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Abstract

Video-based person re-identification (Re-ID) is a promi-
nent computer vision topic due to its wide range of video
surveillance applications. Most existing methods utilize
spatial and temporal correlations in frame sequences to
obtain discriminative person features. However, inevitable
degradation, e.g., motion blur contained in frames, leading
to the loss of identity-discriminating cues. Recently, a new
bio-inspired sensor called event camera, which can asyn-
chronously record intensity changes, brings new vitality to
the Re-ID task. With the microsecond resolution and low
latency, it can accurately capture the movements of pedes-
trians even in the degraded environments. In this work, we
propose a Sparse-Dense Complementary Learning (SDCL)
Framework, which effectively extracts identity features by
fully exploiting the complementary information of dense
frames and sparse events. Specifically, for frames, we build
a CNN-based module to aggregate the dense features of
pedestrian appearance step by step, while for event streams,
we design a bio-inspired spiking neural network (SNN)
backbone, which encodes event signals into sparse feature
maps in a spiking form, to extract the dynamic motion cues
of pedestrians. Finally, a cross feature alignment module
is constructed to fuse motion information from events and
appearance cues from frames to enhance identity represen-
tation learning. Experiments on several benchmarks show
that by employing events and SNN into Re-ID, our method
significantly outperforms competitive methods. The code
is available at https://github.com/Chengzhi-
Cao/SDCL.
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Figure 1. Visual examples of learned feature maps. From top to
bottom: (a) original images, (b) corresponding events, (c) feature
maps of events, (d) feature maps of frames in PSTA [49] (w/o
events), (e) feature maps of frames in our network (w/ events).

1. Introduction

Person re-identification (Re-ID) identifies a specific per-
son in non-overlapping camera networks and is used in a
variety of surveillance applications [15, 31, 32]. Due to the
availability of video data, video-based person Re-ID has at-
tracted considerable attention. Compared with image-based
Re-ID methods, video sequences contain numerous detailed
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spatial and temporal information, which is beneficial to im-
proving Re-ID performance [34, 46, 50].

Most existing video-based Re-ID approaches rely on
spatial and temporal correlation modules, which are use-
ful for deriving human representations that are resistant to
temporal changes and noisy regions [19,33,51,53]. To gen-
erate a person’s representation from a video, they focus on
shared information across numerous frames while taking
into consideration the temporal context. Although video
data can provide a wealth of appearance cues for identity
representation learning, they also bring motion blur, illu-
mination variations, and occlusions [24, 54]. These data-
inherent phenomena result in the loss and ambiguity of es-
sential identity-discriminating shape cues, and cannot be
well solved by existing video-based Re-ID solutions [43].

Instead of depending solely on video sequences, this
work intends to exploit event streams captured by event
cameras to compensate for lost information and guide
feature extraction in frames [44, 61]. Since the novel
bio-inspired event camera can record per-pixel intensity
changes asynchronously, it has high temporal resolution,
high dynamic range, and low latency [12], providing a new
perspective for person Re-ID. In other words, unlike tradi-
tional cameras that capture dense RGB pixels at a fixed rate,
the event camera can accurately encode the time, location,
and sign of the brightness changes [37, 41], offering robust
motion information to identify a specific person.

In this paper, we propose a sparse-dense complemen-
tary learning network (SDCL) to fully extract complemen-
tary features of consecutive dense frames and sparse event
streams for video-based person Re-ID. First, for dense
video sequences, we build a CNNs-based backbone to ag-
gregate frame-level features step-by-step. For sparse event
streams, we design a deformable spiking neural network to
suit the sparse and asynchronous characteristics of events.
Because spiking neural network (SNN) has a specific event-
triggered computation characteristic that can respond to the
events in a nearly latency-free way, it is naturally fit for
processing events and can preserve the spatial and tempo-
ral information of events by utilizing a discretized input
representation. Meanwhile, we introduce deformable op-
eration to deal with the degradation of spikes in deeper
layers of SNN, better utilizing the spatial distribution of
events to guide the deformation of the sampling grid. Fi-
nally, to jointly utilize sparse-dense complementary infor-
mation, we propose a cross-feature alignment module to
exploit the clear movement information from events and ap-
pearance cues from frames to enhance representation capac-
ity. As shown in Figure 1, the feature maps of events still
preserve the sparse distribution of events, which can guide
the baseline to capture and learn discriminative representa-
tion clearly. Compared with the baseline (without events)
in the fourth row, the learned feature maps in the fifth row

show that our method tends to focus on the most important
semantic regions in original frames and easily selects the
better represented areas. The representation of events shows
the contour and pose of a specific person. It presents that the
sparse events can guide the baseline network to capture and
learn discriminative representation clearly. the learned fea-
ture maps of dense RGB frames and sparse events intend to
capture different semantic regions, but they still have spatial
correlation. Both of them contribute to the final results.

