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Abstract

Semi-supervised video anomaly detection (VAD) is a
critical task in the intelligent surveillance system. How-
ever, an essential type of anomaly in VAD named scene-
dependent anomaly has not received the attention of re-
searchers. Moreover, there is no research investigating
anomaly anticipation, a more significant task for preventing
the occurrence of anomalous events. To this end, we pro-
pose a new comprehensive dataset, NWPU Campus, con-
taining 43 scenes, 28 classes of abnormal events, and 16
hours of videos. At present, it is the largest semi-supervised
VAD dataset with the largest number of scenes and classes
of anomalies, the longest duration, and the only one con-
sidering the scene-dependent anomaly. Meanwhile, it is
also the first dataset proposed for video anomaly antici-
pation. We further propose a novel model capable of de-
tecting and anticipating anomalous events simultaneously.
Compared with 7 outstanding VAD algorithms in recent
years, our method can cope with scene-dependent anomaly
detection and anomaly anticipation both well, achieving
state-of-the-art performance on ShanghaiTech, CUHK Av-
enue, IITB Corridor and the newly proposed NWPU Cam-
pus datasets consistently. Our dataset and code is available
at: https://campusvad.github.io.

1. Introduction
Video anomaly detection (VAD) is widely applied in

public safety and intelligent surveillance due to its ability to
detect unexpected abnormal events in videos. Since anoma-
lous events are characterized by unbounded categories and
rare occurrence in practice, VAD is commonly set as a semi-
supervised task, that is, there are only normal events without
specific labels in the training set [1, 2]. The model trained
only on the normal events needs to distinguish anomalous
events from normal events in the testing phase.

Semi-supervised VAD has been studied for years. Espe-
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cially in recent years, reconstruction-based and prediction-
based methods [3–21] have made leaps and bounds in per-
formance on existing datasets. For example, the frame-
level AUCs (area under curve) on UCSD Ped1 and Ped2
datasets [22] have reached over 97% [2]. Despite the emer-
gence of a few challenging datasets, researchers still over-
look an important type of anomaly, i.e., the scene-dependent
anomaly [2]. Scene dependency refers to that an event is
normal in one scene but abnormal in another. For example,
playing football on the playground is a normal behavior,
but playing on the road is abnormal. Note that single-scene
datasets cannot contain any scene-dependent anomaly. Nev-
ertheless, the existing multi-scene datasets (e.g., Shang-
haiTech [23], UBnormal [24]) also have not taken this type
of anomaly into account. As a result, there is currently no
algorithm for studying scene-dependent anomaly detection,
limiting the comprehensive evaluation of VAD algorithms.
In addition to detecting various types of anomalies, we ar-
gue that there is another task that also deserves the attention
of researchers, which is to anticipate the occurrence of ab-
normal events in advance. If we can make an early warning
before the anomalous event occurs based on the trend of
the event, it is of great significance to prevent dangerous
accidents and avoid loss of life and property. However, ac-
cording to our investigation, there is no research on video
anomaly anticipation, and no dataset or algorithm has been
proposed for this field.

In this paper, we work on semi-supervised video
anomaly detection and anticipation. First and foremost,
to address the issue that the VAD datasets lack scene-
dependent anomalies and are not suitable for anomaly an-
ticipation, we propose a new large-scale dataset, NWPU
Campus. Compared with existing datasets, our proposed
dataset mainly has the following three advantages. First,
to the best of our knowledge, the NWPU Campus is the
largest semi-supervised VAD dataset to date. It contains
43 scenes, whose number is 3 times that of ShanghaiTech,
the real recorded dataset with the largest number of scenes
among the existing datasets. The total video duration of the
NWPU Campus is 16 hours, which is more than 3 times that
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Table 1. Comparisons of different semi-supervised VAD datasets. There are not any official training and testing splits in UMN. UBnormal
has a validation set, which is not shown here. ”720p” means that the frame is 720 pixels high and 1280 or 1080 pixels wide. The frame
resolutions of NWPU Campus are 1920×1080, 2048×1536, 704×576 and 1280×960 pixels. * represents the animated dataset.

