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Abstract

Learning continuous image representations is recently
gaining popularity for image super-resolution (SR) because
of its ability to reconstruct high-resolution images with ar-
bitrary scales from low-resolution inputs. Existing methods
mostly ensemble nearby features to predict the new pixel
at any queried coordinate in the SR image. Such a local
ensemble suffers from some limitations: i) it has no learn-
able parameters and it neglects the similarity of the visual
features; ii) it has a limited receptive field and cannot en-
semble relevant features in a large field which are important
in an image. To address these issues, this paper proposes
a continuous implicit attention-in-attention network, called
CiaoSR. We explicitly design an implicit attention network
to learn the ensemble weights for the nearby local features.
Furthermore, we embed a scale-aware attention in this im-
plicit attention network to exploit additional non-local in-
formation. Extensive experiments on benchmark datasets
demonstrate CiaoSR significantly outperforms the existing
single image SR methods with the same backbone. In addi-
tion, CiaoSR also achieves the state-of-the-art performance
on the arbitrary-scale SR task. The effectiveness of the
method is also demonstrated on the real-world SR setting.
More importantly, CiaoSR can be flexibly integrated into any
backbone to improve the SR performance.

1. Introduction
Single image super-resolution (SISR), which aims to

reconstruct a high-resolution (HR) image from a low-
resolution (LR) one, has been widely employed in many
practical applications [24, 61, 91]. However, deep neural
networks (DNN)-based SISR methods are facing some lim-
itations in some real-world scenarios with arbitrary scales.
For example, camera users may want to enhance the digi-
tal zoom quality by super-resolving a photo or a video to

*Currently with Google. This work was done at ETH Zürich.
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Figure 1. Comparison of different backbones and implicit models.
Our proposed implicit neural network on RDN [88] has better
performance than SwinIR [40]. Check Section 5 for details.

continuous arbitrary scales. Most existing DNN-based SISR
methods [40, 44, 86] need to train a series of models for all
different scales separately. However, it can be impractical to
store all these models on the device due to limited storage
and computing power. Alternatively, arbitrary-scale image
SR methods [13, 28, 39] aim to train a single network for all
scales in a continuous manner.

Most existing SISR methods [40,44,86] consist of a DNN
and an upsampling module (e.g., pixel shuffling [60]) at a
discrete scale. While substantial progresses have been made
in the DNN backbones for SR, there is little attempt to study
the upsampling module. A natural question to ask is: Does
the pixel shuffling hinder the potential of SR models? One
limitation of the pixel shuffling module is that it cannot syn-
thesize SR images at large unseen and continuous scales.
To tackle this, one can treat synthesizing different-scale SR
images as a multi-task learning problem, and train a specific
upsampling module for each scale [44]. However, these
tasks are dependent and highly inter-related. Neglecting the
correlation of different-scale SR tasks may lead to discrete
representations and limited performance. Under a certain
capacity of a network, training a model on multi-tasks may
sacrifice the performance or have the comparable perfor-
mance on each task. These above disadvantages limit its
applicability and flexibility in the real-world scenarios.

To address these, most existing arbitrary-scale SR meth-
ods [13, 28, 39] replace the upsampling method with an
implicit neural function and boost the performance. These
methods predict an RGB value at the query point in an image
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Figure 2. Comparisons of different attention mechanisms. (a) Self-attention can predict pixel features on the grid, but it cannot be directly
used in arbitrary-scale SR without considering coordinates. (b) Most existing methods can be treated as coordinate-based implicit attention
since they calculate the distance between a key and query coordinate, and then use a function g to aggregate with the value features. However,
these methods ignore the distance between the features. (c) Our implicit attention not only considers the coordinate distance, but also the
distance among features with visual information.

by ensembling features within a local region. However, the
local ensemble methods have limitations in the ensemble
weights and insufficient information (e.g., non-local informa-
tion). The ensemble weights are often calculated by the area
of the rectangle between the query point and each nearest
point, which is equivalent to the bilinear interpolation. Thus,
those methods cannot adaptively ensemble local features
since there is no trainable parameter. These weights are only
related to the coordinates of the local features, but indepen-
dent of the local features. Ignoring both the coordinates
and the local features lose visual information and result in
blurry artifacts. It is important and necessary to design a
new implicit network to predict the weights and exploit more
information in the local ensemble.

In this paper, we propose a novel implicit attention model
to enhance arbitrary-scale SR performance. Specifically, we
use our attention to predict the ensemble weights by con-
sidering both the similarity and coordinate distance of local
features, as shown in Figure 2. Based on such learnable
weights, the implicit model can adaptively aggregate local
features according to different inputs. To enrich more infor-
mation, we introduce an attention in our implicit attention,
which helps discover more features in a larger receptive field.