This work makes the following contributions:

• We introduce a new modality, called event streams,
and explore its dynamic properties to guide person Re-
ID. To the best of our knowledge, this is the first event-
guided solution to tackle the video-based Re-ID task.

• We propose a sparse-dense complementary learning
network to fully utilize the sparse events and dense
frames simultaneously to enhance identity representa-
tion learning in degraded conditions.

• We design a deformable spiking neural network to
suit the sparse characteristics of event streams, which
greatly utilizes the spatial consistency of events to pro-
vide motion information for dense RGB frames in a
lightweight architecture.

Extensive experiments are conducted on multiple datasets
to demonstrate how the bio-inspired event camera can help
improve the Re-ID performance of baseline models and
achieve higher retrieval accuracy than SOTA methods.

2. Related Work
Video-based Re-ID. Following the development of

image-based Re-ID [6,7,23,30,38,39,48,58], there are nu-
merous recent progress in video-based Re-ID [14,20,40,51,
55]. Most video-based Re-ID approaches aim to fully use
spatial and temporal information and produce person repre-
sentations that are resistant to a variety of factors, includ-
ing human position, occlusion, and so on. To exploit the
image-level features in a sequence-level person representa-
tion, Eom et al. [11] introduced a temporal memory mod-
ule to save attentions that are optimized for typical tempo-
ral patterns in person videos. Wang et al. [49] explored the
spatial correlations within a frame to determine the atten-
tion weight of each location and explored temporal consis-
tency information to suppress the interference features and
strengthen the discriminative ones. Aich et al. [1] presented
a flexible new computational unit to extract complementary
information along the spatio-temporal dimension.

Event-based Vision. Since events are bio-inspired vi-
sual signals that resemble the form of asynchronous spike
trains, numerous bio-inspired learning methods are pro-
posed for the event-based learning, such as recurrent neural
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Figure 2. The overview of our Sparse-Dense Complementary Learning Network (SDCL), and we use four frames as an example. Given
the frames, we first utilize ResNet-50 [17] as a backbone to extract frame-level features. For events, we deploy Spiking Neural Network
(SNN) to preserve the spatial and temporal distribution of events and extract event-level features. With the guidance of events, the cross
feature alignment module is utilized to compute the spatial consistency between frames and events, and then fuse them. Finally, a pyramid
aggregation module is utilized to aggregate two types of features. “FFB” and operation “η” will be discussed later.

network [4, 9, 25]. There are also many CNNs-based meth-
ods to process event streams. Duan et al. [10] firstly de-
ployed 3D U-Net and incorporated an E2I module to lever-
age HR image information to denoising and super-resolving
events. They also implemented a display-camera system
and proposed a multi-resolution event dataset. Paikin et
al. [36] designed a three-phase architecture that fuses a con-
ventional frame stream with the output of an event camera.
Gehrig et al. [13] utilized cost volumes and introduces re-
currency to incorporate temporal priors into dense optical
flow estimation from event cameras. However, there still
is no event-guided solution specifically designed for video-
based person Re-ID.

3. Methods

3.1. Overview

As shown in Figure 2, our method takes the frame se-
quences with corresponding events in one timestamp T as
the input. For RGB frames, they are fed into the ResNet
backbone [17], whose parameters are trained for ImageNet
Classification [28]) to extract features. For event streams,

they are fed into SNN to extract spatial and temporal fea-
tures of event streams simultaneously. Then, both frame
features and sparse event features pass through a cross fea-
ture alignment module to extract complementary informa-
tion contained in dense frames and sparse events. Finally,
we employ a pyramid aggregation module to fuse two types
of features ro enhance the identity representations. Below
we detail each module of our SDCL.

3.2. Event Representation

When brightness change exceeds a predefined threshold
c in a timestamp t, an event will be recorded as(xt, yt, pt, t),
where (xt, yt) and t denote the spatial and temporal location
of the event, respectively. pt ∈ {+1,−1} represents the
polarity of the brightness changes (increase or decrease).
The polarity is computed by:

pt = Φ(log(
Lxy(t)

Lxy(t′)
), c), (1)

where c is the intensity threshold deciding whether an event
can be recorded, Lxy(t) and Lxy(t

′) represent the instanta-
neous brightness intensity at time t and its previous time t′,
respectively. Φ(·, ·) is a piece-wise function.
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3.3. Deformable Spiking Neural Network

To suit the sparse characteristic of events, we deploy a
spiking neural network to extract event features, and then
propose deformable mapping operation to guide the defor-
mation of convolutions and maintain the spatial information
in events.

