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Abstract

Recent efforts in Neural Rendering Fields (NeRF) have
shown impressive results on novel view synthesis by utiliz-
ing implicit neural representation to represent 3D scenes.
Due to the process of volumetric rendering, the inference
speed for NeRF is extremely slow, limiting the application
scenarios of utilizing NeRF on resource-constrained hard-
ware, such as mobile devices. Many works have been con-
ducted to reduce the latency of running NeRF models. How-
ever, most of them still require high-end GPU for accel-
eration or extra storage memory, which is all unavailable
on mobile devices. Another emerging direction utilizes the
neural light field (NeLF) for speedup, as only one forward
pass is performed on a ray to predict the pixel color. Nev-
ertheless, to reach a similar rendering quality as NeRF, the
network in NeLF is designed with intensive computation,
which is not mobile-friendly. In this work, we propose an
efficient network that runs in real-time on mobile devices
for neural rendering. We follow the setting of NeLF to train
our network. Unlike existing works, we introduce a novel
network architecture that runs efficiently on mobile devices
with low latency and small size, i.e., saving 15⇥ ⇠ 24⇥
storage compared with MobileNeRF. Our model achieves
high-resolution generation while maintaining real-time in-
ference for both synthetic and real-world scenes on mo-
bile devices, e.g., 18.04ms (iPhone 13) for rendering one
1008 ⇥ 756 image of real 3D scenes. Additionally, we
achieve similar image quality as NeRF and better quality
than MobileNeRF (PSNR 26.15 vs. 25.91 on the real-world
forward-facing dataset)1.

1. Introduction

Remarkable progress seen in the domain of neural ren-
dering [33] promises to democratize asset creation and ren-
dering, where no mesh, texture, or material is required –
only a neural network that learns a representation of an ob-
ject or a scene from multi-view observations. The trained

1More demo examples in our Webpage.

Figure 1. Examples of deploying our approach on mobile de-
vices for real-time interaction with users. Due to the small model
size (8.3MB) and fast inference speed (18 ⇠ 26ms per image on
iPhone 13), we can build neural rendering applications where users
interact with 3D objects on their devices, enabling various appli-
cations such as virtual try-on. We use publicly available software
to make the on-device application for visualization [1, 3].

model can be queried at arbitrary viewpoints to generate
novel views. To be made widely available, this excit-
ing application requires such methods to run on resource-
constrained devices, such as mobile phones, conforming to
their limitations in computing, wireless connectivity, and
hard drive capacity.

Unfortunately, the impressive image quality and capa-
bilities of NeRF [33] come with a price of slow render-
ing speed. To return the color of the queried pixel, hun-
dreds of points need to be sampled along the ray that ends
up in that pixel, which is then integrated to get the radi-
ance. To enable real-time applications, many works have
been proposed [12, 34, 37, 45], yet, they still require high-
end GPUs for rendering and hence are not available for
resource-constrained applications on mobile or edge de-
vices. An attempt is made to trade rendering speed with
storage in MobileNeRF [10]. While showing promising
acceleration results, their method requires storage for tex-
turing saving. For example, for a single real-world scene
from the forward-facing dataset [33], MobileNeRF requires
201.5MB of storage. Clearly, downloading and storing tens,
hundreds, or even thousands of such scenes in MobileNeRF
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format on a device is prohibitively expensive.
A different approach is taken in Neural Light Fields

(NeLF) that directly maps a ray to the RGB color of the
pixel by performing only one forward pass per ray, result-
ing in faster rendering speed [5, 25, 28, 41]. Training NeLF
is challenging and hence requires increased network capac-
ity. For example, Wang et al. [41] propose an 88-layer fully-
connected network with residual connections to distill a pre-
trained radiance model effectively. While their approach
achieves better rendering results than vanilla NeRF at 30⇥
speedup, running it on mobile devices is still not possible,
as it takes three seconds to render one 200 ⇥ 200 image on
iPhone 13 shown in our experiments.

In this work, we propose MobileR2L, a real-time neu-
ral rendering model built with mobile devices in mind.
Our training follows a similar distillation procedure intro-
duced in R2L [41]. Differently, instead of using an MLP,
a backbone network used by most neural representations,
we show that a well-designed convolutional network can
achieve real-time speed with the rendering quality similar
to MLP. In particular, we revisit the network design choices
made in R2L and propose to use the 1 ⇥ 1 Conv layer in
the backbone. A further challenge with running a NeRF
or NeLF on mobile devices is an excessive requirement of
RAM. For example, to render an 800 ⇥ 800 image, one
needs to sample 640, 000 rays that need to be stored, caus-
ing out-of-memory issues. In 3D-aware generative mod-
els [9, 15, 20], this issue is alleviated by rendering a radi-
ance feature volume and upsampling it with a convolutional
network to obtain a higher resolution. Inspired by this, we
render a light-field volume that is upsampled to the required
resolution. Our MobileR2L features several major advan-
tages over existing works:

• MobileR2L achieves real-time inference speed on mo-
bile devices (Tab. 3) with better rendering quality, e.g.,
PSNR, than MobileNeRF on the synthetic and real-world
datasets (Tab. 1).