Dataset Year # Frames # Abnormal
event classes Resolution #Scenes Scene

dependencyTotal Training Testing

Subway Entrance [25] 2008 86,535 18,000 68,535 5 512×384 1 ✗
Subway Exit [25] 2008 38,940 4,500 34,440 3 512×384 1 ✗
UMN [26] 2009 7,741 - - 3 320×240 3 ✗
USCD Ped1 [22] 2010 14,000 6,800 7,200 5 238×158 1 ✗
USCD Ped2 [22] 2010 4,560 2,550 2,010 5 360×240 1 ✗
CUHK Avenue [27] 2013 30,652 15,328 15,324 5 640×360 1 ✗
ShanghaiTech [23] 2017 317,398 274,515 42,883 11 856×480 13 ✗
Street Scene [28] 2020 203,257 56,847 146,410 17 1280×720 1 ✗
IITB Corridor [29] 2020 483,566 301,999 181,567 10 1920×1080 1 ✗
UBnormal [24] * 2022 236,902 116,087 92,640 22 720p 29 ✗
NWPU Campus (ours) 1,466,073 1,082,014 384,059 28 multiple 43 ✓

of the existing largest semi-supervised VAD dataset IITB
Corridor [29]. The quantitative comparison between the
NWPU Campus and other datasets can be seen in Tab. 1.
Second, the NWPU Campus has a variety of abnormal and
normal events. In terms of anomalies, it contains 28 classes
of anomalous events, which is more than any other dataset.
Fig. 1 displays some examples from our dataset. More
importantly, the NWPU Campus dataset contains scene-
dependent anomalous events, which are missing in other
datasets. As an example, the behavior of a vehicle turning
left is anomalous in the scene where left turns are prohib-
ited, while it is normal in other unrestricted scenes. Along
with the diversity of anomalous events, the normal events
in our dataset are diverse as well. Unlike other datasets,
we do not only take walking and standing as normal be-
haviors. In our dataset, regular walking, cycling, driving
and other daily behaviors that obey rules are also consid-
ered as normal events. Third, in addition to being served as
a video anomaly detection benchmark, the NWPU Campus
is the first dataset proposed for video anomaly anticipation
(VAA). The existing datasets do not deliberately consider
the anomalous events applicable to anticipation. In contrast,
we take into account the complete process of the events in
the data collection phase so that the occurrence of abnormal
events is predictable. For instance, before the vehicle turns
left (the scene-dependent anomalous event as mentioned be-
fore), the movement trend of it can be observed, and hence
the algorithm could make an early warning. As a compari-
son, it is considered to be abnormal when a vehicle simply
appears in the ShanghaiTech dataset, which is unpredictable
and therefore not suitable for anomaly anticipation.

Besides comprehensive benchmarks, there is currently a
lack of algorithms for scene-dependent anomaly detection
and video anomaly anticipation. Therefore, in this work, we

further propose a novel forward-backward frame prediction
model that can detect anomalies and simultaneously antici-
pate whether an anomalous event is likely to occur in the fu-
ture. Moreover, it has the ability to handle scene-dependent
anomalies through the proposed scene-conditioned auto-
encoder. As a result, our method achieves state-of-the-art
performance on ShanghaiTech [23], CUHK Avenue [27],
IITB Corridor [29], and our NWPU Campus datasets.

In summary, our contribution is threefold:

• We propose a new dataset NWPU Campus, which is
the largest and most complex semi-supervised video
anomaly detection benchmark to date. It makes up for
the lack of scene-dependent anomalies in the current
research field.

• We propose a new video anomaly anticipation task to
anticipate the occurrence of anomalous events in ad-
vance, and the NWPU Campus is also the first dataset
proposed for anomaly anticipation, filling the research
gap in this area.

• We propose a novel method to detect and anticipate
anomalous events simultaneously, and it can cope
with scene-dependent anomalies. Comparisons with
7 state-of-the-art VAD methods on the NWPU Cam-
pus, ShanghaiTech, CUHK Avenue and IITB Corridor
datasets demonstrate the superiority of our method.

2. Related Work
2.1. Video Anomaly Detection Datasets

We focus on semi-supervised video anomaly detection
in this paper, so the weakly-supervised video anomaly de-
tection datasets such as UCF-Crime [30] and XD-Violence
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Figure 1. Samples from the proposed NWPU Campus dataset. The samples in the first column are normal events, while the others are
different types of anomalous events.