Our contributions are summarized as follows:

• We propose a novel continuous implicit attention-in-
attention network for arbitrary-scale image SR, called
CiaoSR. Different from most existing local ensemble meth-
ods, our method explicitly learns the ensemble weights
and exploits scale-aware non-local information.

• Our CiaoSR can be flexibly integrated into any backbone,
allowing the network to super-resolve an image at arbitrary
scales and improve the SR performance in Figure 1.

• Extensive experiments demonstrate CiaoSR achieves the
state-of-the-art performance in both SISR and arbitrary-
scale SR tasks. Besides, our CiaoSR has good generaliza-
tion on both in-scale and out-of-scale distributions. Last,
we extend our method to real-world SR settings to synthe-
size arbitrary-scale images.

2. Related Work
Single image super-resolution (SISR). SISR aims to syn-
thesize high-resolution (HR) images from low-resolution
(LR) images. Compared with DNN-based SR methods
[6–8, 23, 27, 50, 66, 67], methods in recent years build
on deep convolutional neural network (CNN) to improve
the performance, such as SRCNN [19], SRResNet [38],
EDSR [44], RDN [88] and RCAN [86]. To further im-
prove SR performance, some methods design CNN with
residual block [9, 34, 81], dense block [75, 88, 89] and others
[14, 16, 18, 20, 21, 25, 31, 32, 35, 37, 41–43, 59, 65, 70–72,
77, 83, 84, 87, 90]. In addition, some SR methods are built
based on attention mechanism [68], such as channel atten-
tion [17, 56, 86], self-attention (IPT [11] and SwinIR [40],
HAT [12]), non-local attention [45,48]. However, most meth-
ods focus on one specific scale, which limits the applicability
and flexibility in arbitrary-scale.

Arbitrary-scale super-resolution. To tackle this problem,
very recently, the more practical setup of arbitrary-scale SR
is considered, which aims to super-resolute images with
arbitrary scales by a single model. MetaSR [28] makes
the first attempt to propose an arbitrary-scale meta-upscale
module. To improve the performance, many arbitrary-scale
methods [64,73] are proposed. With the help of implicit neu-
ral representation [2, 10, 15, 22, 33, 51, 52, 55, 57, 58, 62, 63],
LIIF [13] predicts the RGB value at an arbitrary query coordi-
nate by taking an image coordinate and features of backbone
around the coordinate. The features are extracted by single
image super-resolution methods, e.g., EDSR [44], RDN [88]
and SwinIR [40]. To improve the performance, existing
methods [39, 78] propose to integrate more features in SR
models. For example, LTE [39] proposes a local texture
estimator by characterizing image textures in the Fourier
space. UltraSR [78] integrates spatial coordinates and pe-
riodic encoding in the implicit network. These methods
use the bilinear interpolation to ensemble nearby features.
However, such an ensemble way has no learnable parame-
ters. Recently, ITSRN [79] learns the weights by taking the
coordinate distance and scale token into a mapping. Most
methods learn the ensemble without the feature similarity.
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Figure 3. The architecture of our continuous implicit attention-in-attention network. Given an LR image, the encoder extracts features as
latent codes. For a query point, we have a query feature and key features close to the query point, and the scale-aware non-local attention
module extracts non-local features as value. Last, we use the triple of query, key and value to predict the RGB value at the query point.

3. Preliminary and Motivation
Let I be a continuous image, and x be a 2D coordinate

of a pixel in the image I . Formally, given a 2D coordinate x
in the continuous image domain and latent code Z extracted
by deep neural networks, the RGB value can be predicted by
an implicit image function which can be defined as follows,

I(x) = f(Z,x), (1)

where the implicit image function can be parameterized by a
multilayer perceptron (MLP). Note that this implicit image
function is shared by all images. For recent SISR methods
[40, 86], the implicit image function f can be implemented
as a PixelShuffle [60] with convolutions with a specific scale.
However, these methods are independent on the coordinates,
leading to an issue that they only adapt to the specific scale
and are inflexible to synthesize arbitrary-scale images.

