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Abstract

Weakly-Supervised Video Grounding (WSVG) aims to
localize events of interest in untrimmed videos with only
video-level annotations. To date, most of the state-of-the-art
WSVG methods follow a two-stage pipeline, i.e., firstly gen-
erating potential temporal proposals and then grounding
with these proposal candidates. Despite the recent progress,
existing proposal generation methods suffer from two draw-
backs: 1) lack of explicit correspondence modeling; and 2)
partial coverage of complex events. To this end, we propose
a novel IteRative prOposal refiNement network (dubbed as
IRON) to gradually distill the prior knowledge into each
proposal and encourage proposals with more complete cov-
erage. Specifically, we set up two lightweight distillation
branches to uncover the cross-modal correspondence on
both the semantic and conceptual levels. Then, an itera-
tive Label Propagation (LP) strategy is devised to prevent
the network from focusing excessively on the most discrim-
inative events instead of the whole sentence content. Pre-
cisely, during each iteration, the proposal with the minimal
distillation loss and its adjacent ones are regarded as the
positive samples, which refines proposal confidence scores
in a cascaded manner. Extensive experiments and ablation
studies on two challenging WSVG datasets have attested to
the effectiveness of our IRON. The code will be available at
https://github.com/mengcaopku/IRON.

1. Introduction

Weakly-Supervised Video Grounding (WSVG) [21, 37,
41, 72, 73] aims to localize the moment of interest from
an untrimmed video according to a query sentence with-
out frame-wise annotations. It has drawn increasing atten-
tion in both industry and academia due to its wide applica-
tions, e.g., video retrieval [13, 19], video question answer-
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Figure 1. (a) The conventional WSVG pipeline (i.e., baseline)
lacks explicit correspondence modeling. (b) Partial coverage of
complex events. Proposal #1 with the high confidence score (i.e.,
0.87) tends to be of short duration. The more reasonable proposal
#2 has the lower confidence score.

ing [1], human-computer interaction [49], etc. Currently,
the overwhelming majority of state-of-the-art WSVG meth-
ods follow a two-stage pipeline, i.e., they firstly generate
potential proposals and then use these proposals to conduct
grounding via multi-instance learning (MIL) [21,27,40,41]
or query reconstruction [37, 40, 50, 72]. This paradigm
commonly relies on densely-placed proposals to achieve
high recall and ensure as much coverage as possible, which
causes severe computation redundancy. Recent works [72,
73] reduce the number of required proposals by predict-
ing Gaussian masks to highlight query-relevant segments.
However, a such constraint is too rigorous and lacks flexi-
bility. Thus, in this paper, we work toward designing sparse
and reliable proposals without any distribution assumptions.

Despite of the dominated performance achieved, it is
worth noting that current proposal generation methods suf-
fer from two inherent drawbacks: 1) Lack of explicit cor-
respondence modeling: A simple pipeline1 for the conven-
tional proposal-based WSVG methods is illustrated in Fig-

1We call this pipeline as baseline and refer to the appendix for details.
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ure 1a. As shown, under the weakly-supervised scenario,
there exist no explicit regression supervisions (e.g., tempo-
ral boundary annotations) for the proposal generation proce-
dure. Accordingly, the proposal coordinate update is solely
based on the outputs of the grounding module. This leads to
a chicken and egg situation, i.e., the succeeding grounding
module requires plausibly reliable proposals to achieve ac-
curate localization results while the proposal distributions
rely on decent grounding results to update. 2) Partial cov-
erage of complex events. Compared to the atomic action
instances in Temporal Action Localization (TAL) [8,47,71],
the query sentences in WSVG are much more complex, e.g.,
containing multiple events. Empirically, it is easy to ex-
cessively concentrate on the most discriminative parts in-
stead of the whole picture [37]. For example, the case in
Figure 1b aims to ground the complete process of the kite,
i.e., weaving, turning, and twisting. However, the
top-ranking proposal #1 only covers the weaving process
and overlooks the other parts. In contrast, a more accu-
rate proposal #2 has much lower confidence scores. In Fig-
ure 2a, we compute the length distribution of the proposals
with highest confidence score (Charades-STA [48] test set),
which are always obviously shorter than their ground truths.

To alleviate these aforementioned problems, we propose
a novel IteRative prOposal refiNement network for WSVG
(dubbed as IRON), which distills the prior knowledge into
the proposal generation in a cascaded manner.