[31] will not be discussed. The commonly used semi-
supervised VAD datasets include USCD Ped1 & Ped2 [22],
Subway Entrance & Exit [25], UMN [26], CUHK Avenue
[27], ShanghaiTech [23], Street Scene [28], IITB Corri-
dor [29] and UBnormal [24].

The UCSD Ped1 & Ped2 [22] datasets each contain a
camera overlooking a pedestrian walkway, in which most
of the anomalies are intrusions of other objects, such as bi-
cycles, cars and skateboards. Therefore, the anomalies can
be readily detected through static images, resulting in the
saturation of performance (97.4% [32] on Ped1 and 99.2%
[33] on Ped2 in frame-level AUC). The Subway Entrance
& Exit [25] datasets include two indoor scenes of the sub-
way entrance and exit. The abnormal events are only related
to people, including jumping through turnstiles, wrong di-
rection, etc. The UMN [26] contains three outdoor scenes,
and the only type of anomalous event is the crowd dispers-
ing suddenly. There are not any official training and test-
ing splits in it. The CUHK Avenue [27] contains a camera
looking at the side of a building with pedestrian walkways
by it, and the abnormal behaviors include running, throwing
bags, child skipping, etc. The ShanghaiTech [23] includes
a total of 13 outdoor scenes on the campus, and quite a few
of the anomalous events are related to objects, such as bi-
cycles, cars, skateboards and strollers, even though it seems
normal for these objects to appear in real life. The anoma-
lous events in ShanghaiTech are generic across scenes and
this dataset does not contain scene-dependent anomalies.

The Street Scene [28] contains a camera looking down on
a scene of a two-lane street with bike lanes and pedestrian
sidewalks. Compared with previous datasets, it includes lo-
cation anomalies, such as cars parked illegally and cars out-
side a car lane. The IITB Corridor [29] is the largest single-
scene semi-supervised VAD dataset as far as we know. The
scene consists of a corridor where the normal activities are
walking and standing, and the anomalous behaviors are per-
formed by volunteers, including chasing, fighting, playing
with ball, etc. The UBnormal [24] is generated by anima-
tions, containing a total of 22 types of abnormal events in
29 virtual scenarios. However, there is a distribution gap be-
tween animated videos and real recorded videos. Acsintoae
et al. [24] have to use an additional model (CycleGAN [34])
to reduce the distribution gap.

It should be noted that all of the above datasets do not
take scene-dependent anomalies and anomaly anticipation
into account. Therefore, a benchmark for the comprehen-
sive evaluation of anomaly detection and anticipation is
pressingly needed in the current research stage. The pro-
posed NWPU Campus dataset has the features of large
scale, multiple scenarios, and diverse as well as extensive
events. It is committed to meeting the requirement for a
new comprehensive benchmark.

2.2. Video Anomaly Detection Methods

Prevalent semi-supervised VAD methods mainly contain
distance-based [35–37], reconstruction-based [4, 5, 38, 39]
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Table 2. Frame count and duration of the NWPU Campus dataset.

NWPU Campus (25 FPS)
1,466,073 (16.29h)

Training frames Testing frames
1,082,014 (12.02h) 384,059 (4.27h)

Normal Normal Abnormal
1,082,014 (12.02h) 318,793(3.54h) 65,266(0.73h)

and prediction-based [3, 6–21] methods. Especially, the
prediction-based methods have attracted wide attention in
recent years. They usually predict the current (i.e., the last
observed) frame via previous frames [3,6–8,10–18,20,21],
and compute anomaly score based on the error between the
predicted frame and the observable groundtruth frame. To
discriminate between abnormal and normal motion, some
methods [10, 21] use optical flow as the condition of con-
ditional VAE to enhance frame prediction. Combining with
memory modules [4, 6, 10, 11, 40] that can explicitly utilize
normal patterns is also an improvement trend of this kind of
methods. Besides predicting the current frame, there are a
few prediction-based methods completing the middle frame
with bidirectional frame prediction [9, 19], which requires
the observation of groundtruth frames in both directions.