Spiking Model. The polarity of event streams represents
an increase or decrease of brightness at one pixel. Inspired
by the dynamics and adaptability of biological neurons, we
choose the LIF model [42] to balance biological neurons’
complicated dynamic features and their mathematical ex-
pressions. It is described as:

τm
dV (t)

dt
= −V (t) + I(t), (2)

where V (t) and I(t) denote the neuronal membrane poten-
tial and the pre-synaptic input at time t, τm is a constant.
When V (t) exceeds Vth, the neuron generates a spike and
resets its membrane potential to its initial value. Here I(t)
is calculated as the weight sum of pre-spikes:

I(t) =

n∑
i=1

(wi

∑
k

ψi(t− tk)), (3)

where n denotes the number of pre-synaptic weights, wi

is the synaptic weight connecting i-th pre-neuron to post-
neuron. ψi(t − tk) is a spike event from i-th pre-neuron
at time tk that k-th spike occurred. Its value is equal to 1
when t = tk. The impact of each pre-spike is modulated by
the corresponding synaptic weight (wi) to generate a current
influx to the post-neuron. Thus, the forward propagation is:

xt+1,n
i =

n−1∑
j=1

wn
ijo

t+1,n−1
j , (4)

ut+1,n
i = ut,ni f(ot,ni ) + xt+1,n

i + bni , (5)

ot+1,n
i = g(ut+1,n

i ), (6)

where n and t denote the nth layer and timestamp,wij is the
learning weight from the jth neuron in pre-synaptic layer to
the ith neuron in the post-synaptic layer. f(x) = τe−

x
τ , and

g(·) is a piece-wise function:

g(x) =

{
1, x ≥ Vth

0, otherwise
(7)

Most of recent works [42] [12] have shown that the num-
ber of spikes drastically vanishes at deeper layers, resulting
in serious performance degradation (as shown in Figure 4).
It clearly limits the application of SNN in computer vision.
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Figure 3. The structure of Leaky Integrate and Fire (LIF) Spike
Neuron. The synaptic weight modulates the pre-spikes, which are
then incorporated as a current influx in the membrane potential and
decay exponentially. The post-neuron fires a post-spike and resets
the membrane potential whenever the membrane potential reaches
the firing threshold.

Event Deformable Mapping. To tackle abovementioned
issue, previous work [29] has demonstrated that a hybrid
SNN-CNN architecture can retain performance. But event
stream is asynchronous and spatially sparse, so there are
lots of margins in it. The traditional convolution, widely
used in RGB images, is not suitable to extract event fea-
tures. Motivated by the deformable convolutional network
[8, 60], we utilize the sparse distribution of events to guide
the deformation of convolutions to tackle degradations in
SNN. Traditional deformable convolution is not suitable for
event streams since the offsets are learned from the preced-
ing feature maps and RoIs, but there are also some useless
regions in event streams. So we intend to utilize the dis-
tribution of events to directly guide the deformation. As
shown in Figure 2, we define the grid G as the receptive
field. Take standard 2D convolution for example, they cal-
culate the neighboring pixels but some of them don’t have
events, so most of calculation is useless. Firstly, We define
a key events (x0, y0), and calculate the nearest events with
the same number as standard kernel, and return the coordi-
nates of them {(xn, yn)|n = 1, . . . N}. When we find the
nearest events, our grid G will change its shape and totally
cover them. This operation can be calculated as:

Y (m) =

N∑
n=1

wn ·X(m+mn +△mn), (8)

where mn ∈ {(−1. − 1), (−1, 0), ..., (1, 1)} represents the
locations in grid G, {△mn|n = 1, ..., N} are the offsets, w
is the learnable weight, andN = |G|. Y (m) andX(m) rep-
resent the features at location m from the input and output
feature maps, respectively. We first choose a single event
as the center, and employ manhattan distance to capture the
neighboring events {xn, yn}:

Ln = |xn − x0|+ |yn − y0|, (9)

then we choose the nearest position of events as the sam-
pling locations. We will enumerate all spatial locations in
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the event voxel. The offset can be calculated as:

△mn(xn) = xn − x0 −mn(xn), (10)
△mn(yn) = yn − y0 −mn(yn). (11)

In the event voxel, the center of deformable convolution
m0 and the sampling regions mn + △mn will enumerate
the location of all events. In this way, our deformable con-
volution only calculates the regions of events without con-
sideration of margins in voxels.

3.4. Cross Feature Alignment

The aim of this module is to effectively aggregate dense
frame features and sparse event features. The frames are fed
into a backbone, such as ResNet-50 [17] to obtain 2D fea-
ture map, while the event sequences are processed by SNN
to generate 3D voxel features. Although many existing at-
tention operations can be directly used to aggregate these
heterogeneous features, they still have limitations. For ex-
ample, it is hard to keep the spatial consistency since the
marginal regions in event sequences have great influence on
the final feature maps. So we dynamically choose several
key-point regions on the 3D voxel for each frame feature
and vice versa To extract complementary features of frames
and events. We design a symmetrical alignment structure so
that each mode can learn extra attributes from the other one.

