnReGA framework has three key components:

face enhancement, source-free adaptation, and mean esti-

mator with averaged parameters. We validate the effective-

ness of each component by investigating variants of Un-

ReGA with or without some of its components.

Table 1 reports the angular gaze errors of the baseline

method and the variants of UnReGA. For baseline, we train

a ResNet18 as the gaze estimator with the source data for

40 epochs. For ModelAvg, we average the parameters of

gaze estimators from the last 10 epochs during the training

of baseline. The mean estimator is evaluated on different

target domains. As shown in Table 1, compared with the

baseline, ModelAvg reduces the error by 4.2%, 8.0%, 6.4%

from the source domain DE to target DM , DD and DC ,

and by 4.6%, 8.7%, 7.4% from source domain DG to target

DM , DD and DC . It indicates that averaging the parameters

is effective and contributes to better generalization ability.

EnhanceFace omits the source-free adaptation compo-

nent in UnReGA. It applies the face enhancer on both

source and target data, and trains the gaze estimator with

the enhanced source data and then employs the mean esti-

mator of the last 10 epochs on the enhanced target images.

As shown in Table 1, EnhanceFace further reduces the er-

rors when compared to ModelAvg. The improvements over

the baseline are 21.1%, 19.9%, 15.2%, 9.9%, 12.1%, 17.5%

on the six cross-domain tasks respectively. It indicates that

reducing the sample uncertainty by a face enhancer helps

reduce the domain gap and improves the performance on

cross-domain tasks considerately. It is worth noting that

EnhanceFace does not require any target samples, making

it feasible for use in domain generalization scenarios, where

target images are unavailable for adaptation.

UnReGA− omits the component of face enhancement

in UnReGA. As shown in Table 1, UnReGA− significantly

improves the performance of baselineand outperforms En-

hanceFace. It means that the source-free adaptation mecha-

nism is more effective than face enhancement and is crucial

in the proposed UnReGA framework.

UnReGA integrates all three components and is shown
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Table 2. Comparison with SOTA cross-domain gaze estimations.

Results are reported by angular error (◦).

Method DE → DM DE → DD DG → DM DG →DD
Only Source 7.50 7.88 7.23 8.02

w/o source

PureGaze [5] 7.08 7.48 9.28 9.32

PnP-GA(oma) [34] 5.65 - 6.86 -

CSA† [48] 5.37 6.77 7.30 7.73

RUDA [2] 5.70 6.29 6.20 5.86

w/ source

Gaze360 [23] 5.97 7.84 7.38 9.61

GazeAdv [45] 6.75 8.10 8.19 12.27

PnP-GA [34] 5.53 5.87 6.18 7.92

CRGA† [48] 5.68 5.72 6.09 6.68

UnReGA− 5.35 6.06 5.58 5.84

UnReGA 5.11 5.70 5.42 5.80
† indicates the model employs Resnet50 [17] as the backbone.

to be with the best performance in Table 1.

4.4. Comparison with Cross-Domain Gaze Estima-
tion Methods

To evaluate the superiority of UnReGA, we compare it

with state-of-the-art (SOTA) cross-domain gaze estimation

methods with or without source data during the adaptation.

The adaptation methods without source data (source-

free adaptation) include: PureGaze [5] is a SOTA domain

generalization method for gaze estimation using gaze fea-

ture purification. CSA [3] is a SOTA source-free domain

adaptation method for gaze estimation using contrastive re-

gression. PnP-GA (oma) [34] is a SOTA unsupervised

domain adaptation for gaze estimation by outlier-guided

model adaptation. we implement it using only outlier loss

because other losses proposed by this method need source

data. RUDA [2] is a SOTA unsupervised gaze adaptation

method using rotation consistency.

The adaptation methods with source data (unsupervised

domain adaptation) include: GazeAdv [45] is a SOTA un-

supervised domain adaptation for gaze estimation by ad-

versarial learning. Gaze360 [23] is a SOTA unsupervised

gaze adaptation method by adversarial learning and pinball

loss. PnP-GA [34] is a SOTA unsupervised gaze adaptation

method by outlier-guided collaborative adaptation. CRGA
[3] is a SOTA unsupervised gaze adaptation method using

contrastive regression. For a more fair comparison, we use

100 target and source samples for adaptation with CRGA.

Table 2 shows the angular errors of UnReGA and other

methods on five cross-domain tasks. Both UnReGA−

and UnReGA outperform all the state-of-the-art source-free

adaptation methods. Besides, UnReGA outperforms all the

unsupervised gaze adaptation methods despite they use of

source data for adaptation. Moreover, even without en-

hancement, UnReGA− also shows superior performance

on these domain adaptation tasks, except for DE → DD,

slightly inferior compared to CRGA [48], which employs a

Resnet50 backbone and use source data during adaptation.

Table 3. Angular gaze errors (◦) of methods with pretrained or

finetuned face enhancers using different loss functions.

Method DE →DM DE →DD DG →DM DG →DD

pretrained 6.12 6.48 6.74 7.11
finetune w/ �gc 6.03 6.43 6.69 7.08

finetune w/ �gc+�g 5.92 6.31 6.52 7.05

Table 4. Mean angular gaze errors (◦) ± stand deviations for Un-

ReGAs with different loss functions in source-free adaptation.