Different from those prediction-based models, our
forward-backward prediction model does not need to ob-
serve future frames during inference. It can estimate the
prediction error of future frames whose groundtruth frames
are unavailable, making it able to anticipate anomalies.

3. Proposed Dataset
3.1. Dataset Collection

We set up cameras at 43 outdoor locations on the cam-
pus to record the activities of pedestrians and vehicles. As
anomalous events rarely occur in real life, there are a total of
more than 30 volunteers performing a part of normal and ab-
normal events. In our dataset, the classes of normal events
include regular walking, cycling, driving and other daily
behaviors that obey rules. The types of anomalies consist
of single-person anomalies (e.g., climbing fence, playing
with water), interaction anomalies (e.g., stealing, snatching
bag), group anomalies (e.g., protest, group conflict), scene-
dependent anomalies (e.g., cycling on footpath, wrong turn,
photographing in restricted area), location anomalies (e.g.,
car crossing square, crossing lawn), appearance anomalies
(e.g., dogs, trucks) and trajectory anomalies (e.g., jaywalk-
ing, u-turn). Some normal and abnormal samples are shown
in Fig. 1. There are different manifestations for each kind
of anomalous event in our dataset. For instance, stealing
may occur when two people are sitting next to each other
or when one person is following another. Additionally, to
avoid algorithms detecting anomalies according to specific

Figure 2. The distributions of training and testing videos accord-
ing to duration (a), and abnormal testing videos according to the
percentage of abnormal frames in each video (b).

performers, the volunteers also perform normal behaviors
that are similar to the anomalous behavior if possible. For
example, the normal behavior served as a contrast to climb-
ing fence is merely walking up to the fence and then leaving.

Finally, we collect 16 hours of videos from these 43
scenes, including 305 training videos and 242 testing
videos. In the training data, there are only normal events
that come from real events (without volunteers) and per-
formed events (with volunteers), while the testing data con-
tains both normal events and anomalous events. In the test-
ing set, there are a total of 28 classes of abnormal events,
most of which are performed by volunteers and some actu-
ally occur. All the anomaly classes and the anomaly classes
in each scene are provided in the supplementary material.
We annotate frame-level labels for the testing videos to in-
dicate the presence or absence of anomalous events in each
frame. According to the setting of semi-supervised VAD,
algorithms only need to distinguish abnormality from nor-
mality. Thus, the specific classes of the abnormal events
are not annotated. It should be noted that not all the test-
ing videos contain anomalies, since there is no guarantee
that an anomalous event will certainly happen in a video in
practical applications. To protect the privacy of volunteers
and pedestrians, all the faces in our dataset are blurred.

3.2. Dataset Statistics

The statistics of frame count and duration of our NWPU
Campus dataset are shown in Tab. 2. The entire dataset
lasts 16.29 hours, involving 4.27 hours of the testing set.
Fig. 2(a) shows the duration distribution of the 305 train-
ing videos and 242 testing videos. The average duration of
the training videos is 2.37 minutes, and that of the testing
videos is 1.05 minutes. There are 124 videos in the testing
set that contain anomalous events, and Fig. 2(b) presents the
percentage of abnormal frames in the abnormal videos.

In order to highlight the traits of our dataset, we com-
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Figure 3. Illustration of video anomaly detection (VAD) and antic-
ipation (VAA). ft is the frame at time t. ”0” represents normality
and ”1” represents abnormality. s() denotes the anomaly score. α
is the anticipation time. ”GT” stands for groundtruth.

prehensively compare NWPU Campus with other widely-
used datasets for semi-supervised video anomaly detection,
as shown in Tab. 1. It can be concluded that the proposed
NWPU Campus dataset has three outstanding traits. First,
it is the largest semi-supervised video anomaly detection
dataset, which is over three times larger than the existing
largest dataset (i.e., IITB Corridor). Second, the scenes and
anomaly classes of our dataset are diverse and complex. It
is a real recorded dataset with the largest number of abnor-
mal event classes and scenes by far. Although the UBnor-
mal dataset also has multiple scenarios, it is a virtual dataset
generated by animation rather than real recordings. Third,
our dataset takes into account the scene-dependent anoma-
lous events, which is an important type of anomaly not in-
cluded in other multi-scene datasets. Besides the above
three advantages, the NWPU Campus is also the first dataset
proposed for video anomaly anticipation, which will be in-
troduced in detail in the next section.

