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Abstract

We propose the Recurrent homography estimation
framework using Homography-guided image Warping and
Focus transformer (FocusFormer), named RHWF. Both be-
ing appropriately absorbed into the recurrent framework,
the homography-guided image warping progressively en-
hances the feature consistency and the attention-focusing
mechanism in FocusFormer aggregates the intra-inter cor-
respondence in a global→nonlocal→local manner. Thanks
to the above strategies, RHWF ranks top in accuracy
on a variety of datasets, including the challenging cross-
resolution and cross-modal ones. Meanwhile, benefiting
from the recurrent framework, RHWF achieves parame-
ter efficiency despite the transformer architecture. Com-
pared to previous state-of-the-art approaches LocalTrans
and IHN, RHWF reduces the mean average corner error
(MACE) by about 70% and 38.1% on the MSCOCO dataset,
while saving the parameter costs by 86.5% and 24.6%. Sim-
ilar to the previous works, RHWF can also be arranged in
1-scale for efficiency and 2-scale for accuracy, with the 1-
scale RHWF already outperforming most of the previous
methods. Source code is available at https://github.
com/imdumpl78/RHWF.

1. Introduction

Homography is defined as a global projective mapping
between two images captured from different perspectives.
It has been widely applied in computer vision tasks rang-
ing from the monocular camera system to the multi-camera
system, such as image/video stitching [4, 17, 19], multi-
scale gigapixel photography [3,34], multispectral image fu-
sion [41,49], planar object tracking [44,45], SLAM [14,31],
and GPS-denied UAV localization [18, 48].

Deep homography estimation was introduced in the pi-
oneer [12] that uses a VGG-style network to predict the
homography. Many following works have been presented
to further improve the estimation accuracy, including cas-
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Figure 1. Illustration of the difference of warping and attention
strategies in RHWF and previous approaches. Our RHWF deploys
(c) and (f). Please see text for details.

cading multiple similar networks [15, 21, 22, 34] or design-
ing iterable architectures such as the IC-LK iterator [7, 48]
and the trainable CNN iterator [6]. The cascading strategy
has improved the accuracy to some extent but is limited by
the fixed number of networks. Worse still, stacking more
networks cannot guarantee better accuracy [22]. The IC-
LK (inverse compositional Lucas-Kanade [1]) based deep
methods use deep feature extractor combined with the un-
trainable iterator to improve the estimation performance,
but is limited by the theoretical drawback of the untrainable
iterator [6, 32]. IHN [6] avoids this limitation by designing
an iterable and trainable network architecture, which fur-
ther improves the estimation accuracy. However, the fea-
ture inconsistency caused by the homography deformation
has long been neglected in most current works.

It has been well investigated in [9] that standard convo-
lution is unable to keep the equivariance under the spatial
transformation except translation. However, besides trans-
lation, homography is composed of rotation, scaling, shear-
ing, aspect ratio, and perspective transformations [37, 43],
which leads to the inconsistency of the features from cor-
responding points [25]. The inconsistency will hinder the
homography estimation performance. Many efforts have
been made to acquire the transformation-equivariance by
either applying group convolutions in the network [9] or
pre-warping [16, 20, 25, 43] the input image. But the above
strategies need to exhaustively explore the possible trans-
formation dimensions and degrees, as is illustrated in Fig.
1a, which is redundant in computation when coping with
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the homography transformation with a DOF of 6.
To cope with the above problem, homography-guided

image warping, as shown in Fig. 1c, is adopted in our pro-
posed recurrent homography estimation framework, dubbed
RHWF. We note that homography-guided image warping
has already been unconsciously employed in some of the
previous cascading-based works [15, 22, 34]. However,
the reason, effect, and technique of using homography-
guided image warping, especially absorbing it properly
in the recurrent framework, hasn’t ever been investigated.
Different from the previous works, our RHWF combines
the homography-guided image warping with the recurrent
trainable network, which significantly improves the ac-
curacy without the cost of network parameters. Com-
pared to the previous cascading-based SOTA method Lo-
calTrans [34], RHWF reduces the mean average corner er-
ror (MACE) by about 70% on the MSCOCO dataset, while
reducing the parameter cost of 86.5%.

On the other side, transformer architecture [8, 13] has
demonstrated its superior ability in computer vision and
image processing tasks. The transformer architecture has
also been introduced in the homography estimation task as
in [21,34]. Following their pioneer exploration, we propose
a transformer structure, named FocusFormer, that is pretty
compatible with the homography-guided image warping
and the recurrent framework. As illustrated in Fig. 1d, Fig.
1e, and Fig. 1f, unlike the attention mechanism in previous
works that is pure global or local, FocusFormer employs the
attention focusing mechanism. The scope of the attention
mechanism shrinks along with the recurrence procedure,
which captures the intra/inter correspondence information
in a global→nonlocal→local1 manner. We note that com-
pared to the most widely adopted global attention mecha-
nism, the attention-focusing mechanism can save computa-
tion costs while improving the homography estimation per-
formance simultaneously.