For correspondence modeling, we contend that it should
be conducted from two aspects: 1) Semantic-level: The
overall semantics of the proposals should match the query
sentence. Specifically, we respectively feed the proposal
frames and the query sentence into the visual and language
encoders of the pre-trained video-language (VL) model [56]
to estimate their semantic similarity. Due to the powerful
transfer ability of pre-trained VL models [28, 39, 44, 56],
we use the estimated similarity as the semantic distillation
target. Then a lightweight semantic distillation branch is
leveraged to optimize towards this target, referred to as the
semantic distillation loss. 2) Conceptual-level: The pro-
posal ought to be sensitive to the linguistic salient concepts
including object words (e.g., kite), attribute words (e.g.,
white) and relationship words (e.g., through). This is
similar to the human way of reasoning, i.e., tending to fo-
cus on the most prominent objects when assessing given
videos. Here we define the concepts as the high-frequency
words (i.e., verbs, adjectives, and nouns) in the dataset cor-
pus. Then, one multi-hot label is generated for each query
sentence according to whether it hits the corresponding con-
cept. We introduce a concept classification branch to esti-
mate proposal-wise concept predictions supervised by the
multi-hot label, yielding the conceptual distillation loss.

To mitigate the partial coverage issue, we devise a Label
Propagation (LP) algorithm, which aims to refine proposal-
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Figure 2. (a) The gaussian distributions of normalized average
length of the ground truth and the proposals with highest confi-
dence scores in baseline1. Results are calculated based on the test
set of Charades-STA [48]. (b) The normalized average length of
proposals with highest confidence scores v.s. iteration numbers.

wise confidence scores in an iterative manner. Our motiva-
tion lies in that proposals with the minimal distillation loss
(both semantic and conceptual distillation loss) can be re-
garded as the biased indicator, i.e., these proposals always
contain some salient events-of-interest and have short dura-
tions (cf . Sec. 4.5). Therefore, during each iteration in LP,
we assign the positive pseudo label to the proposal with the
minimal distillation loss and its adjacent ones2. Based on
the generated pseudo label, the proposal confidence scores
are rectified via a binary cross-entropy loss in the conse-
quent stage. After the multi-step refinements, our IRON
gradually converges to more complete intervals instead of
parts (cf . Figure 2b).

In summary, we make three contributions in this paper:
• We propose to model explicit correspondence for each

proposal at both semantic and conceptual levels, which
distills in-depth knowledge from the well-trained VL
model and the linguistic structure of the query sentence.

• To avoid biased and partial grounding results, a label
propagation algorithm is crafted to refine proposal-wise
confidence scores iteratively.

• Extensive experiments on both Charades-STA and Ac-
tivityNet Captions datasets have witnessed the state-of-
the-art performance of our proposed IRON.

2. Related Work
Weakly-Supervised Video Grounding. Compared to the
fully-supervised counterpart [5–7, 20, 35], WSVG [21, 37,
41, 72, 73] has gained intensive attention, which grounds
the referent with only video-level annotations (i.e., natural
language queries). Currently, most of the WSVG meth-
ods can be classified into two major categories: multi-
instance learning (MIL) based methods and reconstruction
based methods. For MIL-based methods [21, 27, 40, 41],
they learn the latent visual-textual alignment by attracting

2The adjacent proposals are defined as the proposals having high over-
laps with the most confident one.
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the matched video-language pairs while repelling the mis-
matched ones. On the contrary, reconstruction based meth-
ods [37, 40, 50, 72] rank proposals by a language recon-
struction metric, asserting that the most matching proposals
should best reconstruct the entire language query.