Assuming Fi is the image feature in i-th position, given a
2D feature map F = {F1, F2, ..., FHW } and voxel features
P = {P1, P2, ..., PJ}, the reference points Ri = (rix, r

i
y)

in the image plane are calculated from voxel feature Pi =
(pix, p

i
y, p

i
z) as follows:

Ri = Te−f · Pi, (12)

where Te−f is the projection from events to frames. The
query feature Qi are computed as an element-wise product
of the frame feature Fi and its corresponding event feature
Pj . The final operation η(·, ·) can be calculated by:

η(Qi, Ri) =

M∑
m=1

Wm[

I∑
i=1

MLP (Qi)·W ′
mF(Ri+△R)], (13)

where Wm and W ′
m represent learnable weights, and MLP

is a multilayer perceptron to generate attention scores. M
and I are number of attention heads and sampling positions,
respectively. △R is the sampling offset. The same opera-
tion in Eq. 13 is also employed to choose key-point regions
on 2D feature maps for each voxel feature. This comple-
mentary operation can not only conduct cross-domain re-
lational modeling with the help of dynamically generated
sampling offset but also maintain position consistency be-
tween events and frames to obtain the reference points. By
regarding it as a multi-modal learning method, each mode
can actually learn some extra attributes from other modal-
ities. After cross-feature alignment, we mutually enhance

Figure 4. Visualization of features in SNN and deformable map-
ping. (a) presents events; (b) shows that the deeper the SNN layer
is, the more the number of spikes vanishes. But using deformable
mapping (c) can still preserve spatial information of events.

the feature of events and frames at lower stages of the net-
work. Both event features and frame features contribute to
the final results.

3.5. Pyramid Aggregation

To further exploit the spatial and temporal correlation
from two types of modalities, and fuse information from
both modes, we deploy a pyramid structure to aggregate
two types of features. We first utilize a convolutional layer
to transform the event voxel with the same size as frame
features. Then, the adjacent frame features and event fea-
tures will be fed into feature fusion block (FFB). We adopt
STAM [49] module as FFB to obtain hierarchical features
with temporal receptive fields. The final output features
from this hierarchical architecture will pass through Global
Average Pooling layer. The symmetrical multi-stage struc-
ture can not only maintain the spatial consistency between
events and frames, but also obtain long-range temporal de-
pendence from them.

3.6. Loss Function

Triplet loss and identification loss are widely used in
person Re-ID. Following [1], we adopt the cross-entropy
loss with label smoothing as the identification loss, and add
batch triplet loss with hard mining strategy to optimize out
network. The total loss Ltotal is the combination of two
losses:

Ltotal = λ1Lcls + λ2Ltri, (14)

where λ1 and λ2 are the weights of two losses.

4. Experiments
In this section, we provide some implementation details

and show ablation studies as well as visualization to evalu-
ate the performance of our network. We compare our model
with several state-of-the-art approaches, including OSNet
[59], SRS-Net [45], STMN [11], STGCN [53], CTL [33],
GRL [35], SINet [3], RAFA [56], MGH [52], TCLNet [21],
STRF [2] and PSTA [49].
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Table 1. Comparison on PRID, iLIDS-VID and MARS. Numbers
in bold indicate the best performance and underscored ones are
the second best. For the input, “V” and “E” represent that the
input are the image sequences and event sequences, respectively.
Results in brackets are obtained with the source codes provided by
the authors.

Methods PRID-2011 iLIDS-VID MARS
Network InputmAPRank-1mAPRank-1mAPRank-1
GRL [35] V 92.7 89.9 90.1 84.7 82.2 88.3

OSNet [59] V 92.7 89.9 89.0 82.7 81.4 87.3
SRS-Net [45] V 88.8 84.3 89.8 84.0 82.9 88.1
STMN [11] V 92.8 88.8 84.1 77.3 81.8 88.3
CTL [33] V 91.5 87.6 84.2 77.3 82.7 89.3
PSTA [49] V 92.3 88.8 88.1 80.0 83.1 89.2

STGCN [53] V - - - - 83.7 90.0
SINet [3] V - 96.5 - 92.5 86.2 91.0

RAFA [56] V - 95.9 - 88.6 85.9 88.8
MGH [52] V - 94.8 - 85.6 85.8 90.0

TCLNet [21] V - - - 86.6 85.1 89.8
STRF [2] V - - - 89.3 86.1 90.3
GRL [35] E 21.4 11.2 30.2 18.0 27.7 16.7

OSNet [59] E 22.2 10.1 27.9 16.7 30.9 19.3
SRS-Net [45] E 17.2 9.0 32.7 19.3 20.9 10.0
STMN [11] E 20.2 11.2 23.5 12.7 22.4 10.0
CTL [33] E 20.4 13.5 28.4 18.0 25.6 12.7
PSTA [49] E 22.2 12.4 22.4 10.0 22.7 12.0
GRL [35] V+E 93.2 87.6 90.6 85.3 82.8 88.7