Method DE →DM DE →DD DG →DM DG →DD

UnReGA−

w/o adaptation 7.50 7.88 7.23 8.02
�vm 5.48± 0.11 6.39± 0.17 5.65± 0.15 6.50± 0.23
�wpl 5.98± 0.17 6.10± 0.12 5.91± 0.14 6.01± 0.15
�vm + �pl 5.51± 0.17 6.13± 0.22 5.70± 0.08 5.92± 0.21
�vm + �wpl 5.35± 0.20 6.06± 0.17 5.58± 0.15 5.84± 0.18
UnReGA
w/o adaptation 5.92 6.31 6.52 7.05
�vm 5.19± 0.11 6.21± 0.23 5.56± 0.06 6.22± 0.11
�wpl 5.26± 0.09 5.81± 0.06 5.83± 0.08 5.92± 0.14
�vm + �pl 5.16± 0.10 5.75± 0.12 5.43± 0.06 5.96± 0.11
�vm + �wpl 5.11± 0.09 5.70± 0.16 5.42± 0.06 5.80± 0.12

4.5. Ablation Study

We investigate the effectiveness of each loss item during

the stages of training on source data and source-free adap-

tation in the UnReGA framework. Due to limited space, the

study of other hyperparameters is in suppl.

4.5.1 Loss Terms for Training on Source Data

We propose gaze loss �g and gaze consistency loss �gc to

finetune the face enhancer for keeping the gaze unchanged

in enhanced images (Sec.3.3). We investigate the effec-

tiveness of �g and �gc by comparing the methods with and

without them. For convenience, we follow the experimental

protocol as EnhanceFace in Sec. 4.3. Table 3 reports the re-

sults. The results demonstrate that both two losses improve

the baseline on four cross-domain tasks.

4.5.2 Loss Terms for Source-free Adaptation
We investigate the mechanisms of variance minimization

(with �vm) and pseudo-label supervision (with �wpl) in

source-free adaptation under both the settings as UnReGA−

and UnReGA in Sec. 4.3. Table 4 reports the mean gaze

errors with different losses. The results demonstrate that

adaptation �vm or �wpl individually achieve performance

improvement over baseline and adaptation with �vm + �wpl

achieve the best performance. Besides, to verify the effec-

tiveness of weight in �wpl, we substitute �wpl with �pl =
1
K

∑K
i=1 |ĝt

k − pt
T | by removing ωt in Eq.(8). Results in

Table 4 show the advantage of weight in �wpl.

To investigate why adaptation with both �vm and �wpl

outperforms adaptation with only one of them, we plot the

trend of gaze errors of adaptation with different losses over

iterations in Fig.4. The results show that utilizing either �vm
or �wpl individually can be beneficial for adaptation. How-
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Figure 4. The trend of angular errors (◦) over iterations with differ-

ent loss functions in source-free adaptation stage. The light colors

denote the standard deviation of 100 times experiments. The ex-

periments are conducted on DE → DM under UnReGA− setting.
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Err: 2.48
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Figure 5. Examples of the high quality and low quality images and

their image quality (IQ), model uncertainty (MU) and gaze errors

(Err). The blue and green arrows denote the gaze labels and the

predictions respectively.

ever, each loss function has its advantages and disadvan-

tages. Specifically, solely employing �vm can significantly

reduce gaze errors but errors may increase after a certain it-

eration, which is challenging to identify without access to

labeled validation data. Conversely, utilizing �wpl alone can

maintain stable gaze errors after convergence, but its perfor-

mance is not as excellent as the best iteration of �vm alone.

Combining �vm and �wpl during adaptation can leverage

the strengths of both loss functions, resulting in satisfactory

performance and stable results during optimization.

4.6. Discussion about Uncertainty Reduction

To discuss how image quality influences the model un-

certainty and gaze errors, we visualize some high quality

and low quality examples and their enhanced pairs in Fig.5.

We report their image quality (IQ), model uncertainty (MU)

and gaze errors (Err). We measure the image quality (IQ)

with a popular blind image quality assessment method [52]

Figure 6. Average model uncertainty and average gaze errors of

samples grouped according to the percentile of the baseline’s un-

certainty.

and output the model uncertainty and gaze errors with a set

of gaze estimators. Compared with high-quality images,

low-quality samples tend to have higher model uncertainty

and higher gaze errors. After face enhancement on sam-

ples, the model uncertainty of both high-quality and low-

quality images decreases and so do the gaze errors. More-

over, the enhancement of low-quality images brings more

performance gain than high-quality images.

To understand the correlation between reducing model

uncertainty and reducing gaze errors, we illustrate the

model uncertainty and gaze errors of applying EnhanceFace

and UnReGA on different samples grouped by model un-

certainty in Fig.6. Specifically, we compute the model un-

certainty of samples in DM with a set of gaze estimators

trained with DE and sort the samples by the model uncer-

tainty in ascending order and group them by every 10-th

percentile. We take the set of gaze estimators as the base-

line and apply EnhanceFace and UnReGA on DE → DM .

Subsequently, we calculate the average gaze errors and av-

erage model uncertainty for each group. The results indi-

cate that both EnhanceFace and UnReGA can consistently

reduce model uncertainty and gaze errors for groups with

different uncertainty over baseline. Moreover, the higher

uncertainty of the samples, the more uncertainty and errors

can be reduced by EnhanceFace and UnReGA.

5. Conclusion
We present a novel uncertainty reduction gaze adapta-

tion (UnReGA) framework for adapting gaze estimators on

the unlabelled target domain without source data. UnReGA

improves gaze estimation performance on the target data by

reducing uncertainty on the target. Our source-free adapta-

tion method shows significant performance improvements

over baseline and also outperforms the SOTA gaze adap-

tation methods using source during adaptation on adapta-

tion tasks. In the future, the connection between face en-

hancement and the minimization of sample uncertainty can

be discussed by formulating sample uncertainty mathemati-

cally and the proposed uncertainty reduction method can be

explored on other cross-domain regression problems.
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