To predict the RGB value Iq at an arbitrary query co-
ordinate xq, most existing methods [13, 39, 79] propose to
compute the RGB value at coordinate xq by directly ensem-
bling its neighborhood information,

Iq := I(xq) =
∑

(i,j)∈I
wi,j · f(Z∗

i,j ,xq − x∗
i,j), (2)

where I is the local region centered at the query coordinate
xq, e.g., I can be top-left, top-right, bottom-left, bottom-
right coordinates, and wi is the weight of the neighboring
pixel x∗

i,j , which is calculated w.r.t. the area of the rectangle
between xq and x∗

i,j , as shown in Figure 4. However, the
performance improvement is limited because the ensemble
weight wi,j is purely based on the coordinates. The visual
similarities are completely ignored in the weight calcula-
tion. Besides, these methods only consider the nearest latent
codes, leading to a limited receptive field. In this paper, our
goal is to learn the weights adaptively by leveraging both
visual information and coordinate information.

4. Proposed Method
The above local ensemble Eqn. (2) has a similar form

to the attention mechanism. Specifically, the weights wi in
Eqn. (2) can be modeled as an attention map and the latter
term f can be the value in the attention mechanism. Such an
attention map is related to the similarities of the latent code
and coordinate, and it can be calculated using both query
and key which can integrate the latent code and coordinate
information. In this sense, attention models can be used to
mitigate the drawbacks of previous methods (i.e., calculated
purely based on coordinates without considering any visual
information) by learning the soft weights from both visual
and coordinate information. However, the use of attention
in the implicit function is non-trivial because standard self-
attention [68] and neighborhood attention [26] mechanisms
are based on visual features, and not conditioned on the coor-
dinate information. To exploit the continuous representation
learning from both the coordinate information and visual
features, we propose a new attention for arbitrary-scale SR.

Continuous implicit attention-in-attention. The archi-
tecture of the proposed continuous implicit attention-in-
attention for arbitrary-scale SR (called CiaoSR) is shown in
Figure 3. It is called attention-in-attention because the value
contains an additional embedded attention that additionally
captures non-local information of repetitive patterns. Specifi-
cally, given an LR image, our attention is provided with both
the visual features and coordinate information to learn good
ensemble weights for the local neighboring latent codes for
any query at any arbitrary-scale s.

Given a query coordinate xq in the upsampled image, the
known LR pixels in the local region centered at xq are con-
sidered for the local ensemble. We define xk and xv as the
key and value coordinates of the local neighbor. Let Q,K
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and V be the latent code of query, key and value on the
corresponding coordinates, respectively. Given pairs of coor-
dinates and latent codes (Q,xq), (K,xk) and (V ,xv), we
define a new implicit attention function (called i-Attention)
to predict RGB values at the given query xq ,

Iq = i-Attention(Q,K,V ;xq,xk,xv), (3)

where the value feature V can be embedded with another
attention to aggregate more non-local information.

As shown in Figure 2, our implicit attention is differ-
ent from existing attention mechanisms by considering the
additional coordinate information. In particular, the self-
attention mechanism [68] without considering coordinates
cannot predict pixel features that are not on the grid. The
coordinate-based implicit attention calculates the distance
between a key xk and query coordinate xq, which ignores
the visual information and similarity of the features.
Implicit attention to learn weights for the local ensemble.
Unlike previous methods [13, 39] which directly use the
normalized area as the ensemble weights, we propose to
first use an attention to learn better weights for the ensemble
of the local region. Our attention takes both the coordinate
distance r, the local features Fl, as well as non-local features
G into account for the learning of the weight. Formally, the
attention can be written as

Iq = ϕq

(∑
(i,j)∈I

σ(Q⊤Ki,j)︸ ︷︷ ︸
ensemble weight

Vi,j

)
, (4)

where ϕq is the query network, σ is the Softmax function,
and I is the local region centered at xq . The query, key, and
value for this local ensemble attention are defined as

Q = F ∗,

Ki,j = ϕk([Fi,j , (rk)i,j , s]),

Vi,j = ϕv([Fi,j , F̃i,j ], (rv)i,j , s]),

(5)

where ϕk and ϕv are the key and value networks, respec-
tively, F ∗ are the features of nearest neighbors on the grid
of the LR image w.r.t. the query coordinate xq, Fi,j is a
local feature calculated by using the unfolding operator to
the latent codes at the (i, j)-th position, which is equivalent
to concatenating the latent codes in neighboring 3×3 region.
F̃i,j are non-local features, which will be introduced below
in detail. s = [sh; sw] is a two-dimensional scale, and rk
and rv are the relative distance between the coordinates in
the local region, i.e.,

rk = xq − (xk)i,j , rv = xq − (xv)i,j . (6)

Embedded scale-aware attention for non-local features.
Given a query coordinate, the local ensemble attention only
considers the keys and values in the small local region, re-
sulting in a limited receptive field. However, there may exist
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Figure 4. Comparison of different ensemble methods. (a) Most
existing methods calculate the weights related to the area of the
rectangle between the query coordinate and the nearest point. Such
weights are equivalent to the weight of the bilinear interpolation.
(b) Our attention-based ensemble calculates the attention map as
the weights for feature aggregation. Besides, the ensemble method
has a large receptive field for exploiting more information.