OSNet [59] V+E 93.7 89.9 90.1 84.7 81.9 87.7
SRS-Net [45] V+E 91.5 87.6 90.7 86.7 83.8 89.3
STMN [11] V+E 94.0 91.0 87.2 81.3 83.4 89.0
CTL [33] V+E 93.9 91.0 88.4 82.0 85.3 89.6
PSTA [49] V+E 94.7 93.3 88.6 83.3 85.1 89.9

Ours V+E 96.9 96.5 93.2 92.7 86.5 91.1

4.1. Datasets

Since there is no available event person Re-ID dataset,
we generate events from three classical video-based
datasets for Re-ID, including PRID-2011 [18], iLIDS-VID
[47] and MARS [57]. Following [10, 16, 44], we apply a
display-camera system and simulator V2E [22] to generate
corresponding event sequences. More details can be found
in the supplementary material.

4.2. Implementation Details

Our network is implemented based on Pytorch on an In-
tel i4790 CPU and one NVIDIA RTX 2080Ti GPU. The
initialization of our CNN encoder is ImageNet-pretrained
standard ResNet-50 [17]. For each video clip, we use a
constrained random sampling approach to randomly sample
frames from evenly divided 8 chunks. We train our network

for a total of 500 epochs, starting with a learning rate of
0.0003 and decaying it by 10 every 200 epochs. Adam [27]
optimizer is applied to update the parameters. During test-
ing, the cosine similarity is used to measure the distance
between the gallery and the query.

4.3. Comparison with other methods

Table 1 shows comparison results of our method and
other SOTA methods on MARS [57], PRID-2011 [18] and
iLIDS-VID [47]. Note that to demonstrate the superiority
of complementary learning strategy over traditional video-
based methods, we classify our experiments into three
groups depending on the input data, including videos only,
events only, and video with events. When we regard events
as CNN’s input, we deploy them into event voxels to en-
code the positive and negative events. These results il-
lustrate that: (1) Since event streams can only capture the
brightness change in the scene, they lost color-based infor-
mation, such as content and saturation. Thus, using only
events cannot achieve promising performance, with the best
value of 30.9% mAP on MARS. (2) When the inputs are
videos and events (V+E), we keep the video-based network
structure unchanged and use a SNN to extract features of
events, and then employ the spatial fusion block [5] into the
mainstream. Compared with video-based methods, when
events are utilized to guide video-based methods, their per-
formance is mostly improved. For example, STMN (V+E)
achieves an improvement up to 3.1% and 1.6% mAP on
iLIDS-VID and MARS, respectively; CTL (V+E) achieves
up to 3.4%, 4.7%, and 0.3% in terms of Rank-1 accuracy
on PRID-2011, iLIDS-VID and MARS, respectively. The
superiority is caused by the fact that events bring useful
information to video-based methods. (3) Our method out-
performs PSTA [49], with an improvement up to 2.2% and
1.4% mAP on PRID-2011 and MARS, respectively. The
comparison clearly demonstrates the effectiveness of com-
plementary fusion for exploring complementary informa-
tion between events and frames.

Moreover, to demonstrate the robustness of our method
in degraded conditions, we follow [26] to create blur and oc-
clusion in PRID-2011 and iLIDS-VID dataset, and present
the experimental results in Table 3. The first group is
designed for dealing with RGB frames, while the second
group is fed into frames and events simultaneously. Com-
pared with the result in Table 1, we notice that blurry arti-
facts have great influence on the performance of all meth-
ods. For example, the mAP value of PSTA in PRID-2011
drops from 92.3% to 79.7%. But when event streams are
fed into networks, it makes great progress in mAP by 5.3%
on PRID-2011 and 12.5% on iLIDS-VID, respectively. In
occluded condition, We can observe that it improves the
2nd best method SRS-Net [45] by 6.2% mAP accuracy in
iLIDS-VID dataset. The comparison clearly demonstrates
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Table 2. Quantitative results on different fusion methods. Note
that “E2F” means utilizing event feature to guide frame feature ex-
traction, while “F2E” means utilizing frame feature to guide event
feature extraction.

Methods PRID-2011 iLIDS-VID
Fusion E2F F2E mAP Rank-1 mAP Rank-1

- - - 85.3 78.7 85.2 80.0
Concat - - 84.6 77.5 84.0 77.3

Addition - - 67.8 57.3 56.2 46.1

Attention
✓ 89.4 84.3 88.4 82.7

✓ 87.7 79.8 87.8 81.3
✓ ✓ 90.6 85.4 90.6 85.3

Ours
✓ 92.7 89.9 88.6 83.3

✓ 89.9 85.4 86.5 80.7
✓ ✓ 96.9 96.5 93.2 92.7

Figure 5. Parameters and FLOPs comparisons.

the superiority of events for exploring spatial and temporal
correlations from videos.