Since the current state-of-the-art methods [72, 73] rely
on proposals for grounding, in this paper, we focus on
generating high-quality proposals to fit the weakly super-
vised scenario. The most commonly used proposals are
manually designed by employing multi-scale sliding win-
dows [37, 41, 52]. Although straightforward, this method-
ology is computationally intensive and relies on heuristic
rules. As an improvement, the recent works CNM [72] and
CPL [73] use learnable Gaussian functions to generate both
positive and negative proposals. To sum up, current pro-
posal generation methods fail to provide explicit supervi-
sions for proposal updates, which inevitably leads to sub-
optimum performance. In contrast, our IRON provides the
supervision for the proposal generation stage at both the
semantic and conceptual levels, facilitating the succeeding
grounding module and generating more accurate results.
Knowledge Transfer of VL Pre-trained Models. As a
breakthrough in the vision-language domain, large-scale
VL pre-trained models (e.g., CLIP [44], DeCLIP [36] and
ALIGN [28]) have demonstrated great potential for learn-
ing transferable representations over diverse downstream
tasks. CoOp [74] designs learnable prompts for textual in-
puts instead of handcrafted ones. CLIP-Adapter [22] con-
ducts fine-tuning with a lightweight feature adapter and Tip-
Adapter [68] proposes a non-parametric adapter via a key-
value cache model. CLIP4clip [39] proposes to transfer
the knowledge of CLIP to video retrieval in an end-to-end
manner. ActionCLIP [57] formulates action recognition as
a multi-modal learning framework to behave like video-
text pre-training via prompt engineering. In this paper,
our IRON distills the prior knowledge with two lightweight
branches in a multi-task manner, which greatly improves
the learning efficiency and prediction accuracy by using the
knowledge in pre-trained models as an inductive bias [10].
Partial Coverage in Weakly-Supervised Learning. For
the weakly-supervised learning, the localization tasks (e.g.,
object detection [3, 45, 53] and TAL [33, 65, 67]) are al-
ways trained as the image/video classification task. There-
fore, it tends to be easily responsive to trivial and sparse
discriminative regions due to the inherent contradiction be-
tween the classifier and the detector. To tackle this, sev-
eral TAL works [33, 38, 66] try to extend the discrimina-
tive regions by suppressing the dominant response or ran-
domly hiding patches. However, such a heuristic multiple-
run erasing model is unstable and not end-to-end trainable.
In object detection, the mainstream methods [29,34,53,62]
mine high-quality bounding boxes by selecting top-scoring
proposals from the preceding predictions. Such a strategy

is solely based on the confidence score and cannot guaran-
tee correctness, especially when encountering the open-set
localization scenario like our targeted WSVG (cf . Sec. 4.5).
In contrast, we progressively transfer the knowledge from
the pre-trained VL models, which offers more reliable re-
finement labels due to their proven effectiveness on open-
vocabulary detection [15, 23].

3. Approach
The schematic illustration of our IRON is illustrated in

Figure 3. In Sec. 3.1, we present the preliminaries of IRON
including feature extraction, proposal generation, semantic
& conceptual distillation target generation. Then we detail
the proposed iterative proposal refinement in Sec. 3.2. Fi-
nally, the grounding module is presented in Sec. 3.3.

3.1. Preliminary of IRON

Feature Extraction. Given an untrimmed video and a nat-
ural language query, we first feed them into the respec-
tive encoders to obtain the embedded features. Specifically,
The encoded video feature is represented as v ∈ RT×C ,
where T is the number of sampled frames3 and C is the
feature dimension. The query embedding is represented as
q ∈ RS×C , where S denotes the total word length.
Proposal Generation. We follow [72, 73] to conduct the
proposal generation by predicting upon the video-language
fusion results. Firstly, a learnable [CLS] token is inserted
at the end of the input video features. Then a vanilla Trans-
former [55] is used to conduct cross-modal interactions
and the [CLS] token output hcls comprehensively interacts
with all the frame and word features. Based on hcls, we pre-
dict a set of N proposals u ∈ RN×2 by applying a fully
connected layer activated by sigmoid function. Then, the
proposal feature p ∈ RN×C is generated by pooling video
feature v with the corresponding coordinates of u.
Semantic Distillation Target. Vision-language pretrain-
ing [44, 51] has shown great potential in learning transfer-
able representations in a common feature space. Therefore,
we resort to them to evaluate the global semantic alignment
between the visual proposal and textual query. Firstly, we
crop the video frames according to the proposal coordinates.
Then, as shown in the top-right part of Figure 3, the cropped
videos and the raw query sentence are fed into the visual
and language encoders of pre-trained VL model [56] to ob-
tain the cross-modal similarity. We consider the similarity
values ŝ ∈ RN×1 activated by sigmoid function as the
semantic distillation targets.
Conceptual Distillation Target. Textual concepts are
widely used for image-grounded cross-modal representa-
tions [42, 64], which serves as a complement to high-level