similar textures with different scales within a single image in
other positions. For example, repetitive patterns in different
scales (e.g., facades, windows, etc. in a building, as shown
in Figure 4) can exist in different locations within one image.
To exploit the useful non-local information, we propose an
embedded scale-aware non-local attention module, which
aggregates the information from all coordinates on the grid
of the LR image, motivated by [49]. Specifically, we obtain
query Q̃ and value features Ṽ from the latent code F of the
LR image, and downsample F to a scale s′ as a key feature
K̃. We first calculate the pixel-wise similarity between the
query located at (i, j) and the key on other coordinates, and
then aggregate the weighted information from all of them.
Lastly, we use a convolutional layer φ for downsampling
with the scale s′ normalized similarity matrix to aggregate
the features. Formally, the non-local feature F̃ located at
(i, j) can be calculated by

F̃i,j = φ

∑
u,v

exp
(
Q̃⊤

i,jK̃u,v

)
∑

u′,v′ exp
(
Q̃⊤

i,jK̃u′,v′

) Ṽ s′p×s′p
s′u,s′v

 , (7)

where Ṽ s′p×s′p
s′u,s′v is the value feature patch of the size s′p×s′p

located at (s′u, s′v), Q̃, K̃ and Ṽ are the query, key and
value’s non-local features, which can be calculated by

Q̃ = φq(F ),

K̃ = φk(F ↓s′),
Ṽ = φv(F ),

(8)

where ↓s′ is the downsampling operation with a given scale
s′ which can be {2, 3, 4}, φq , φk and φv are query, key and
value networks. Different from [49], our method can inte-
grate multi-scale features. In the experiment, we can search
for relevant features in a small window (e.g., 256×256), in-
stead of the entire image. In this way, our method can guar-
antee a large receptive field, and reduce computational cost.
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Table 1. Quantitative comparison with state-of-the-art methods for arbitrary-scale SR on the DIV2K validation set (PSNR (dB)). Bold
indicates the best performance. † indicates the implementation of [39].

In-scale Out-of-scaleBackbones Methods ×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

- Bicubic 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59

EDSR [44]

EDSR-baseline [44] 34.55 30.90 28.94 - - - - -
EDSR-baseline-MetaSR [28] 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
EDSR-baseline-LIIF [13] 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48
EDSR-baseline-ITSRN† [79] 34.71 30.95 29.03 26.77 23.71 22.17 21.18 20.49
EDSR-baseline-LTE [39] 34.72 31.02 29.04 26.81 23.78 22.23 21.24 20.53
EDSR-baseline-CiaoSR (ours) 34.91 31.15 29.23 26.95 23.88 22.32 21.32 20.59

RDN [88]

RDN-baseline [88] 34.94 31.22 29.19 - - - - -
RDN-MetaSR [28] 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47
RDN-LIIF [13] 34.99 31.26 29.27 26.99 23.89 22.34 21.31 20.59
RDN-ITSRN† [79] 35.09 31.36 29.38 27.06 23.93 22.36 21.32 20.61
RDN-LTE [39] 35.04 31.32 29.33 27.04 23.95 22.40 21.36 20.64
RDN-CiaoSR (ours) 35.15 31.42 29.45 27.16 24.06 22.48 21.43 20.70

SwinIR [40]

SwinIR-baseline [40] 34.94 31.22 29.19 - - - - -
SwinIR-MetaSR† [28] 35.15 31.40 29.33 26.94 23.80 22.26 21.26 20.54
SwinIR-LIIF† [13] 35.17 31.46 29.46 27.15 24.02 22.43 21.40 20.67
SwinIR-ITSRN† [79] 35.19 31.42 29.48 27.13 23.83 22.31 21.31 20.55
SwinIR-LTE [39] 35.24 31.50 29.51 27.20 24.09 22.50 21.47 20.73
SwinIR-CiaoSR (ours) 35.29 31.55 29.59 27.28 24.15 22.54 21.51 20.74

5. Experiments
Datasets. For the arbitrary-scale SR task, we follow [13, 39]
and use DIV2K [1] as the training set, which consists of
800 images in 2K resolution. In testing, we evaluate the
models on the DIV2K validation set and a wide range of
standard benchmark datasets, including Set5 [3], Set14 [80],
B100 [46], Urban100 [29], and Manga109 [47].