4.4. Parameters and FLOPs

We list the parameters and FLOPs of all compared meth-
ods in Figure 5. It is clear that our SDCL has compara-
ble storage consumption with consideration of acceptable
FLOPs to achieve the highest accuracy. Note that SNN can
improve energy efficiency and reduce paramters because it
is only active when it receives or emits spikes, while CNNs
operate with all units active regardless of real-valued in-
put or output values. Since in the cross feature alignment
module, we calculate the response as a weighted sum of the
features at all positions between event features and frame
features, it greatly increases FLOPs.

4.5. Ablation Study

Components of SNN. We evaluate the contribution of
each component (including spiking neurons and deformable
mapping) in PRID-2011 dataset to demonstrate the effi-
ciency of our network. The results are shown in Figure 6.
To demonstrate the degradation of SNN at deeper layers,
we generally increase the number of SNN layers. It is ob-
vious that when we set the number of SNN from 1 to 2, the
mAP and Rank-1 accuracy increases, but when the number
of SNN is 3, the performance drops slightly.

Table 3. The mAP values of different methods on PRID and
iLIDS-VID dataset in degraded (blurry and occluded) conditions.

Methods PRID-2011 iLIDS-VID
Method input Blurry Occluded Blurry Occluded

SRS-Net [45] V 78.8 77.7 61.6 71.6
STMN [11] V 81.5 72.9 57.7 62.8
GRL [35] V 81.8 76.1 60.7 60.2
CTL [33] V 81.6 73.8 56.0 70.4
PSTA [49] V 79.7 71.3 58.9 67.5

SRS-Net [45] V+E 82.1 82.7 67.8 74.4
STMN [11] V+E 85.5 82.2 62.3 69.0
GRL [35] V+E 88.4 83.0 66.2 73.5
CTL [33] V+E 88.6 78.5 64.2 75.9
PSTA [49] V+E 85.0 78.9 65.5 73.0

Ours V+E 89.5 88.9 71.4 80.7

In addition, we also fix two SNN layers, and increase
the number of deformable mapping in the following layers.
The mAP and Rank-1 accuracy in PRID-2011 and iLIDS-
VID datasets still increases continuously, which illustrates
that our deformable mapping can maintain the sparse dis-
tribution in event streams to provide extra brightness infor-
mation. However, keep increasing the number eventually
brings limited improvement. Therefore, we select the num-
ber of deformable mapping as 3 in our experiments. More
analysis can be found in the supplementary material.

Components of Cross Feature Alignment Module. To
illustrate the effect of our cross feature alignment module,
we compare it with several widely used operations, includ-
ing concatenation, addition, attention mechanism, and our
module. The results are shown in Table 2. It is clear that
concatenation and addition have bad influence on PRID-
2011 and iLIDS-VID datasets. This is because both of them
directly combine sparse events and dense RGB frames with-
out considering the difference between them. When us-
ing the attention mechanism, it achieves 90.6% mAP and
85.4% Rank-1 accuracy in iLIDS-VID, surpassing the base-
line by a large margin. Finally, our cross feature alignment
module outperforms the attention mechanism by 6.3% and
2.4% mAP in PRID-2011 and iLIDS-VID datasets, respec-
tively. To illustrate the mutual information between events
and frames, we also conduct experiments by only deploying
our module in “E2V” (event-to-video) or “V2E” (video-to-
event) to verify the complementary effect between events
and frames, and experimental results are reported in Ta-
ble 2. We can see that single complementary learning be-
tween events and frames can also increase the Rank-1 ac-
curacy and mAP. With “E2V” complementary information,
our network achieves 92.7% mAP and 89.9% Rank-1 accu-
racy in PRID-2011, higher by 2.8% mAP and 4.5% Rank-
1 than “V2E”, which means that the sparse distribution of
events is more beneficial for RGB frames to get better per-
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Table 4. Ablation study of pyramid aggregation. PA means pyra-
mid aggregation, and Res denotes residual block adopted in PA.

Dataset PRID-2011 iLIDS-VID
Metric mAP Rank-1 mAP Rank-1

w/o PA - 89.2 83.1 88.1 82.6

w/ PA Res 92.3 88.8 90.2 86.0
FFB 96.9 96.5 93.2 92.7

Figure 6. Quantitative ablation study on different components in
Deformable Spiking Neural Network.

formance. It can be explained that dense RGB frames con-
tain abundant global contextual information and physical
connections of human body, but event streams can also pro-
vide extra brightness information for video-based Re-ID.

Pyramid Aggregation. We evaluate the pyramid ag-
gregation by aggregating features with residual block to
demonstrate the benefits of feature fusion block (FFB). The
Table 4 shows that the pyramid aggregation structure can
actually obtain better performance.

4.6. Visualization

In Figure 1, we visualize the learned feature maps in our
network. It shows that the event features is able to preserve
the sparse distribution of events and provide accurate pose
and shape information to locate specific person. Since the
feature maps of dense RGB frames and sparse events fo-
cus on specific semantic regions, both contribute to the final
performance improvement.