3We slightly abuse “frame” here, and we refer to it as a video segment
consisting of several consecutive frames.
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Figure 3. An overview of IRON. The proposal generation module firstly integrates the text feature q and the video feature v with a vanilla
Transformer. Then, a set of proposals u is predicted and the corresponding proposal features p are generated. Semantic distillation targets
ŝ ∈ RN×1 are estimated by computing the similarity scores between the cropped videos and the query sequences via the pre-trained VL
model [56]. Conceptual distillation targets ĉ ∈ RM×1 are customized according to whether the input query hits the pre-defined high-
frequency words. In kth iteration, proposal-wise semantic scores sk ∈ RN×1, conceptual scores ck ∈ RN×M , and confidence scores
ek ∈ RN×1 are predicted via three parallel MLPs. The label propagation (LP) strategy generates the pseudo confidence score labels êk+1

for (k + 1)th branch based on the current results. The confidence scores from the last refinement branch eK are fed into the grounding
module, which can be implemented with either MIL or query reconstruction (cf . Figure 4).

semantic information. We customize the conceptual distil-
lation target for each proposal following [17]. Specifically,
in Figure 3, the concept corpus is defined to be the most fre-
quent M words (e.g., nouns, verbs, and adjectives) among
all the query sentences within the dataset. For each input
query, we define its conceptual distillation target ĉ ∈ RM×1

as a multi-hot vector, i.e., ĉm = 1 if the mth concept word
exists in the query sentence.

3.2. Iterative Proposal Refinement

Our iterative proposal refinement consists of K cascaded
steps to distill prior knowledge and rectify the confidence
scores. For clarity, we take the kth (1 ≤ k ≤ K) stage as
an example to illustrate the stage-wise training.

Semantic & Conceptual Distillation. We aim to generate
the proposal-wise semantic & conceptual scores and opti-
mize towards the obtained distillation targets. As shown in
the right part of Figure 3, we apply three branches of Mul-
tilayer Perceptrons (MLPs) to generate the corresponding
predictions, i.e., semantic scores sk ∈ RN×1, conceptual
scores ck ∈ RN×M , and proposal-wise confidence scores

ek ∈ RN×1 as follows4.

ek = Sigmoid
(
p ·Wk

e

)
sk = Sigmoid

(
p ·Wk

s

)
· ek,

ck = Sigmoid
(
p ·Wk

c

)
· ek,

(1)

where Wk
s ,W

k
e ∈ RC×1 and Wk

c ∈ RC×M are learnable
parameters in the kth iteration.

For the nth proposal in the kth iteration, the semantic
loss Lk,n

sem and conceptual loss Lk,n
cpt are implemented in the

ℓ1 and binary cross-entropy form, respectively.

Lk,n
sem =

∣∣skn − ŝn
∣∣ , (2)

Lk,n
cpt = −

∑M
m=1ĉm log ckn,m, (3)

where skn is the semantic scores of nth proposal. ckn,m de-
notes the the mth concept score in the nth proposal. ŝn and
ĉm are corresponding labels (cf . Sec. 3.1).
Label Propagation. To alleviate the partial coverage of
the learned proposals, we propose a label propagation (LP)
strategy to refine the proposal-wise confidence score in a
multi-stage architecture, which generates the supervision
label for the next stage based on the current outputs.

4We omit all the bias terms of linear transformations for conciseness.
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Algorithm 1 Label Propagation
Inputs: Semantic and conceptual scores in kth iteration sk,
ck; Proposal-wise confidence score in kth iteration ek.
Outputs: Pseudo label of the confidence scores in (k+1)th

iteration êk+1.
Hyper-parameters: The IoU threshold β; The number of
proposals N .

1: function LP(sk, ck, ek)
2: for k = 1 to K − 1 do
3: ik ← argmin

n∈[1,N ]

Lk,n
sem + Lk,n

cpt ▷ cf . Eq. (4)

4: êk+1
ik
← 1

5: for n = 1 to N do
6: In ← calc IoU (un,uik) ▷ IoU with uik

7: if In > β then ▷ Trigger propagation
8: êk+1

n ← 1
9: else

10: êk+1
n ← 0

11: end if
12: end for
13: end for
14: return êk+1

15: end function

The pseudo code of LP is shown in Algorithm 1. Firstly,
we identify the proposal with the minimum distillation loss
in the current iteration as follow.

ik = argmin
n∈[1,N ]

Lk,n
sem + Lk,n

cpt . (4)

where Lk,n
sem and Lk,n

cpt are as defined in Eq. (2) and Eq. (3),
respectively. We regard the selected proposal uik as the
positive sample in the (k+1)th iteration, due to its potential
high quality (cf . Sec. 4.5), i.e., êk+1

ik
= 1.