Evaluation metrics. We use PSNR to evaluate the quality
of the synthesized SR images. Following [13, 39], the PSNR
value is calculated on all RGBs channels for the DIV2K
validation set, and additionally also calculated on the Y
channel (i.e., luminance) of the transformed YCbCr space
for other benchmark test sets. In addition, other evaluation
metrics (such as SSIM [76] and LPIPS [85]) are provided to
evaluate the image quality.

Implementation details. We follow the same experimental
setup as prior works [13, 39]. To synthesize paired training
data, we first crop the 48s×48s patches as ground-truth (GT)
images, and use the Bicubic downsampling in PyTorch to
have LR images with the patch size of 48×48, where s is
a scale factor sampled in the uniform distribution U(1, 4).
We sample 482 pixels from both GT images and the cor-
responding coordinates. We use the existing SR models
(e.g., EDSR [44], RDN [88] and SwinIR [40]) as backbones
by removing their upsampling modules. The detailed archi-
tecture of our implicit network is provided in the supple-
mentary material. For the training, we use Adam [36] as
the optimizer, and use L1 loss to train all models for 1000
epochs with the batch size of 16 per GPU. We set the learn-
ing rate as 1e − 4 at the beginning and decay the learning
rate by a factor of 0.5 every 200 epochs. These experimental
settings are identical to [13, 28, 39].

5.1. Comparisons with State-of-the-Art

Quantitative results. In Tables 1-3, CiaoSR achieves the
best performance with the highest PSNR across all datasets
with all backbones concerned on both in-scale and out-of-
scale distributions. For the in-scales, in particular, our model
has a remarkable PSNR gain of 0.3dB on Urban100 (×4),
compared with the previous SOTA method [39] under the
same RDN backbone. It is worth noting that CiaoSR with
the RDN backbone [88] can surpass the performance of the
better backbone SwinIR [40] (with its original upsampling
module). With the help of the continuous-scale training, a
single SR model trained with our method has better gen-
eralization performance than vanilla SR models (including
EDSR [44], RDN [88] and SwinIR [40] trained on spe-
cific scale. For the out-of-scale experiments, our model
also achieves the best generalization performance on un-
seen scales. The vanilla EDSR-baseline [44], RDN [88] and
SwinIR [40] cannot be applied on the out-of-scale experi-
ments because their decoder can only predict the scale that
it was trained on. We observe that our method yields the
largest improvement on Urban100 over existing arbitrary-
scale methods (e.g., LIIF [13] and LTE [39]).

Qualitative results. In Figure 5, we provide qualitative
comparisons with other arbitrary-scale SR methods. Our
model is able to synthesize the SR images with sharper
textures than other methods. Taking the second line as an
example, the textures in the LR image are degraded, but
CiaoSR is still able to restore the textures of the building. In
contrast, other methods can only restore part of the textures
possibly due to the limitations of the local ensemble and
insufficient features. More visual results on more test sets
are put in the supplementary materials.
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Table 2. Quantitative comparison with state-of-the-art methods for in-scale SR on benchmark datasets (PSNR (dB)). Bold indicates the best
performance. † indicates our implementation.

Set5 [3] Set14 [80] B100 [46] Urban100 [29] Manga109 [47]Methods ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

RDN [88] 38.24 34.71 32.47 34.01 30.57 28.81 32.34 29.26 27.72 32.89 28.80 26.61 39.18 34.13 31.00
RDN-MetaSR [28] 38.22 34.63 32.38 33.98 30.54 28.78 32.33 29.26 27.71 32.92 28.82 26.55 - - -
RDN-LIIF [13] 38.17 34.68 32.50 33.97 30.53 28.80 32.32 29.26 27.74 32.87 28.82 26.68 39.26 34.21 31.20
RDN-ITSRN† [79] 38.23 34.76 32.55 34.19 30.59 28.88 32.38 29.32 27.79 33.07 28.96 26.77 39.34 34.39 31.37
RDN-LTE [39] 38.23 34.72 32.61 34.09 30.58 28.88 32.36 29.30 27.77 33.04 28.97 26.81 39.28 34.32 31.30
RDN-CiaoSR (ours) 38.29 34.85 32.66 34.22 30.65 28.93 32.41 29.34 27.83 33.30 29.17 27.11 39.51 34.57 31.57
SwinIR [40] 38.35 34.89 32.72 34.14 30.77 28.94 32.44 29.37 27.83 33.40 29.29 27.07 39.60 34.74 31.67
SwinIR-MetaSR [28] 38.26 34.77 32.47 34.14 30.66 28.85 32.39 29.31 27.75 33.29 29.12 26.76 39.46 34.62 31.37
SwinIR-LIIF [13] 38.28 34.87 32.73 34.14 30.75 28.98 32.39 29.34 27.84 33.36 29.33 27.15 39.57 34.68 31.71
SwinIR-ITSRN† [79] 38.22 34.75 32.63 34.26 30.75 28.97 32.42 29.38 27.85 33.46 29.34 27.12 39.60 34.75 31.74
SwinIR-LTE [39] 38.33 34.89 32.81 34.25 30.80 29.06 32.44 29.39 27.86 33.50 29.41 27.24 39.63 34.79 31.79
SwinIR-CiaoSR (ours) 38.38 34.91 32.84 34.33 30.82 29.08 32.47 29.42 27.90 33.65 29.52 27.42 39.67 34.84 31.91