Moreover, we visualize the learned feature maps ex-
tracted by the baseline and our methods under blurry and
occluded conditions in Figure 7. For occluded frames, the
features of baseline are more related to the boundaries of
occlusion masks, while our method still focus on the rep-
resentative areas of each person. This is because the event
camera does not record static occlusion without changes in
position or brightness, causing the event data to guide the
baseline network to focus more on moving objects. For
blurry frames, since event streams contain intensity varia-
tions with high temporal resolutions, motion blur effect can
be precisely represented. As shown in Figure 7 (c), the

Occluded Condition

(c)

(a)

Blurry Condition

(b)

(d)

Figure 7. Visual examples of the learned feature maps in blurry
and occluded conditions. (a) shows original occluded images and
blurry images, (b) is the feature maps of frames in PSTA [49], (c)
and (d) represent feature maps of frames in our network (w/o and
w/ events, respectively).

feature maps of baseline (without events) pay more atten-
tion to the sidewalk boundaries, which cannot extract cor-
rect features of pedestrians easily. On the contrary, our
method (with events) can learn more discriminative infor-
mation from events, making the network more robust to dif-
ferent perturbations.

5. Conclusion

In this paper, we explore the benefit of events to guide
video-based Re-ID. We proposed a novel Sparse-Dense
Complementary Learning (SDCL) that learns complemen-
tary spatio-temporal representations from frames and events
to deal with video-based Re-ID tasks. One advantage of
our method over most video-based Re-ID models is that
we firstly deploy sparse event streams into dense frame-
level features to fully utilize the extra brightness informa-
tion to guide video-based baselines. To help baseline mod-
els discover more discriminative spatio-temporal represen-
tations for robust video Re-ID, we design a deformable
SNN that extracts event-level features while preserving spa-
tially sparse distribution of events. Moreover, we propose a
complementary learning module to capture comprehensive
clues contained in dense frames and sparse events. Exten-
sive experiments on benchmarks have shown the benefit of
events for video-based Re-ID.
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[26] Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir
Zamir. 3d common corruptions and data augmentation. In
CVPR, pages 18963–18974, 2022. 6

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017.
3

[29] Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu,
Kenneth Chaney, Kostas Daniilidis, and Kaushik Roy.
Spike-FlowNet: Event-Based Optical Flow Estimation with
Energy-Efficient Hybrid Neural Networks. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, ECCV. 2020. 4

[30] Hanjun Li, Gaojie Wu, and Wei-Shi Zheng. Combined
Depth Space based Architecture Search For Person Re-
identification. In CVPR, 2021. 2

[31] Jianing Li, Shiliang Zhang, Jingdong Wang, Wen Gao, and
Qi Tian. Global-Local Temporal Representations for Video
Person Re-Identification. In ICCV, 2019. 1

[32] Shuang Li, Slawomir Bak, Peter Carr, and Xiaogang Wang.
Diversity Regularized Spatiotemporal Attention for Video-
Based Person Re-identification. In CVPR, 2018. 1

17998



[33] Jiawei Liu, Zheng-Jun Zha, Wei Wu, Kecheng Zheng, and
Qibin Sun. Spatial-Temporal Correlation and Topology
Learning for Person Re-Identification in Videos. In CVPR,
2021. 2, 5, 6, 7

[34] Kan Liu, Bingpeng Ma, Wei Zhang, and Rui Huang.
A Spatio-Temporal Appearance Representation for Video-
Based Pedestrian Re-Identification. In ICCV, 2015. 2

[35] Xuehu Liu, Pingping Zhang, Chenyang Yu, Huchuan Lu,
and Xiaoyun Yang. Watching You: Global-guided Recip-
rocal Learning for Video-based Person Re-identification. In
CVPR, 2021. 5, 6, 7

[36] Genady Paikin, Yotam Ater, Roy Shaul, and Evgeny Solove-
ichik. EFI-Net: Video Frame Interpolation from Fusion of
Events and Frames. In CVPRW, 2021. 3

[37] Liyuan Pan, Cedric Scheerlinck, and Yuchao Dai. Bring-
ing a Blurry Frame Alive at High Frame-Rate With an Event
Camera. In CVPR, 2019. 2

[38] Hyunjong Park, Sanghoon Lee, Junghyup Lee, and Bum-
sub Ham. Learning by Aligning: Visible-Infrared Person
Re-identification using Cross-Modal Correspondences. In
ICCV, 2021. 2

[39] Min Ren, Lingxiao He, Xingyu Liao, Wu Liu, Yunlong
Wang, and Tieniu Tan. Learning Instance-level Spatial-
Temporal Patterns for Person Re-identification. In ICCV,
2021. 2