To force a more complete coverage, we contend that
highly spatially overlapped instances should have the same
label. Therefore, we inspect the other proposals and filter
out those whose IoU with the proposal uik is larger than
threshold β. We also mark these surrounding proposals to
be positive samples (cf . line 8 in Algorithm 1). Through
this online labelling process, we not only exploit the most
trustworthy proposal, but also explore its adjacent2 ones to
prevent the local optimum.
Confidence Rectification. Once obtaining the propagated
pseudo label êk+1

ik
, we compute the confidence rectification

loss in the binary cross-entropy form.

Lk,n
con = −êkn log ekn, (5)

where ekn is the confidence score for the nth proposal in
kth iteration (2 ≤ k ≤ K). Note that, we omit the confi-
dence loss in the first stage (k = 1) since no supervisions
are available. Finally, we use the confidence scores learnt
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Figure 4. The architectures of the grounding module based on
(a) MIL or (b) query reconstruction.

in the Kth branch, i.e., eK , for the downstream grounding.

3.3. Grounding Module

Our IRON is flexible and can be compatible with both
MIL-based and reconstruction-based grounding modules.
Without loss of generality, we experiment with the vanilla
versions without bells and whistles.

For the MIL-based method (Figure 4a), we firstly com-
pute the video-level representations as the weighted sum of
each proposal, i.e., p =

∑N
n=1 e

K
n pn, where p ∈ RC×1

denotes the attended video feature representations. Then
the matched video-query pairs are selected as the positive
samples, where their embedding features are mapped close
following the cross-modal InfoNCE loss [24].

Lg = − log
exp (p·q/τ)∑B

i=1 exp (p·qi/τ)
, (6)

where qi ∈ RC×1 is the query features extracted from the
ith sentences within the batch. B is the batch size and τ is
the temperature parameter.

The reconstruction-based method is shown in Figure 4b.
Specifically, the original query sentence w = {ws}Ss=1

is randomly blocked out with a specific [MASK] symbol
by 1/3 of the total words S, yielding ŵ. We reconstruct
the query sentence in an auto-regressive manner follow-
ing [72, 73], i.e., conditioning each word prediction on the
previously generated outputs and the proposal features. Fi-
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nally, the standard caption loss is employed to measure the
reconstruction quality in the cross-entropy form.

Ln
cap = −

S−1∑
s=1

log p (ws+1 | ŵ1:s,pn) . (7)

where Ln
cap is the caption loss for the nth proposal. Besides,

following [37], a rank loss is provided to correct the confi-
dence score as follows.

Ln
rank = −Rn log

( exp eKn∑N
i=1 exp e

K
i

)
, (8)

where Rn is the reward for nth proposal to encourage pro-
posals with lower reconstruction loss. Specifically, we sort
all the proposals in ascending order according to the recon-
struction loss Ln

cap. Then rewards for the sorted proposals
are reduced from one to zero in steps of 1/(N − 1). There-
fore, the grounding loss for reconstruction-based methods
is computed as follows.

Lg =

N∑
n=1

(
Ln

cap + λrankLn
rank

)
, (9)

where λrank is the balance hyper-parameter.
Our final loss function is expressed as follows by inte-

grating all the above constraints.

L =

N∑
n=1

K∑
k=1

(Lk,n
sem + Lk,n

cpt ) + λcon

N∑
n=1

K∑
k=2

Lk,n
con + λgLg, (10)

where λcon and λg are balance factors.
During inference, the well learned proposal confidence

sores eK are used to select the best proposals and the corre-
sponding coordinates u are taken as the grounding result.

4. Experiments
4.1. Experimental Settings

Datasets. We validated the performance of our proposed
IRON on two benchmarked datasets. 1) ActivityNet Cap-
tions [32]: It is built upon ActivityNet v1.3 dataset [4],
which covers 19,290 untrimmed videos of complex human
activities. The videos in this dataset last for 2 minutes on av-
erage while the timing length of the annotated temporal seg-
ments varies largely, ranging from several seconds to over
3 minutes. Since the test split is withheld for competition,
we follow the public split [20, 72, 73] which uses 37,421
segment-query pairs for training, 17,505 pairs for valida-
tion, and 17,031 pairs for testing. 2) Charades-STA [20]:
It is re-labeled by Gao et al. [20] based on the Charades
dataset [48]. The videos in Charades-STA focus on indoor
activities and the average video length is around 30 seconds.
Following the official splits, 12,408 segment-query pairs are
used for training, and 3,720 pairs for testing.
Evaluation Metrics. Following the previous works [26,
72], we adopt “Rn@m” as the metric, which is defined as