• MobileR2L requires an order of magnitude less stor-
age, reducing the model size to 8.3MB, which is
15.2⇥ ⇠ 24.3⇥ less than MobileNeRF.

Due to these contributions, MobileR2L can unlock wide
adoption of neural rendering in real-world applications on
mobile devices, such as a virtual try-on, where the real-time
interaction between devices and users is achieved (Fig. 1).

2. Related Works

Neural Radiance Field (NeRF). NeRF [33] shows the
possibility of representing a scene with a simple multi-
layer perceptron (MLP) network. Going forward, many
extensions follow up in improving rendering quality (e.g.,
MipNeRF [6], MipNeRF 360 [7], and Ref-NeRF [40]),

rendering efficiency (e.g., NSVF [29], Nex [43], Au-
toInt [27], FastNeRF [13], Baking [16], Plenoctree [45],
KiloNeRF [37], DeRF [36], DoNeRF [35], R2L [41], and
MobileNeRF [10]) and training efficiency (e.g., Plenox-
els [12], and Instant-NGP [34]).
Efficient NeRF Rendering. Since this paper falls into
the category of improving rendering efficiency as we tar-
get real-time rendering on mobile devices, we single out the
papers of this group and discuss them in length here. There
are generally four groups. (1) The first group trades speed
with space, i.e., they precompute and cache scene repre-
sentations and the rendering reduces to table lookup. Effi-
cient data structure like sparse octree, e.g., Plenoctree [45],
is usually utilized to make the rendering even faster. (2) The
second attempts reduce the number of sampled points along
the camera ray during rendering as it is the root cause of
prohibitively slow rendering speed. Fewer sampled points
typically lead to performance degradation, so as compen-
sation, they usually introduce extra information, such as
depth, e.g., DoNeRF [35], or mesh, e.g., MobileNeRF [10],
to maintain the visual quality. (3) The third group takes
a “divide and conquer” strategy. DeRF [36] decomposes
the scene spatially to Voronoi diagrams and learns each di-
agram with a small network. KiloNeRF [37] also employs
a decomposition scheme. Differently, they decompose the
scene into thousands of small regular grids. Each is ad-
dressed with a small network. Such decomposition poses
challenges to parallelism. Thus they utilize customized par-
allelism implementation to obtain speedup. (4) The fourth
group is a newly surging one, represented by the recent
works RSEN [5] and R2L [41]. They achieve rendering ef-
ficiency by representing the scene with NeLF (neural light
field) instead of NeRF. NeLF avoids the dense sampling on
camera ray, resulting in a much faster rendering speed than
NeRF. On the downside, NeLF is typically much harder to
learn than NeRF. As a remedy, these works (such as [41])
typically integrate a pre-trained NeRF model as a teacher
to synthesize additional pseudo data for distillation [8, 19].
Therefore, the resulting model is fast with a reasonably
small representation size, i.e., the model size.
Neural Light Field (NeLF). Light field is a different way of
representing scenes. The idea has a long history in the com-
puter graphics community, e.g., Light fields [25] and Lu-
migraphs [14] cache plenty of images and enable real-time
rendering at the cost of limited camera pose and excessive
storage overhead. One of the most intriguing properties of
NeLF is that rendering one image only requires one net-
work forward, resulting in a significantly faster speed than
NeRF-based methods. With the recent surge of the neural
radiance field, some works attempt to revive the idea of the
neural light field for efficient neural rendering. Sitzmann
et al. [38] materialize the idea of using a neural network
to model the scene, and the rendering process reduces to
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a single network forward. Despite the encouraging idea,
their method has only been evaluated on scenes with simple
shapes, not matching the quality of NeRF on complex real-
world scenes. Later, RSEN [5] and R2L [41] are introduced.
RSEN divides the space into many voxel grids. Only in each
grid, it is a NeLF, which needs alpha-composition to ren-
der the final color, making their method a mixture of NeLF
and NeRF. R2L [41] is a pure NeLF network that avoids
the alpha-composition step in rendering, which is also one
of the most relevant works to this paper. However, R2L is
still not compact and fast enough for mobile devices. Based
on our empirical study, an R2L model runs for around three
seconds per frame on iPhone 13 even for low-resolution like
200⇥ 200. This paper is meant to push the NeRF-to-NeLF
idea even further, making it able to perform real-time ren-
dering on mobile devices.

We will mainly compare to MobileNeRF [10] in this pa-
per as it is the only method, to our best knowledge, that can
run on mobile devices with matching quality to NeRF [33].