[40] Minho Shim, Hsuan-I Ho, Jinhyung Kim, and Dongy-
oon Wee. READ: Reciprocal Attention Discriminator for
Image-to-Video Re-identification. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
ECCV. 2020. 2

[41] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza,
Tom Drummond, Nick Barnes, Lindsay Kleeman, and
Robert Mahony. Reducing the Sim-to-Real Gap for Event
Cameras. 2020-08-22. 2

[42] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kher-
adpisheh, Timothée Masquelier, and Anthony Maida. Deep
learning in spiking neural networks. Neural networks,
111:47–63, 2019. 4

[43] Rahul Rama Varior, Gang Wang, Jiwen Lu, and Ting Liu.
Learning invariant color features for person reidentification.
IEEE Transactions on Image Processing, 25(7):3395–3410,
2016. 2

[44] Bishan Wang, Jingwei He, and Wen Yang. Event Enhanced
High-Quality Image Recovery. 2020-07-16. 2, 6

[45] Haoran Wang, Licheng Jiao, Shuyuan Yang, Lingling Li, and
Zexin Wang. Simple and effective: Spatial rescaling for per-
son reidentification. IEEE Transactions on neural networks
and learning systems, 2020. 5, 6, 7

[46] Taiqing Wang, Shaogang Gong, Xiatian Zhu, and Shengjin
Wang. Person Re-identification by Video Ranking. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, ECCV. 2014. 2

[47] Taiqing Wang, Shaogang Gong, Xiatian Zhu, and Shengjin
Wang. Person Re-identification by Video Ranking. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, ECCV. 2014. 6

[48] Xueping Wang, Shasha Li, Min Liu, Yaonan Wang, and
Amit K. Roy-Chowdhury. Multi-Expert Adversarial Attack
Detection in Person Re-identification Using Context Incon-
sistency. In ICCV, 2021. 2

[49] Yingquan Wang, Pingping Zhang, Shang Gao, Xia Geng, Hu
Lu, and Dong Wang. Pyramid Spatial-Temporal Aggregation
for Video-based Person Re-Identification. In ICCV, 2021. 1,
2, 5, 6, 7, 8

[50] Shuangjie Xu, Yu Cheng, Kang Gu, Yang Yang, Shiyu
Chang, and Pan Zhou. Jointly Attentive Spatial-Temporal
Pooling Networks for Video-Based Person Re-identification.
In ICCV, 2017. 2

[51] Yichao Yan, Jie Qin, Jiaxin Chen, Li Liu, Fan Zhu, Ying Tai,
and Ling Shao. Learning Multi-Granular Hypergraphs for
Video-Based Person Re-Identification. In CVPR, 2020. 2

[52] Yichao Yan, Jie Qin, Jiaxin Chen, Li Liu, Fan Zhu, Ying
Tai, and Ling Shao. Learning multi-granular hypergraphs for
video-based person re-identification. In CVPR, pages 2899–
2908, 2020. 5, 6

[53] Jinrui Yang, Wei-Shi Zheng, Qize Yang, Ying-Cong Chen,
and Qi Tian. Spatial-Temporal Graph Convolutional Net-
work for Video-Based Person Re-Identification. In CVPR,
2020. 2, 5, 6

[54] Yi-Fan Zhang, Hanlin Zhang, Zhang Zhang, Da Li, Zhen Jia,
Liang Wang, and Tieniu Tan. Learning domain invariant rep-
resentations for generalizable person re-identification. arXiv
preprint arXiv:2103.15890, 2021. 2

[55] Zhizheng Zhang, Cuiling Lan, Wenjun Zeng, and Zhibo
Chen. Multi-Granularity Reference-Aided Attentive Feature
Aggregation for Video-Based Person Re-Identification. In
CVPR, 2020. 2

[56] Zhizheng Zhang, Cuiling Lan, Wenjun Zeng, and Zhibo
Chen. Multi-granularity reference-aided attentive feature ag-
gregation for video-based person re-identification. In CVPR,
pages 10407–10416, 2020. 5, 6

[57] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su,
Shengjin Wang, and Qi Tian. MARS: A Video Benchmark
for Large-Scale Person Re-Identification. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling, editors, ECCV,
2016. 6

[58] Yi Zheng, Shixiang Tang, Guolong Teng, Yixiao Ge, Kai-
jian Liu, Jing Qin, Donglian Qi, and Dapeng Chen. Online
Pseudo Label Generation by Hierarchical Cluster Dynamics
for Adaptive Person Re-identification. In ICCV, 2021. 2

[59] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and
Tao Xiang. Omni-scale feature learning for person re-
identification. In ICCV, pages 3702–3712, 2019. 5, 6

[60] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable ConvNets V2: More Deformable, Better Results.
4

[61] Dongqing Zou. Learning Event-Driven Video Deblurring
and Interpolation. In Andrea Vedaldi and Horst Bischof, ed-
itors, ECCV. 2020. 2

17999