the percentage of the language queries achieving at least
one hitting (with IoU larger than m) in the top-n retrieved
segments. We set n ∈ {1, 5} for both datasets, m ∈
{0.3, 0.5, 0.7} for Charades-STA, and m ∈ {0.1, 0.3, 0.5}
for ActivityNet Captions.
Implementation Details. For the video encoder, we chose
C3D [54] pre-trained on sport1M [30] for ActivityNet Cap-
tions and I3D [9] pre-trained on Kinetics [9] for Charades-
STA. Concretely, we took the output feature of fc6 layer in
C3D and the last average pooling result of I3D. As for the
language encoder, we chose DistilBERT [46] pre-trained on
English Wikipedia and Toronto Book Corpus for its light-
weighted model capacity5. We set the maximum length of
captions to 20 and the vocabulary size for ActivityNet Cap-
tions and Charades-STA was 8,000 and 1,111, respectively.
For the fusion transformer, we set the hidden dimension to
256, the attention head number to 4, and the layer number
to 3. We set the proposal number N to 8 for each video
in both datasets. For the iterative refinement, we set the
refinement number K = 4 and the IoU threshold β = 0.6.
We took OA-Trans [56] as the frozen video-text pre-training
model for semantic distillation target extraction. The size of
the conceptual set M was set to 30. The temperature fac-
tor in Eq. (4) τ was set to 0.07 following [44, 61]. The
balancing weights λcon and λg were 5, 2, respectively. For
the reconstruction-based grounding method, λrank was set to
0.1. All the models were trained for 50 epochs with a batch
size of 32. Adam [31] was used as the optimizer, with a
learning rate of 4× 10−4, linear decay of learning rate, and
gradient clipping of 1.0.

4.2. Comparisons with State-of-the-Arts

The comparison results on Charades-STA and Activi-
tyNet Captions datasets are summarized in Table 1 and Ta-
ble 3, respectively. We can conclude with the following
findings. 1) Either grounding with MIL or reconstruction,
our IRON outperforms previous state-of-the-art methods by
a remarkable margin. For example on Charades-STA, when
using the reconstruction strategy for grounding (i.e., IRON
in Table 1), our method surpasses the previous best per-
forming method CPL [73] by 4.31% on R1@0.3. 2) The
reconstruction-based IRON outperforms the MIL-based one
on both datasets. Besides, this gap is more obvious on Ac-
tivityNet Captions dataset. For example, on R1@0.3, the
performance gap on Charades-STA and ActivityNet Cap-
tions datasets is 1.28% and 2.14%, respectively. This may
be because the description annotations in ActivityNet Cap-
tions are more complex, which provides more sufficient tex-
tual contexts for the query reconstruction.

5We report the experimental results using Glove [43] as the language
encoder in the appendix.
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Table 1. Comparisons (%) with state-of-the-art methods on
Charades-STA dataset. IRON∗ uses MIL for grounding and
IRON follows the reconstruction strategy.

Method R1@0.3 @0.5 @0.7 R5@0.3 @0.5 @0.7

CTF [12] 39.80 27.30 12.90 - - -
WSRA [18] 50.13 31.20 11.01 86.75 70.50 39.02
TGA [41] 32.14 19.94 8.84 86.58 65.52 33.51
SCN [37] 42.96 23.58 9.97 95.56 71.80 38.87
WSTAN [58] 43.39 29.35 12.28 93.04 76.13 41.53
BAR [60] 44.97 27.04 12.23 - - -
VLANet [40] 45.24 31.83 14.17 95.70 82.85 33.09
LoGAN [52] 48.04 31.74 13.71 89.01 72.17 37.58
MARN [50] 48.55 31.94 14.81 90.70 70.00 37.40
CCL [70] - 33.21 15.68 - 73.50 41.87
CRM [27] 53.66 34.76 16.37 - - -
VCA [59] 58.58 38.13 19.57 98.08 78.75 37.75
LCNet [63] 59.60 39.19 18.87 94.78 80.56 45.24
RTBPN [69] 60.04 32.36 13.24 97.48 71.85 41.18
CNM [72] 60.39 35.43 15.45 - - -
CPL [73] 66.40 49.24 22.39 96.99 84.71 52.37
IRON∗ (Ours) 69.43 50.90 24.32 97.43 85.92 54.06
IRON (Ours) 70.71 51.84 25.01 98.96 86.80 54.99