4. Proposed Method
4.1. Problem Formulation

Video anomaly detection (VAD) aims to detect whether
an anomaly is occurring at the current moment. As to
anomaly anticipation, considering that it is difficult and
inessential to anticipate the exact time of the occurrence of
an abnormal event, we define video anomaly anticipation
(VAA) to anticipate whether an anomaly will occur in a fu-
ture period of time, which is meaningful and useful for early
warnings of anomalous events. We illustrate the VAD and
VAA tasks in Fig. 3.

Suppose the current time step is t. For VAD, an algo-
rithm can compute an anomaly score s(t) for the current
frame ft based on the observed frames ft−n, · · · , ft, where
n represents the observed duration. In Fig. 3, ft is a normal
frame, and therefore the anomaly score s(t) is expected to
be as low as possible. For VAA, at the current moment t,
we anticipate whether an anomaly will occur at any future
frame in the period of [t + 1, t + α] that has not been ob-
served, where α ≥ 1 is the anticipation time. We use the

score s(t+ 1 : t+ α) to represent the anticipated probabil-
ity of an anomaly occurring during t + 1 to t + α frames.
In Fig. 3 where α = 4 is taken as an example, since ft+3 is
abnormal, the groundtruth of s(t+ 1 : t+ α) is 1, denoting
there will be an anomaly in frames ft+1, · · · , ft+4. We ex-
pect that the anomaly score s(t+1 : t+α) to be as high as
possible, which is contrary to s(t).

As can be seen, the groundtruth is different for VAD and
VAA. For VAD, we denote the frame-level labels of a video
as G0 = {gt}Tt=1, where gt ∈ {0, 1} indicates the frame
ft is normal (0) or abnormal (1), and T is the length of the
video. Based on G0, the frame-level labels for VAA where
the anticipation time is α can be calculated by:

Gα = {max({gt+i}αi=1)}T−α
t=1 , (1)

where max() denotes the maximum value in a set.
Note that the action anticipation models (e.g. [41–43])

are not applicable to semi-supervised VAA, since there are
no anomaly data and labels to train them in a supervised
manner. Therefore, we propose a novel method for semi-
supervised VAD and VAA in the next section.

4.2. Forward-backward Scene-conditioned Auto-
encoder

Our model is based on the prevalent frame prediction
model. However, future groundtruth frames are not visible
in VAA, and hence the prediction error cannot be calculated.
To address this issue, we propose to estimate the prediction
error of future frames by forward-backward prediction, and
the proposed model is shown in Fig. 4.

Moreover, we propose to employ a scene-conditioned
auto-encoder to handle the scene-dependent anomalies.
Specifically, we take the encoding of scene image as the
condition of conditional variational auto-encoder (CVAE),
train it to generate image features related to the scene, and
finally decode the features into the predicted frames.

4.2.1 Forward-backward Frame Prediction

As shown in Fig. 4, our model includes a forward and a
backward frame prediction networks. The forward network
predicts multiple future frames in one shot based on the ob-
served frames, and the backward network reversely predicts
an observed frame based on the future frames generated
by the forward network and a part of the observed frames.
Our motivation is that, if the future frame is anomalous in
forward prediction, the predicted image will be inaccurate.
When we use the inaccurate image as a part of the input for
the backward frame prediction model, the output frame will
also have a large error with the groundtruth frame, which
is available since it has been observed. Therefore, we can
anticipate the future anomalies through the error of forward-
backward frame prediction.

20396



Figure 4. The proposed forward-backward scene-conditioned auto-encoder. It consists of a forward and a backward frame prediction
networks. Each network has the same U-Net architecture with conditional VAEs that take the scene image as the input. t, n and α
respectively represent the current time, the observation time and the anticipation time. C, T , H and W respectively represent the channel,
temporal length, height and width of the input frames. Ui denotes the i-th level of the U-Net. γ is a weight in scalar. Best viewed in color.