3. Methods

3.1. Prerequisites: NeRF and R2L

NeRF. NeRF [33] represents the scene implicitly with an
MLP network F⇥, which maps the 5D coordinates (spatial
location (x, y, z) and view direction (✓,�)) to a 1D volume
density (opacity, denoted as � here) and 3D radiance (de-
noted as c) such that F⇥ : R5 7! R4. Each pixel of an im-
age is associated with a camera ray. To predict the color Ĉ
of a pixel, the NeRF method samples many points (denoted
as N below) along the camera ray and accumulates the radi-
ance c of all these points via alpha compositing [23,31,33]:

Ĉ(r) =
NX

i=1

Ti · (1� exp(��i�i)) · ci,

(ci,�i) = F⇥(r(ti),d),

Ti = exp(�
i�1X

j=1

�j�j),

(1)

where r means the camera ray; r(ti) = o + tid represents
the location of a point on the ray with origin o and direc-
tion d; ti is the Euclidean distance, i.e., a scalar, of the
point away from the origin; and �i = ti+1 � ti refers to the
distance between two adjacent sampled points. A stratified
sampling approach is employed in NeRF [33] to sample the
ti in Eqn. 1. To enrich the input information, the position
and direction coordinates are encoded by positional encod-
ing [39], which maps a scalar (R) to a higher dimensional
space (R2L+1) through cosine and sine functions, where L

(a predefined constant) stands for the frequency order (in
the original NeRF [33], L = 10 for positional coordinates
and L = 4 for direction coordinates).
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Figure 2. Training and Inference Pipeline. The training involves
a teacher model to generate pseudo data, which is used to learn
the MobileR2L. The teacher model, e.g., NeRF, is trained on real
images. Once we have the teacher model, we use it to generate
pseudo images, e.g., images with the resolution of 800 ⇥ 800,
in addition to down-scaled rays, e.g., rays with spatial size as
100 ⇥ 100, that share the same origin with the pseudo images to
train the MobileR2L. After that, we use the real data to fine-tune
MobileR2L. For inference, we directly forward the rays into the
pre-trained MobileR2L to render images.

The whole formulation and training of NeRF are
straightforward. One critical problem preventing fast in-
ference in NeRF is that the N , i.e., the number of sampled
points, in Eqn. 1 is pretty large (256 in the original NeRF
paper due to their two-stage coarse-to-fine design). There-
fore, the rendering computation for even a single pixel is
prohibitively heavy. The solution proposed by R2L [41] is
distilling the NeRF representation to NeLF.
R2L. Essentially, a NeLF function maps the oriented ray to
RGB. To enrich the input information, R2L proposes a new
ray representation – they also sample points along the ray
just like NeRF [33] does; but differently, they concatenate
the points to one vector, which is used as the ray representa-
tion and fed into a neural network to learn the RGB. Similar
to NeRF, positional encoding [39] is also adopted in R2L
to map each scalar coordinate to a high dimensional space.
During training, the points are randomly (by a uniform dis-
tribution) sampled; during testing, the points are fixed.

The output of the R2L model is directly RGB, no den-
sity learned, and there is no extra alpha-compositing step,
which makes R2L much faster than NeRF in rendering. One
downside of the NeLF framework is, as shown in R2L [41],
the NeLF representation is much harder to learn than NeRF;
so as a remedy, R2L proposes an 88-layer deep ResMLP
(residual MLP) architecture (much deeper than the network
of NeRF) to serve as the mapping function.

R2L has two stages in training. In the first stage, they use
a pre-trained NeRF model as a teacher to synthesize exces-
sive (origin, direction, RGB) triplets as pseudo
data; and then fed the pseudo data to train the deep ResMLP.
This stage can make the R2L model achieve comparable
performance to the teacher NeRF model. In the second
stage, they finetune the R2L network from the first stage on
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Figure 3. Overview of Network. The input tensor of MobileR2L has 4D shape: batch, channel, height, and width. The backbone includes
residual blocks (RB) that is repeated 28 times (N = 28). Following the backbone, there are two types of super-resolution (SR) modules.
The first SR module (SR1) has kernerl size 4 ⇥ 4 in the Transpose CONV layer that doubles the input H,W to 2H, 2W , whereas the
second SR module (SR2) has kernerl size 3⇥ 3, tripling the spatial size to 3H, 3W . The configuration of 3⇥ SR1 is used in the synthetic
360� dataset that upsamples the input 8⇥. For the real-world forward-facing dataset, we use the combination of 2 ⇥ SR1 + SR2 that
upsamples the input 12⇥. Moreover, we use various output channels across RB and SR: C1 = 256, C2 = 64, and C3 = 16.

the original data – this step can further boost the rendering
quality as shown in the R2L work [41].

3.2. MobileR2L

3.2.1 Overview

We follow the learning process of R2L to train our proposed
MobileR2L, namely, using a pre-trained teacher model,
such as NeRF [33], to generate pseudo data for the train-
ing of a lightweight neural network. To reduce the infer-
ence speed, we aim only to forward the network once when
rendering an image. However, under the design of R2L,
although one pixel only requires one network forward, di-
rectly feeding rays with large spatial size, e.g., 800 ⇥ 800,
into a network causes memory issues. Therefore, R2L for-
wards a partial of rays each time, increasing the speed over-
head. To solve the problem, we introduce super-resolution
modules, which upsample the low-resolution input, e.g.,
100 ⇥ 100, to a high-resolution image. Thus, we can ob-
tain a high-resolution image with only one forward pass of
the neural network during inference time. The training and
inference pipeline is illustrated in Fig. 2, and we introduce
more details for our network architecture in the following.