4.3. Scalability Analysis6

Loss Component Ablations. We ablate the proposed se-
mantic & conceptual distillation losses and the confidence
rectification loss. As shown in Table 2a, Lsem, Lcpt, and
Lcon are all crucial to the overall performance. For example,
when removing Lsem (mode #4), R1@0.3 drops by 8.67%
compared to the full version (mode #1).
Inserting into existing methods. Our proposed iterative
proposal refinement module could serve as plug-and-play
and can be seamlessly inserted into existing WSVG meth-
ods. Here we select two representative methods, i.e., Gaus-
sian proposal based CPL [73] and dense proposal based
VLANet [40]. As shown in Table 2b, our refinement strat-
egy benefits both methods remarkably. For example, on top
of CPL [73], our refinement leads to a 3.74% improvement
on R1@0.3. The consistent improvement demonstrates the
flexibility and extensibility of our proposed strategy.

4.4. Ablations on Semantic & Concept Distillations 6

Ablations on the semantic information source. We ex-
periment with different pre-trained video-language mod-
els [2,56] and the well-known CLIP model [44] with differ-
ent backbones. For CLIP, the video-query similarity is com-
puted as the mean of frame-query similarities. As shown
in Table 2c, OA-Trans [56] achieves superior performance,
which may be because it introduces detailed object-level
information into pre-training. Either CLIP equipped with

6All ablation studies are conducted on Charades-STA dataset with the
reconstruction-based grounding module.
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tion loss and the other proposals, respectively.

ResNet-50 [25] or ViT-B/16 [14] performs below expecta-
tions since it neglects to model the temporal information.
Correctness of the semantic distillation target. To vali-
date the reasonableness of the semantic distillation target,
we set up a sanity check. Specifically, for each input query,
we calculate its similarity with the ground truth segments,
IRON prediction results, and randomly sampled segments
through VL pre-trained model [56], respectively. As shown
in Figure 5, randomly sampled segments show the lowest
similarity scores, which demonstrates that the pre-trained
model can generate distinguishable similarity scores.

4.5. Ablations on Label Propagation6

Insights of proposals with minimal distillation loss. Our
label propagation strategy is based on two assumptions of
the proposal with minimum distillation loss: 1) High hit
rate. They can always hit the region of interest. To demon-
strate this, we devise a new metric coverage ratio to be the
ratio of the length overlapping with the ground truth to the
proposal total length. We compute the coverage ratio for the
proposal with the minimal distillation loss and the mean val-
ues for other proposals, respectively. As shown in Figure 6
(left), proposals with minimal loss are almost completely
covered by ground truth (with a coverage ratio reaching
0.93). 2) Short duration. We show the normalized aver-
age length of each proposal in Figure 6 (right). As shown,
the proposal with the minimal loss bears an average length
of 0.09, which is obviously shorter than the average ground
truth length. Therefore, these two characteristics effectively
support the rationality of our refinement strategy.
Ablations on label propagation strategy. In Sec 3.2, we

6530



Table 2. (a) Ablations of loss components. (b) Scalability analysis by inserting the iterative proposal refinement module into existing
WSVG methods [40, 73]. (c) Ablations on the semantic information source.

Mode Lsem Lcpt Lcon R1@0.3 @0.5 @0.7

#1 ✓ ✓ ✓ 70.71 51.84 25.01
#2 ✓ ✓ ✗ 65.83 46.96 20.38
#3 ✓ ✗ ✓ 66.24 47.13 20.90
#4 ✗ ✓ ✓ 62.04 40.33 17.20

(a)

Method R1@0.3 @0.5 @0.7

CPL [73] 66.40 49.24 22.39
+ refinement 70.14 50.55 24.61

VLANet [40] 45.24 31.83 14.17
+ refinement 49.90 33.70 15.18

(b)

Method R1@0.3 @0.5 @0.7

OA-Trans [56] 70.71 51.84 25.01
Frozen [2] 68.84 49.67 23.83

CLIP (RN-50) [44] 67.04 48.63 23.04
CLIP (ViT-B/16) [44] 68.56 49.35 23.61

(c)

Table 3. Comparisons (%) with state-of-the-art methods on
ActivityNet Captions dataset. IRON∗ uses MIL for grounding
and IRON follows the reconstruction strategy.