At the current time step t, the forward network takes the
observed frames ft−n, · · · , ft−1 as the input, and outputs
the predicted frames f̂t, · · · , f̂t+α. We compute the mean
square error (MSE) loss and L1 loss between every pre-
dicted frame f̂t+i (i ∈ [0, α]) and its groundtruth frame to
train the forward network:

Lf (f, f̂) = ∥f − f̂∥22 + λL1|f − f̂ |, (2)

where λL1 is the weight of L1 loss.
For training the backward network that anticipates the

anomaly score of the i-th (i ∈ [1, α]) future frame, we feed
the predicted future frames f̂t+i, · · · , f̂t+1 and the real fu-
ture frames ft+i, · · · , ft+1 respectively along with the ob-
served frames ft, · · · , ft+i+1−n into it. In this way, our
backward network can make use of the observed informa-
tion to make more accurate short-term anomaly anticipa-
tion. The output predicted frames of the two forms of in-
puts are denoted as f̂ (1)

t+i−n and f̂
(2)
t+i−n, respectively, which

share the same groundtruth frame ft+i−n. We calculate the
average MSE and L1 losses between f̂

(1)
t+i−n and ft+i−n, as

well as f̂ (2)
t+i−n and ft+i−n to train the backward network:

Lb =
1

2
(Lf (f̂

(1)
t+i−n, ft+i−n)+Lf (f̂

(2)
t+i−n, ft+i−n)). (3)

During inference, only the predicted forward fu-
ture frames f̂t+i, · · · , f̂t+1 and the observed frames
ft, · · · , ft+i+1−n are required for backward prediction. For
different time steps t+1, · · · , t+α, the backward networks
share the same weights.

4.2.2 Scene-conditioned VAE

Both the forward and backward networks are three-level U-
Nets [44] of the same architecture, containing CVAEs that

guide the encoding of input frames to be associated with
scenes. The input frames are merged in time and chan-
nel dimensions and fed into the encoder of a 2D convolu-
tional network, which outputs three feature maps of dif-
ferent shapes. The feature maps at U2 and U3 levels are
fed into the CVAEs to generate new feature maps condi-
tioned on the scene image. Then the scene-conditioned fea-
ture maps are added to the input of CVAEs with a weight
γ ∈ [0, 1]. Finally, the predicted frames are generated
through subsequent decoding convolutional layers.

A CAVE takes as input the feature maps of the frames
and the encoding of the scene image. Note that the frames
only focus on the local regions of detected objects, while
the objects in the scene image are masked out and only the
background is retained. The scene image is encoded by con-
volutional layers, concatenated with the frame feature maps
and fed into the encoder of CVAE to generate the parame-
ters of a posterior distribution. We use the reparameteriza-
tion technique [45] to sample latent variables from the pos-
terior distribution, and feed them into the CVAE decoder af-
ter concatenated with the scene encoding to generate scene-
conditioned feature maps. We assume that the prior distri-
bution is a standard Gaussian distribution and calculate the
Kullback-Leibler (KL) divergence between it and the pos-
terior distribution as the loss:

LKL(N (µ̂, σ̂2)∥N (0, 1)) = −1

2
(log σ̂2 − µ̂2 − σ̂2 + 1),

(4)
where µ̂ and σ̂2 are the mean and variance of the posterior
Gaussian distribution. In testing stage, if the input feature
maps do not match the scene, they will be reconstructed
by the CVAE with large errors, thereby identifying scene-
dependent anomalies.

Finally, the total loss is the sum of the losses of forward
prediction, backward prediction, and KL divergence with
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the weight of λKL. We minimize the total loss to jointly
train the whole model.

4.2.3 Anomaly Score

During inference, we calculate the error between the pre-
dicted forward frame f̂t and its groundtruth frame ft by
Eq. (2) as the anomaly score for VAD:

s(t) = Lf (ft, f̂t). (5)

For VAA with the anticipation time of α, we first es-
timate the anomaly score of ft+i (i ∈ [1, α]) through
forward-backward prediction. Then, the maximum error
in the period of [t + 1, t + α] is taken as the anticipation
anomaly score:

s(t+ 1 : t+ α) = max({Lf (ft+i−n, f̂t+i−n)}αi=1). (6)

Consequently, we can detect and anticipate anomalies si-
multaneously.