3.2.2 Network Architectures

The input rays can be represented as x 2 RB,6,H,W , where
B denotes the batch size and H and W denote the spatial
size. The ray origin and view directions are concatenated as
the second dimension of x. We then apply positional encod-
ing �(·) on x to map the ray origin and view directions into
a higher dimension. Thus, we get the input of our neural

network as �(x).
The network includes two main parts: an efficient

backbone and Super-Resolution (SR) modules for high-
resolution rendering, with the architecture provided in
Fig. 3. Instead of using Fully Connected (FC) or lin-
ear layers for the network that is adopted by existing
works [33, 41], we only apply convolution (CONV) layers
in the backbone and super-resolution modules.

There are two main reasons for replacing FC with CONV
layers. First, the CONV layer is better optimized by com-
pilers than the FC layer [30]. Under the same number of
parameters, the model with CONV 1 ⇥ 1 runs around 27%
faster than the model with FC layers, as shown in Tab. 4.
Second, suppose FC is used in the backbone, in that case,
extra Reshape and Permute operations are required to
modify the dimension of the output features from the FC
to make the features compatible with the CONV layer in
the super-resolution modules, as the FC and CONV calcu-
late different tensor dimensions. However, such Reshape
or Permute operation might not be hardware-friendly on
some mobile devices [26]. With the CONV employed as
the operator in the network, we then present more details
for the backbone and SR modules.
Efficient Backbone. The architecture of the backbone fol-
lows the design of residual blocks from R2L [41]. Differ-
ent from R2L, we adopt the CONV layer instead of the FC
layer in each residual block. The CONV layer has the ker-
nel size and stride as 1. Additionally, we use the normaliza-
tion and activation functions in each residual block, which
can improve the network performance without introducing
latency overhead (see experimental details in Tab. 4). The
normalization and activation are chosen as batch normaliza-
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tion [21] and GeLU [17]. The backbone contains 60 CONV
layers in total.
Super-Resolution Modules. To reduce the latency when
running the neural rendering on mobile devices, we aim to
forward the neural network once to get the synthetic image.
However, the existing network design of the neural light
field requires large memory for rendering a high-resolution
image, which surpasses the memory constraint on mobile
devices. For example, rendering an image of 800 ⇥ 800
requires the prediction of 640, 000 rays. Forwarding these
rays at once using the network from R2L [41] causes the out
of memory issue even on the Nvidia Tesla A100 GPU (40G
memory).

To reduce the memory and latency cost for high-
resolution generation, instead of forwarding the number of
rays that equals to the number of pixels, we only forward a
partial of rays and learn all the pixels via super-resolution.
Specifically, we propose to use the super-resolution mod-
ules following the efficient backbone to upsample the out-
put to a high-resolution image. For example, to generate a
800⇥800 image, we forward a 4D tensor x with spatial size
as 100⇥ 100 to the network and upsample the output from
backbone three times (i.e., upsample by 2⇥ each time). The
SR module includes two stacked residual blocks. The first
block includes three CONV layers with one as a 2D Trans-
pose CONV layer and two CONV 1⇥ 1 layers; the second
block includes two CONV 1⇥ 1 layers. After the SR mod-
ules, we apply another CONV layer followed by the Sig-
moid activation to predict the final RGB color. We denote
our model as D60-SR3 where it contains 60 CONV layers
in the efficient backbone and 3 SR modules.

4. Experiments

Datasets. We conduct the comparisons mainly on two
datasets: realistic synthetic 360� [33] and real-world
forward-facing [32, 33]. The synthetic 360� dataset con-
tains 8 path-traced scenes, with each scene including 100
images for training and 200 images for testing. Forward-
facing contains 8 real-world scenes captured by cellphones,
where the images in each scene vary from 20 to 60, and
1/8 images are used for testing. We conduct our experi-
ments (training and testing) on the resolution of 800 ⇥ 800
for synthetic 360� and 1008 ⇥ 756 (4⇥ down-scaled from
the original resolution) for forward-facing.
Implementation Details. We follow the training scheme
of R2L [41], i.e., using a teacher model to render pseudo
images for the training of MobileR2L network. Specif-
ically, we synthesize 10K pseudo images from the pre-
trained teacher model [2] for each scene. We first train our
MobileR2L on the generated pseudo data and then fine-tune
it on the real data, as shown in Fig. 2. In all the experiments,
we employ Adam [24] optimizer with an initial learning rate
5 ⇥ 10�4 that decays during the training. Our experiments

Table 1. Quantitative Comparison on Synthetic 360� and
Forward-facing. Our method obtains better results on the
three metrics than NeRF for the two datasets. Compared with
MoibleNeRF and SNeRG, we achieve better results on most of
the metrics.