Table 3. Quantitative comparison with state-of-the-art methods for out-of-scale SR on benchmark datasets (PSNR (dB)). Bold indicates the
best performance. † indicates our implementation.

Set5 [3] Set14 [80] B100 [46] Urban100 [29] Manga109 [47]Methods ×6 ×8 ×12 ×6 ×8 ×12 ×6 ×8 ×12 ×6 ×8 ×12 ×6 ×8 ×12

RDN-MetaSR [28] 29.04 29.96 - 26.51 24.97 - 25.90 24.83 - 23.99 22.59 - - - -
RDN-LIIF [13] 29.15 27.14 24.86 26.64 25.15 23.24 25.98 24.91 23.57 24.20 22.79 21.15 27.33 25.04 22.36
RDN-ITSRN† [79] 29.32 27.25 24.86 26.68 25.17 23.28 26.01 24.93 23.58 24.23 22.81 21.16 27.45 25.04 23.35
RDN-LTE [39] 29.32 27.26 24.79 26.71 25.16 23.31 26.01 24.95 23.60 24.28 22.88 21.22 27.49 25.12 22.43
RDN-CiaoSR (ours) 29.46 27.36 24.92 26.79 25.28 23.37 26.07 25.00 23.64 24.58 23.13 21.42 27.70 25.40 22.63
SwinIR-MetaSR [28] 29.09 27.02 24.82 26.58 25.09 23.33 25.94 24.87 23.59 24.16 22.75 21.31 27.29 24.96 22.35
SwinIR-LIIF [13] 29.46 27.36 - 26.82 25.34 - 26.07 25.01 - 24.59 23.14 - 27.69 25.28 -
SwinIR-ITSRN† [79] 29.31 27.24 24.79 26.71 25.32 23.30 26.05 24.96 23.57 24.50 23.06 21.34 27.72 25.23 22.47
SwinIR-LTE [39] 29.50 27.35 - 26.86 25.42 - 26.09 25.03 - 24.62 23.17 - 27.83 25.42 -
SwinIR-CiaoSR (ours) 29.62 27.45 24.96 26.88 25.42 23.38 26.13 25.07 23.68 24.84 23.34 21.60 28.01 25.61 22.79

5.2. Ablation Study

In this section, we conduct ablation studies to investigate
effect of each component in our architecture. Our CiaoSR
consists of the attention-in-attention network and a scale-
aware non-local attention module. Table 4 shows the contri-
butions of each component on performance.
Attention-in-attention. The attention-in-attention network
is the main branch of our architecture. On the one hand, the
network learns to ensemble weights with both the coordi-
nates and the features. On the other hand, the network is
able to aggregate the local and non-local information to im-
prove the SR performance. To investigate how the attention
mechanism affects the performance, we remove this module
and replace it with an MLP to predict the weights of the
ensemble. The coordinate information is still fed into the
MLP to enable arbitrary scale prediction. As shown in Table
4, the method suffers a significant performance drop without
the attention mechanism.
Non-local attention. The embedded non-local attention is
proposed to capture the scale-aware information from other
locations of the images to improve the performance. We
investigate the importance of the non-local attention in an
implicit model by comparing the results with and without
this module. As shown in Table 4, by introducing the non-
local attention, a further performance gain is achieved. This

is because our module can exploit texture information from
other scales in a large perceptual field.
Training with different types of scales. We evaluate the ef-
fectiveness of our implicit model when trained with discrete
(including single scale ({2}/{3}/{4}) and multiple scales
{2, 3, 4}) and continuous scales [1, 4], and show the results
in Table 5. For the discrete type of scales, we observe that
training our implicit model with a specific scale can also
achieve significant improvement for that specific scale, com-
pared with the original upsampling module in RDN [88].
Taking ×2 scale as an example, our method has an improve-
ment of 0.24dB over RDN. However, training with a specific
scale has poor generalization performance on unseen in-scale
and out-of-scale. A few existing works [34, 44] consider the
training with multiple discrete scales and found the perfor-
mance of the joint learned model is comparable with single
scale networks. Based on our implicit attention module, we
are able to deal with more scales and exploit the correlation
of multiple SR tasks at different scales. Unlike previous
works [34, 44] which only achieve comparable performance
compared with single scale models, CiaoSR achieves a bet-
ter performance than training with one scale. We found our
model has further improvement when trained on continuous
scales. The improvement gain is attributed to our continuous
representations design and our architecture, which enables
efficient learning from cross-scale information.
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Bicubic RDN [88] RDN-MetaSR [28] RDN-LIIF [13]