5. Experiments
5.1. Experimental Setup

Datasets. We experiment on the ShanghaiTech [23],
CUHK Avenue [27], IITB Corridor [29] and our proposed
NWPU Campus datasets, which are described in Tab. 1 and
the Related Work section. Our dataset is available at: (it
will be released after the double-blind review). For conve-
nience, we abbreviate the above datasets to ”ST”, ”Ave”,
”Cor”, and ”Cam” respectively in the following tables.

Evaluation Metric. We use the area under the curve
(AUC) of receiver operating characteristic (ROC) to evalu-
ate the performance for both VAD and VAA. Note that we
concatenate all the frames in a dataset and then compute the
overall frame-level AUC, which is widely adopted.

Implementation Details. The input frames of our model
are the regions of 256×256 pixels centered on objects that
detected by the pre-trained ByteTrack [50] implemented by
MMTracking [51]. For the forward and backward networks,
they both take Tin=8 frames as the input, while they out-
put Tout=7 and Tout=1 frames, respectively. The 1st frame
output by the forward network is used for anomaly detec-
tion, and the 2nd to 7th frames are fed into the backward
network for anomaly anticipations of different anticipation
times. We design the encoder of U-Net based on ResNet
[52] and the decoder are multiple convolutional layers. The
network for scene encoding is a classification model to clas-
sify scenes, which is firstly trained with known scene in-
formation, and then frozen during training the entire model.
The weights γ, λL1 and λKL are 1, 1 and 0.1 by default. We
adopt the maximum local error [53] to focus on the errors
in local regions. Please refer to the supplementary material
for a detailed description of our model.

Table 3. Comparison of different methods on the ShanghaiTech,
CUHK Avenue, IITB Corridor and NWPU Campus datasets in
AUC (%) metric. The best result on each dataset is shown in bold.

Method Year ST Ave Cor Cam

FFP [3] CVPR 18 72.8 84.9 64.7 -

MemAE [4] ICCV 19 71.2 83.3 - 61.9
MPED-RNN [46] CVPR19 73.4 - 64.3 -

MTP [29] WACV 20 76.0 82.9 67.1 -
VEC-AM [13] ACM MM 20 74.8 89.6 - -
CDDA [36] ECCV 20 73.3 86.0 - -
BMAN [9] TIP 20 76.2 90.0 - -
Ada-Net [7] TMM 20 70.0 89.2 - -
MNAD [6] CVPR 20 70.5 88.5 - 62.5
OG-Net [39] CVPR 20 - - - 62.5

CT-D2GAN [47] ACM MM 21 77.7 85.9 - -
ROADMAP [17] TNNLS 21 76.6 88.3 - -
MESDnet [18] TMM 21 73.2 86.3 - -
AMMC-Net [40] AAAI 21 73.7 86.6 - 64.5
MPN [11] CVPR 21 73.8 89.5 - 64.4
HF2-VAD [10] ICCV 21 76.2 91.1 - 63.7

SSAGAN [48] TNNLS 22 74.3 88.8 - -
DLAN-AC [49] ECCV 22 74.7 89.9 - -
LLSH [35] TCSVT 22 77.6 87.4 73.5 62.2
VABD [21] TIP 22 78.2 86.6 72.2 -

Ours - 79.2 86.8 73.6 68.2

5.2. VAD Performance Benchmarking

The comparison between our method and other exist-
ing methods on the ShanghaiTech, CUHK Avenue, IITB
Corridor and NWPU Campus datasets is shown in Tab. 3.
We reproduce a total of 7 recent reconstruction-based [39],
distance-based [35] and prediction-based [4, 6, 10, 11, 40]
methods on our NWPU Campus dataset using their offi-
cial codes. For a fair comparison, the self-supervised learn-
ing based methods [54–56] are excluded, and we use the
same detected objects as the inputs for the reproduced meth-
ods. The γ in our model is set to 0 for those datasets with-
out scene-dependent anomalies. As can be seen in Tab. 3,
our method outperforms the others on the NWPU Cam-
pus, IITB Corridor and ShanghaiTech datasets, all of which
contain over 10 classes of abnormal events. The superior
performance demonstrates the advantage of our method for
complex and large-scale VAD. We find that the relatively
low performance on the CUHK Avenue is mainly due to the
inaccurate object tracking of the tracking algorithm, which
is caused by the low resolution of this dataset. The perfor-
mance for VAD on the NWPU Campus is lower than that on
other datasets because our dataset contains various types of
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Table 4. AUCs (%) of different methods on scene-dependent
anomalous datasets. The ShanghaiTech-sd dataset used in this ta-
ble is reorganized by us. The best results are shown in bold.