Synthetic 360� Forward-facing
PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

NeRF [33] 31.01 0.947 0.081 26.50 0.811 0.250
NeRF-Pytorch [44] 30.92 0.991 0.045 26.26 0.965 0.153
SNeRG [16] 30.38 0.950 0.050 25.63 0.818 0.183

MoibleNeRF [10] 30.90 0.947 0.062 25.91 0.825 0.183

MobileR2L (Ours) 31.34 0.993 0.051 26.15 0.966 0.187
Our Teacher 33.09 0.961 0.052 26.85 0.827 0.226

are conducted on a cluster of Nvidia V100 and A100 GPUs
with the batch size as 54 for the main results on the synthetic
360� and batch size as 36 on the forward-facing dataset.

Different from R2L, the spatial size of the input rays
and the output rendered images in our approach are dif-
ferent. For each high-resolution image generated by the
teacher model, we save the input rays corresponding to a
lower-resolution image where the camera origins and direc-
tions are the same as the high-resolution one while the focal
length is down-scaled accordingly. Additionally, we do not
sample the rays from different images as in R2L. Instead,
the rays in each training sample share the same origin and
reserve their spatial locations.

Considering the training data of the synthetic 360� and
forward-facing datasets have different resolutions, the spa-
tial size of the inputs for the two datasets are slightly dif-
ferent. Our network takes input with the spatial size of
100⇥ 100 for the synthetic 360� dataset and upsamples by
8⇥ to render 800 ⇥ 800 RGB images. In contrast, the spa-
tial size of 84 ⇥ 63 is used in the forward-facing dataset,
and 1008 ⇥ 756 image (12⇥ upsampling) is rendered. The
kernel size and padding are adjusted in the last transposed
CONV layer to achieve 8⇥ and 12⇥ upsampling with the 3
SR blocks.

4.1. Comparisons

Rendering Performance. To understand the image qual-
ity of various methods, we report three common metrics:
PSNR, SSIM [42], and LPIPS [46], on the realistic syn-
thetic 360� and real forward-facing datasets, as demon-
strated in Tab. 1. Compared with NeRF [33], our approach
achieves better results on PSNR, SSIM, and LPIPS for the
synthetic 360� dataset. On the forward-facing dataset, we
obtain better SSIM and LPIPS than NeRF [33]. Similarly,
our method achieves better results for all three metrics than
MobileNeRF [10] on the synthetic 360� dataset and better
PSNR and SSIM on the forward-facing dataset. Compared
to SNeRG [16], our method obtains better PSNR and SSIM.

We also show the performance of the teacher model used

8332



Lego (a) GT (b) NeRF (c) Ours

Fern (a) GT (b) NeRF (c) Ours

Figure 4. Visual comparison between our method and NeRF [33]
(trained via NeRF-Pytorch [44]) on the synthetic 360� Lego (size:
800⇥800⇥3) and real-world forward-facing scene Fern (size:
1008⇥756⇥3). Best viewed in color. Please refer to our web-
page for more visual comparison results.

Figure 5. Zoom-in comparisons. Top row: MobileNeRF [10]. Re-
sults are obtained from the code and demo released by the authors.
Bottom row: MobileR2L. Our approach renders high-quality im-
ages even for zoom-in views.

in training MobileR2L in Tab. 1 (Our Teacher). Note that
there is still a performance gap between the student model
(MobileR2L) and the teacher model. However, as we show
following (Tab. 5), a better teacher model can lead to a
student model with higher performance. Compared with
MoibleNeRF and SNeRG, our approach has the advantage
that we can directly leverage the high-performing teacher
models to help improve student training in different appli-
cation scenarios. We further show the qualitative compar-
ison results in Fig. 4. On the synthetic scene Lego, our
MobileR2L outperforms NeRF clearly, delivering sharper
and less distorted shapes and textures. On the real-world
scene Fern, our result is less noisy, and the details, e.g., the
leaf tips, are sharper. Additionally, we provide the zoom-in
comparison with MoibleNeRF [10] in Fig. 5. Our method
achieves high-quality rendering for zoom-in view, which is

Table 2. Analysis of Storage (MB) required for different ren-
dering methods. Our method has a clear advantage over existing
works with much less storage required.

Synthetic 360� Forward-facing
MoibleNeRF [10] SNeRG [16] Ours MobileNeRF [10] SNeRG [16] Ours

Disk storage 125.8 86.8 8.3 201.5 337.3 8.3

Table 3. Analysis of Inference Speed. Latency (ms) is obtained
on iPhone with iOS 16. Follwing MoibleNeRF [10], we use the
notation M

N to indicate that M out of N scenes in the Forward-
facing dataset that can not run on devices. Specifically, MobileN-
eRF can not render Leaves and Orchids in Forward-facing.

Synthetic 360� Forward-facing
MobileNeRF [10] Ours MobileNeRF [10] Ours

iPhone 13 17.54 26.21 27.15 2
8 18.04

iPhone 14 16.67 22.65 20.98 2
8 16.48

especially important for 3D assets that users might perform
zoom-in to look for more image details.