RDN-ITSRN [79] RDN-LTE [39] RDN-CiaoSR (ours) GT

TaiyouNiSmash, ×8, Manga109 [47]

Bicubic RDN∗ [88] RDN-MetaSR [28] RDN-LIIF [13]

RDN-ITSRN [79] LTE [39] RDN-CiaoSR (ours) GT

Figure 5. Visual comparison of different methods on benchmarks. “∗” means the model first synthesizes twice to ×8 images.

LR RealSR BSRGAN Real-ESRGAN Ours

Figure 6. Visual comparison of different methods on the RealSRSet [82] and DPED [30] dataset (×8).

5.3. Further Study
Effect on synthesis steps. Our trained model is able to
synthesize SR images with any given arbitrary scale in one
step. A natural alternative would be to synthesize a large
scale in multiple steps. Taking a large scale (e.g., ×12)
as an example, SR images can be generated by two steps
(e.g., →×2→×12), or three steps (e.g., →×2→×4→×12).
We compare the performance of synthesizing a large scale in
one and multiple steps, and the results on the Urban100 and
Manga109 datasets are shown in Table 6. We observe that
our way of synthesizing SR images in one step has the best
performance under the PSNR and SSIM metrics. In contrast,
the performance gets worse with more steps because errors
can accumulate along the multiple synthesizing steps.

Model size and inference time. To demonstrate the effi-
ciency of our proposed method, we investigate the model
size and inference time of different arbitrary-scale SR meth-
ods. Results are shown in Table 7. Specifically, we set

the input size as 192×192 and calculate the inference time
on an NVIDIA Quadro RTX 6000. Our implicit model
has much fewer parameters than the previous SOTA meth-
ods (e.g., LTE [39]). Our model has the best performance
although it requires a little more inference time due to ex-
ploiting the non-local features.

More evaluation metrics. To further demonstrate the effec-
tiveness of our proposed method, we apply more evaluation
metrics (e.g., SSIM [76] and LPIPS [85]) to evaluate the
image quality across different methods on the Urban100
dataset. These evaluation metrics are widely used in the
SR community. In general, higher SSIM and lower LPIPS
correspond to better performance. As shown in Table 8,
our method achieves the highest SSIM and lowest LPIPS,
and thus has the best performance on both in-scale and out-
of-scale distributions. Compared with other methods, our
proposed CiaoSR is able to maintain more structural texture
and perceptual information.
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Table 4. Ablation study on each component of our networks on
Urban100. We use RDN [88] as the backbone.

Attention-in-attention ✗ ✓ ✓
Scale-aware Attention Network ✗ ✗ ✓

In-scale
×2 32.87 33.24 33.30
×3 28.82 29.10 29.17
×4 26.69 26.96 27.11

Out-of-scale ×6 24.22 24.50 24.58
×8 22.80 22.98 23.13

Table 5. Ablation study on training our implicit model with different types of
scales on Urban100.

In-scale Out-of-scaleType Training scale s ×2 ×3 ×4 ×6 ×8

Discrete

s ∈ {2} 33.13 27.01 25.60 22.27 22.09
s ∈ {3} 31.39 29.06 25.77 23.44 22.16
s ∈ {4} 31.42 27.87 26.88 24.28 22.85
s ∈ {2, 3, 4} 33.15 29.14 27.02 24.47 23.03

Continuous s ∈ [1, 4] 33.30 29.17 27.11 24.58 23.13

Table 6. Comparison of (PSNR and SSIM) for different synthesis
steps on Urban100 [29] and Manga109 [47].

Urban100 [29] Manga109 [47]Type Synthesis steps PSNR SSIM PSNR SSIM

Multiple steps →×2→×4→×12 21.28 0.557 22.46 0.720
→×2→×12 21.32 0.558 22.53 0.721

One step →×12 21.42 0.561 22.63 0.723

Table 7. Comparisons of model size, inference time and performance gain
of different models.