Method R1@0.1 @0.3 @0.5 R5@0.1 @0.3 @0.5

CTF [12] 74.20 44.30 23.60 - - -
EC-SL [11] 68.48 44.29 24.16 - - -
WS-DEC [16] 62.71 41.98 23.34 - - -
MARN [50] - 47.01 29.95 - 72.02 57.49
SCN [37] 71.48 47.23 29.22 90.88 71.56 55.69
VCA [59] 67.96 50.45 31.00 92.14 71.79 53.83
BAR [60] - 49.03 30.73 - - -
RTBPN [69] 73.73 49.77 29.63 93.89 79.89 60.56
WSLLN [21] 75.40 42.80 22.70 - - -
LCNet [63] 78.58 48.49 26.33 93.95 82.51 62.66
CCL [70] - 50.12 31.07 - 77.36 61.29
WSTAN [58] 79.78 52.45 30.01 93.15 79.38 63.42
CRM [27] 81.61 55.26 32.19 - - -
CNM [72] 78.13 55.68 33.33 - - -
CPL [73] 82.55 55.73 31.37 87.24 63.05 43.13
IRON∗ (Ours) 82.83 56.81 33.67 95.09 83.46 67.38
IRON (Ours) 84.42 58.95 36.27 96.74 85.60 68.52

Table 4. Ablations on the label propagation strategy (cf . Eq. (4)).
Exp #1 mines the labels based on both semantic loss Lsem and con-
ceptual loss Lcpt. Exp #2 and Exp #3 only leverage either Lsem or
Lcpt. Exp #4 propagates labels by selecting proposals with maxi-
mum confidence score e.

Exp propagation source R1@0.3 @0.5 @0.7

#1 min (Lsem + Lcpt) 70.71 51.84 25.01
#2 minLsem 68.65 50.10 24.26
#3 minLcpt 69.14 51.21 24.35
#4 max e 67.12 50.01 23.79

design label propagation based on proposals with minimal
semantic and conceptual distillation losses. Here we ex-
periment other options, i.e., based on proposals with only
minimal semantic loss Lsem (#2 in Table 4), with only min-
imal conceptual loss Lcpt (#3) and with maximum confi-
dence score e (#4). As shown in Table 4, propagation with
only semantic or conceptual loss will degrade the perfor-
mance. Besides, propagation with maximum confidence
score is also sub-optimum, e.g., 3.59% absolute drop on
R1@0.3. This demonstrates that both semantic and con-

Table 5. Comparisons (%) with SOTA methods on Charades-
STA dataset. IRON follows the reconstruction strategy. For fair
comparisons, we reproduce the results† of [72, 73] with different
input features.

Exp. Method Feat R1@0.5 @0.7 R5@0.5 @0.7

1 CNM [72] I3D 35.43 15.45 - -
2 CPL [73] I3D 49.24 22.39 84.71 52.37
3 CNM† [72] OATrans 37.76 16.24 - -
4 CPL† [73] OATrans 50.13 22.84 85.22 53.01
5 CNM† [72] I3D+OATrans 37.13 15.93 - -
6 CPL† [73] I3D+OATrans 50.02 22.14 84.98 52.73
7 IRON (Ours) I3D+OATrans 51.84 25.01 86.80 54.99

ceptual losses are more reliable indicators.
Comparison Fairness Issue. For fair comparisons, we re-
produce results of SOTA methods (CNM [72], CPL [73])
by using different features, i.e., OATans [56] or channel-
wise concatenation of I3D and OATans. As shown in Ta-
ble 5, replacing I3D features with OATans features leads
to performance gains (e.g., exp.#1 vs. #3). However, sim-
ply concatenating OATans and I3D is slightly inferior to the
OATans-based version (e.g., exp.#3 vs. #5). Therefore, un-
der the same setting, our proposed IRON outperforms the
existing methods.

5. Conclusions

In this paper, we concentrate on designing appropriate
and universal proposals for WSVG. To achieve this, an it-
erative proposal refinement network is proposed. Firstly,
we distill the semantic and conceptual knowledge into each
proposal from the well-trained video-language model and
the linguistic structure of the query sentence, respectively.
Besides, a label propagation strategy is put forward to avoid
the biased localization results which only focus on the most
discriminative action events. Extensive experimental results
on WSVG datasets have illustrated the effectiveness of our
proposed IRON.
Acknowledgements. This paper was partially supported by
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