Disk Storage. One significant advantage of our method
is that we do not require extra storage, even for complex
scenes. As shown in Tab. 2, the storage of our approach is
8.3MB for both synthetic 360� and forward-facing datasets.
The mesh-based methods like MobileNeRF demand more
storage for real-world scenes due to saving more complex
textures. As a result, our approach takes 24.3⇥ less disk
storage than MobileNeRF on the forward-facing, and 15.2⇥
less storage on the synthetic 360� dataset.

Inference Speed. We profile and report the rendering speed
of our proposed approach on iPhones (13, and 14, iOS 16)
in Tab. 3. The models are compiled with CoreMLTools [11].
Our proposed method runs faster on real forward-facing
scenes than the realistic synthetic 360� scenes. The latency
discrepancy between the two datasets comes from the dif-
ferent input spatial sizes. MobileNeRF shows a lower la-
tency than our models on the realistic synthetic 360� but
higher on the real-world scenes. Both methods can run in
real-time on devices. Note that MobileNeRF cannot render
two scenes, i.e., Leaves and Orchids, due to memory
issues, as they require complex textures to model the geom-
etry. In contrast, our approach is robust for different scenes.

Discussion. From the comparison of the rendering quality,
disk storage, and inference speed, it can be seen that Mo-
bileR2L achieves overall better performance than MobileN-
eRF. More importantly, considering the usage of neural ren-
dering on real-world applications, MobileR2L is more suit-
able as it requires much less storage, reducing the constraint
for hardware and can render real-world scenes in real-time
on mobile devices.
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4.2. Ablation Analysis

Here we perform the ablation analysis to understand the
design choices of the network. We use the scene of Chair
from the synthetic 360� to conduct the analysis. All models
are trained for 200K iterations.
Options for Backbone. We study the two available oper-
ators for designing the backbone. MLP and 1 ⇥ 1 CONV
layer are essentially equivalent operators and perform the
same calculations, thus resulting in similar performance.
However, we observe around 27% latency reduction on mo-
bile devices (iPhone 13) when replacing the MLP layer with
the 1 ⇥ 1 CONV layer. Specifically, as shown in Tab. 4,
we design two networks, i.e., MLP and CONV2D, with
only residual blocks as in Fig. 3 but removing the acti-
vation, normalization, and super-resolution modules. We
use the input size as 100 ⇥ 100 for the two models. Since
the super-resolution modules are omitted, we train the two
networks for generating 100 ⇥ 100 images. As can be
seen, the CONV2D model has a faster inference speed than
MLP with similar performance. This is due to the fact that
CONV operation is better-optimized than MLP on mobile
devices. Additionally, due to the intrinsic design of our
proposed MobileR2L, employing MLP layers requires two
additional operators, i.e., Permute and Reshape, before
feeding the internal features to super-resolution modules,
while Permute and Reshape involve data movement that
adds unnecessary overheads on some edge devices [26].
Analysis of Activation Function. R2L [41] and NeRF [33]
use ReLU [4] activation as non-linearity function. In our
proposed MobileR2L, we use GELU [18] instead. As
shown in Tab. 4, by comparing the CONV2D + ReLU and
CONV2D + GeLU, which are two networks trained with
ReLU and GeLU activations, we notice that GeLU brings
about 0.17 PSNR boost without any additional latency
overhead. Similarly, we show that incorporating Batch-
Norm [22] layer into the ResBlock is also beneficial for bet-
ter performance without introducing extra latency, as shown
by CONV2D + GeLU + BN in Tab. 4. The three networks in
the experiments are also trained to render 100⇥100 images.
Analysis on Input Dimension. We further analyze the op-
timal spatial resolution for the input tensor. Specifically, we
benchmark the performance of three approaches, namely,
50 ⇥ 50 - NeRF Teacher, 100 ⇥ 100 - NeRF Teacher, and
200 ⇥ 200 - NeRF Teacher with the spatial size of input as
the square of 50, 100, and 200 respectively. These models
contain super-resolution modules to render 800 ⇥ 800 im-
ages and are trained with the NeRF [33] as a teacher model.
Results are presented in Tab. 5. The model using a small in-
put spatial size, i.e., 50⇥ 50, achieves 2⇥ speedup than the
model with a larger size, i.e., 100 ⇥ 100, as less computa-
tion is required. However, the performance is also degraded
by 0.25 PSNR. Further increasing the input spatial size to
200⇥ 200 makes the model unable to achieve real-time in-

Table 4. Analysis of Network Design. For all the comparisons,
we use the input tensor with the spatial size as 100⇥ 100 and ren-
der the image with spatial size. The latency (ms) is measured on
iPhone 13 (iOS16) with models compiled with CoreMLTools [11]

PSNR" SSIM" LPIPS# Latency#
MLP 19.13 0.9759 0.6630 19.57
CONV2D 19.16 0.9759 0.6301 14.30
CONV2D + ReLU 26.82 0.9949 0.0282 16.20
CONV2D + GeLU 26.99 0.9949 0.0730 17.00
CONV2D + GeLU + BN 27.18 0.9954 0.0259 17.00

Table 5. Analysis of the spatial size of the input, usage of

teacher model, and ray presentation. Besides image quality
metrics, we show the number of parameters for each model and
the latency when running on iPhone 13.