Different models Meta-SR [28] LIIF [13] ITSRN [79] LTE [39] CiaoSR
Model size (M) 1.7 1.6 0.7 1.7 1.4
Inference time (ms) 237 171 343 148 528
PSNR (dB) 26.55 26.68 26.77 26.81 27.11
Performance gain (dB) -0.06 0.07 0.16 0.2 0.5

Table 8. Comparison of more evaluation metrics (SSIM↑ [76] and LPIPS↓ [85]) for
different methods on Urban100.

In-scale Out-of-scale
RDN-Method ×2 ×3 ×4 ×6 ×8

SSIM LPIPS SSIM LPIPS SSIM LPIPS SSIM LPIPS SSIM LPIPS
LIIF [13] 0.934 0.104 0.866 0.197 0.804 0.267 0.704 0.360 0.636 0.425
MetaSR [28] 0.935 0.104 0.866 0.195 0.805 0.261 0.698 0.353 0.624 0.423
ITSRN [79] 0.936 0.102 0.868 0.193 0.807 0.259 0.703 0.350 0.633 0.417
LTE [39] 0.936 0.104 0.868 0.195 0.807 0.264 0.707 0.356 0.639 0.421
CiaoSR 0.938 0.100 0.871 0.188 0.814 0.255 0.718 0.346 0.651 0.408

Table 9. Quantitative comparisons of different Real-
world SR methods on RealSRSet [82].

Methods Scale NIQE↓ BRISQUE↓ PIQE↓

RealSR [5] ×8 4.7949 23.3228 29.3976
×16 3.3946 21.6390 21.4116

BSRGAN [82] ×8 4.7007 37.0638 36.1889
×16 4.1408 39.6252 37.9176

Real-ESRGAN [74] ×8 4.5280 40.6521 59.8915
×16 5.6442 53.9364 84.3611

Ours-real ×8 3.5894 30.9219 29.8554
×16 3.9461 41.8145 58.8244

5.4. Real-World Arbitrary-Scale Image SR
We extend our proposed method to real-world applica-

tions with the ultimate goal of synthesizing real images with
arbitrary scales. Specifically, we train our model on the
DIV2K dataset [1], and test on the RealSRSet [82] and
DPED [30] datasets. We apply the practical degradation
models (including blur, noise, compression, etc.) of BSR-
GAN [82] and Real-ESRGAN [74] to synthesize paired train-
ing data on DIV2K [1]. We set the HR patch size of training
data as 256, and the batch size as 48. We use Adam [36]
as the optimizer, and adopt the exponential moving average
(EMA). We first train our model with L1 loss for 1000K
iterations with the learning rate of 2×10−4 and train with
L1 loss, perceptual loss and GAN loss together for 400K
iterations with the learning rate of 1×10−4. More training
details can be found in the supplementary materials.

Since there are no arbitrary-scale SR methods applied
to real-world images, we mainly compare with the state-of-
the-art real-world image SR models, including RealSR [5],
BSRGAN [82] and Real-ESRGAN [74]. Because there are
no ground-truth (GT) real images, we apply non-reference
image quality assessment (e.g., NIQE [54], BRISQUE [53]
and PIQE [69]) to evaluate the image quality. As shown in
Table 9, our model does not optimize for all metrics since
these metrics cannot well match the actual human percep-
tual [4]. To address this, we further compare the visual
results on the RealSRSet [82] and DPED [30] datasets in
Figure 6. Our proposed method is able to synthesize real

SR images with realistic textures. In particular, our method
is able to synthesize more details of a dog in the first line
and more clear digit ‘5’ in the second line, compared with
other methods. In contrast, other methods often introduce
unnatural artifacts within images, especially for out-of-scale
distributions. To further investigate the effectiveness of our
model, we provide more visual results of our real model in
the supplementary materials.

6. Conclusion
In this paper, we have proposed a novel continuous im-

plicit attention-in-attention network for arbitrary-scale image
super-resolution, called CiaoSR. Specifically, our CiaoSR
first introduces a scale-aware non-local attention in our atten-
tion to exploit more relevant features, and then predicts RGB
values by locally ensembling features with the learnable
attention weights. More importantly, CiaoSR has good flexi-
bility and applicability since it can be used behind any SR
backbone to boost the performance. Extensive experiments
on all benchmark datasets demonstrate the superiority of our
CiaoSR in both SISR and arbitrary-scale SR tasks. Besides,
our CiaoSR has good generalization performance on both
in-scale and out-of-scale distributions. Last, we extend our
method to the real-world application to synthesize real SR
images with arbitrary scale.
Acknowledgements: This work was partly supported by the
Huawei Fund, the ETH Zürich General Fund (OK) and the
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