Method Cam
ST-sd

(reorganized)

MemAE [4] 61.9 67.4
MNAD [6] 62.5 68.2
OG-Net [39] 62.5 69.6
AMMC-Net [40] 64.5 64.9
MPN [11] 64.4 76.9
HF2-VAD [10] 63.7 70.8

Ours (γ=0) 65.8 70.4
Ours (γ=1) 68.2 82.7
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Figure 5. Score gaps of different methods. ”Ours (0)” and ”Ours
(1)” denote our methods with γ = 0 and γ = 1, respectively. A
higher value means better.

anomalies, and each anomaly has multiple manifestations,
making it much more challenging than other datasets.

5.3. Study on Scene-dependent Anomalies

In addition to our NWPU Campus dataset, we also reor-
ganize a new dataset named ShanghaiTech-sd using a part
of the videos from the ShanghaiTech dataset to specifically
study scene-dependent anomaly detection. ShanghaiTech-
sd contains 4 scenes where ”cycling” is set as a scene-
dependent anomaly. The performances of different meth-
ods are shown in Tab. 4. It can be seen that the pro-
posed scene-conditioned VAE (i.e. γ=1) makes a signifi-
cant improvement, with increases of 2.4% and 12.3% on
the NWPU Campus and ShanghaiTech-sd, respectively, sur-
passing other methods by a margin. We analyze the score
gaps between normal and abnormal scores of those meth-
ods, as can be seen in Fig. 5. In particular, the score gap
of our method with γ=1 is obviously higher than that with
γ=0 and other methods, suggesting that the proposed scene-
conditioned VAE can distinguish scene-dependent anoma-
lies. We provide the details of the ShanghaiTech-sd dataset
and more analysis in the supplementary material.

5.4. Video Anomaly Anticipation

We conduct experiments on the NWPU Campus dataset
for VAA with different anticipation times, as shown in

Table 5. AUCs (%) for video anomaly anticipation with different
anticipation times (i.e. αt seconds) on the NWPU Campus dataset.
”f” and ”b” denote forward and backward predictions.

αt 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s

Chance 50.0 50.0 50.0 50.0 50.0 50.0
Human - - - - - 90.4
Ours (f-only) 65.2 64.6 64.2 63.6 63.1 62.5
Ours (f+b) 65.8 65.3 64.9 64.6 64.2 64.0

Tab. 5. We report the results of stochastic anticipations
(”Chance”) and human beings (”Human”). Four volun-
teers not involved in the construction of the dataset par-
ticipate in the evaluation of anomaly anticipation. Since
humans cannot perceive time precisely, the volunteers only
anticipate whether an anomalous event will occur in 3 sec-
onds or not. The result of ”Human” is the average perfor-
mance of all the volunteers. For the forward-only model
(i.e., f-only), we calculate the maximum error between
the predicted future frames in αt seconds and the current
frame, which is then taken as the anticipated anomaly score.
The forward-backward model (i.e., f+b) computes anomaly
scores as mentioned in Sec. 4.2.3. It can be seen that our
forward-backward prediction method is more effective than
the forward-only method. However, there is still much
room for improvement compared with the performance of
humans, which demonstrates that the proposed dataset and
VAA task are extremely challenging for algorithms.

6. Conclusion

In this work, we propose a new comprehensive dataset
NWPU Campus, which is the largest one in semi-supervised
VAD, the only one considering scene-dependent anomalies,
and the first one proposed for video anomaly anticipation
(VAA). We define VAA to anticipate whether an anomaly
will occur in a future period of time, which is of great sig-
nificance for early warning of anomalous events. Moreover,
we propose a forward-backward scene-conditioned model
for VAD and VAA as well as handling scene-dependent
anomalies. In the future, our research will focus not only
on the short-term VAA, but also on long-term anticipation.
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