Params PSNR" SSIM" LPIPS# Latency#
50⇥ 50 - NeRF Teacher 3.9M 30.40 0.9965 0.0686 13.04
100⇥ 100 - NeRF Teacher 3.9M 30.65 0.9966 0.0668 26.21
200⇥ 200 - NeRF Teacher 3.9M - - - 73.76
800⇥ 800 - w/o SR 3.9M - - - Error
100⇥ 100 - MipNeRF Teacher 3.9M 30.83 0.0997 0.0564 26.21
100⇥ 100 - MipNeRF Teacher, K16, L10 4.1M 30.90 0.9968 0.0583 31.05
100⇥ 100 - MipNeRF Teacher, K16, L10, D100 6.8M 31.37 0.9972 0.0470 44.52

ference. Thus, we do not report the rendering performance
of the models with 200⇥ 200 input size.
Analysis of SR modules. We further show the necessity of
using SR modules. We use the spatial size of 800 ⇥ 800
as the network input to render images with the same spatial
size. We denote the setting as 800⇥ 800 - w/o SR in Tab. 5.
Profiling the latency of such a network leads to compilation
errors due to intensive memory usage. Thus, our proposed
SR module is essential for high-resolution synthesis with-
out introducing prohibitive computation overhead.
Choice of Teacher Models. Since both R2L [41] and Mo-
bileR2L use a teacher model for generating pseudo data to
train a lightweight network, we study whether a more pow-
erful teacher model can improve performance. To conduct
the experiments, we use MipNeRF [6] as the teacher model
for the training MobileR2L, given MipNeRF shows bet-
ter performance than NeRF on the synthetic 360� dataset.
We denote the approach as 100⇥ 100 - MipNeRF Teacher.
Through the comparison with 100 ⇥ 100 - NeRF Teacher,
as in Tab. 5, we notice the quality of the rendered images is
improved, e.g., the PSNR is increased by 0.18, without the
extra cost of latency. The comparison demonstrates that our
approach has the potential to render higher-quality images
when better teacher models are provided.
Analysis on Ray Representation. Here we analyze
how the ray representation affects the latency-performance
trade-off of MobileR2L. We follow the same ray represen-
tation paradigm as in R2L [41] and positional encoding as
in NeRF [33]. Specifically, R2L sample K 3D points along
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the ray, and each point is mapped to a higher dimension
by positional encoding with L positional coordinates. R2L
sets K = 16 and L = 10, resulting in a vector with a
dimension of 1, 008. We apply the same setting to Mo-
bileR2L and denote the model as 100 ⇥ 100, K16, L10
- MipNeRF Teacher in Tab. 5. For our implementation in
MobileR2L, we set K = 8 and L = 6 for the model, which
has the dimension per ray as 312. The model is 100 ⇥ 100
- MipNeRF Teacher. By comparing the performance of the
two models, we notice that larger K and L lead to negligi-
ble PSNR improvement (0.07), yet higher inference latency
and bigger model size (more parameters). Therefore, we
chose K = 8 and L = 6 for the consideration of model size
and latency – they are the more important metrics when de-
ploying neural rendering models on mobile devices.
Depth of the Backbone. Lastly, we show the effects of
the backbone depth on the model performance. We use the
depth as 60 for our backbone. By increasing the number of
residual blocks in the backbone, i.e., setting depth as 100,
we obverse better model performance at the cost of higher
latency, as shown by comparing the last two rows in Tab. 5.
Using depth as 100 significantly increases the latency and
the number of parameters, and the model fails to run in real
time. Thus, we chose depth as 60, given the better trade-off
between latency, model size, and performance.

4.3. Real-World Application

Here we demonstrate the usage of our technique for
building a real-world application. Given the small size and
faster inference speed of our model, we create a shoes try-
on application that runs on mobile devices. Users can di-
rectly try on the shoes rendered by MobileR2L using their
devices, enabling real-time interaction.

The pipeline for building the application is illustrated in
Fig. 6. We first use iPhone to capture 100 shoe images for
training. The images are then segmented to remove the
background. After that, we train a NeRF model [33] to
generate pseudo data, which is later used for learning Mo-
bileR2L to render images in 1008⇥ 756 resolution. We ap-
ply foot tracking and overlay the rendered shoe on top of the
user’s feet. As can be seen from Fig. 6, our model is able to
render high-quality images from various views for different
users. The try-on usage proves the potential of leveraging
neural rendering for building various real-time interactive
applications such as Augment Reality.

5. Limitation and Conclusion

This work presents MobileR2L, the first neural light net-
work that renders images with similar quality as NeRF [33]
while running in real-time on model devices. We perform
extensive experiments to design an optimized network ar-
chitecture that can be trained via data distillation to ren-
der high-resolution images, e.g., 800 ⇥ 800. Additionally,

(a) Example Images from Collected Data

(b) Segmented Images (c) Novel View Synthesis for Virtual Try-On

MobileR2L Training

On-Device Deployment

Figure 6. Virtual Try-On Application. From the collected im-
ages using a cellphone (a), we segment the foreground shoe (b)
to train a MobileR2L model. We deploy the model on mobile
devices, and users can directly try the shoe. The model renders
images for novel views when users rotate the phone or change the
foot positions (c).

Room (a) GT (b) NeRF (c) Ours

Figure 7. Visual comparison on the real-world scene Room. Both
our model and NeRF fail to synthesize the whiteboard writings on
the upper-left of the cutout patch.

since we do not require other information besides the neural
network, MobileR2L dramatically saves the representation
storage in stark contrast to other mesh-based methods like
MoibleNeRF [10]. Furthermore, we prove that with our de-
sign, neural rendering can be used to build real-world appli-
cations, achieving real-time user interaction.

Although MobileR2L achieves promising inference
speed with small model sizes, there are still two limitations
of the current work that can be improved. First, we fol-
low the training recipe of R2L [41], and R2L uses 10K
pseudo images generated by the teacher NeRF model to
train the student model. The number of training images is
much more than the images used to train the teacher NeRF
(which only requires around 100 images), resulting in a
longer training time than NeRF-based methods. Therefore,
a future direction could be reducing the training costs for
distillation-based works like R2L and this work. Second,
MobileR2L fails to generate some high-frequency details in
the images. We show examples in Fig. 7. Using a larger
model may alleviate this problem given a larger model ca-
pacity. Nevertheless, the inference latency will also increase
accordingly on mobile devices. Future efforts may focus on
optimizing the network and training pipeline to boost the
performance of the current model.
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[8] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In SIGKDD, 2006. 2

[9] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022. 2

[10] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. arXiv preprint arXiv:2208.00277, 2022.
1, 2, 3, 5, 6, 8, 12

[11] CoreMLTools. Use coremltools to convert models from
third-party libraries to core ml., 2021. 6, 7, 11

[12] Fridovich-Keil and Yu, Matthew Tancik, Qinhong Chen,
Benjamin Recht, and Angjoo Kanazawa. Plenoxels: Radi-
ance fields without neural networks. In CVPR, 2022. 1, 2

[13] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. arXiv preprint arXiv:2103.10380, 2021.
2

[14] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In Proceedings of the
Annual Conference on Computer Graphics and Interactive
Techniques, 1996. 2

[15] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian
Theobalt. Stylenerf: A style-based 3d-aware genera-
tor for high-resolution image synthesis. arXiv preprint
arXiv:2110.08985, 2021. 2

[16] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 2, 5, 6

[17] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 5

[18] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus), 2016. 7

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In NIPS Workshop, 2014. 2

[20] Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juyong
Zhang. Headnerf: A realtime nerf-based parametric head
model. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2022. 2

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 5

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift, 2015. 7

[23] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. SIGGRAPH, 18(3):165–174, 1984. 3

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 5

[25] Marc Levoy and Pat Hanrahan. Light field rendering. In Pro-
ceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, pages 31–42, 1996. 2

[26] Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evan-
gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren. Effi-
cientformer: Vision transformers at mobilenet speed. arXiv
preprint arXiv:2206.01191, 2022. 4, 7

[27] David B Lindell, Julien NP Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume ren-
dering. In CVPR, 2021. 2

[28] Celong Liu, Zhong Li, Junsong Yuan, and Yi Xu. Neulf:
Efficient novel view synthesis with neural 4d light field. In
EGSR, 2022. 2

[29] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 2

[30] Xingyu Liu, Jeff Pool, Song Han, and William J Dally. Effi-
cient sparse-winograd convolutional neural networks. arXiv
preprint arXiv:1802.06367, 2018. 4

[31] Nelson Max. Optical models for direct volume rendering.
TVCG, 1(2):99–108, 1995. 3

[32] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 38(4):1–14, 2019. 5

[33] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3, 4, 5, 6, 7, 8, 11, 12

[34] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 1, 2

8336



[35] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, An-
ton S. Kaplanyan, and Markus Steinberger. DONeRF: To-
wards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. Comput. Graph. Fo-
rum, 2021. 2

[36] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. In CVPR, 2021. 2

[37] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14335–
14345, 2021. 1, 2

[38] Vincent Sitzmann, Semon Rezchikov, William T Freeman,
Joshua B Tenenbaum, and Fredo Durand. Light field net-
works: Neural scene representations with single-evaluation
rendering. In NeurIPS, 2021. 2

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 3

[40] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In CVPR, 2022. 2

[41] Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Men-
glei Chai, Yun Fu, and Sergey Tulyakov. R2l: Distilling neu-
ral radiance field to neural light field for efficient novel view
synthesis. In ECCV, 2022. 2, 3, 4, 5, 7, 8, 11

[42] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 5

[43] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
2

[44] Lin Yen-Chen. Nerf-pytorch. https://github.com/
yenchenlin/nerf-pytorch/, 2020. 5, 6, 11, 12

[45] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering
of neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 1, 2

[46] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric, 2018. 5

8337