We introduce the homography-guided image warping
and FocusFormer into the recurrent homography estima-
tion framework, named RHWF. The three parts, i.e., recur-
rent estimation, homography-guided image warping, and
the FocusFormer cooperate well, with each part facilitat-
ing the others. We evaluate RHWF on a variety of datasets
including common RGB image data [24], cross-resolution
data [34] and cross-modal data [6, 48], on which it outper-
forms all other competitors by a large gap. We show that
though adopting the transformer, our RHWF reduces the pa-
rameter cost of 24.6% while achieving the accuracy gain of
38.1% (MSCOCO) and 34.1% (GoogleMap), compared to
the previous SOTA method IHN [6]. In summary, our con-
tributions are as follows: (1) We propose a novel Recurrent
homography estimation framework using Homography-

1As in most of the works that refer to “nonlocal” [5], it denotes a rela-
tively large neighborhood around a pixel.

guided image Warping and FocusFormer, dubbed RHWF.
RHWF ranks top on a variety of datasets, including the chal-
lenge scenes such as the cross-resolution and cross-modal
ones. The recurrent estimation, homography-guided im-
age warping, and FocusFormer facilitate the functionality
of each other. (2) The reason, effect, and technique of using
homography-guided image warping properly in the recur-
rent framework is first fully investigated. With the assis-
tance of homography-guided image warping, the extracted
features gradually converge into consistency, and hence
boosting the homography estimation accuracy. (3) The Fo-
cusFormer is proposed to be the fundamental block of the
recurrent homography estimation. The attention mecha-
nism in FocusFormer works in a global→nonlocal→local
manner, which significantly saves the computational costs
while achieving a better performance.

2. Related Work
In this section we briefly review the most relevant works

including deep homography estimation, transformation-
equivariant network, and transformer in deep homography
estimation. The readers are referred to literature such as
[50] for the basic knowledge and traditional methods for
homography estimation.

Deep Homography Estimation. DeTone et al. [12] first
propose to estimate the homography deformation between
the concatenated input image pair with a VGG-style net-
work. Many works [15,22,46] inherit the network as a basic
structure, which is either modified or cascaded by multiple
times to boost the estimation accuracy. The cascading strat-
egy indeed improves the performance, but is exceeded by
the recurrent estimation methods [6, 7, 38, 48].

The recurrent homography estimation method mainly
contains two types, including the IC-LK iterator based ones
[7,38,48] and the deep iterator based ones [6]. CLKN [7] is
the pioneer work introduced by Chang et al. to employ IC-
LK to build an untrainable recurrent homography estima-
tion framework. Zhao et al. [48] present a new loss func-
tion to directly enhance the similarity of the feature maps
of CNNs, which further releases the potential of the IC-LK
framework. However, the recurrent framework using IC-LK
is unable to learn the implicit prior for the iterator through
a large amount of image data. Cao et al. [6] propose IHN to
make the whole network trainable, achieving a higher ho-
mography estimation accuracy.

Transformation-Equivariant Under Homography. It
has been well analyzed in previous works [9] that stan-
dard convolution is equivariant to translations, but may fail
to equivary with more general transformations. Unfortu-
nately, homography has the transformation of rotation, scal-
ing, shearing, aspect ratio, and perspective [43]. The corre-
sponding features extracted by standard CNNs are incon-
sistent under homography deformation, which reduce the
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Figure 2. Architecture of Recurrent homography estimation using Homography-guided image Warping and FocusFormer, named RHWF.
(a) Overall structure of RHWF. (b) Detailed structure of the proposed FocusFormer. (c) Detailed illustration of the attention-focusing
mechanism.

estimation accuracy. Many efforts [9–11, 16, 25, 39] have
been made to deal with this problem. Some methods de-
sign special network architectures to make CNNs equivari-
ant to specific transformations [9–11,39], among which the
well-known group equivariant CNNs [9] produce rotation
equivariant features using group convolution and subgroup
pooling. However, the model becomes inefficient as it ap-
plies group convolutions directly on a large group [25]. The
transformation is limited to rotation in this network. Other
methods [16, 20, 25, 43] achieve transformation-equivariant
by the predefined warping of the input image by differ-
ent transformation dimensions and degrees. For example,
GIFT [25] produces rotation and scale invariant features
using warped images with predefined rotation angles and
scale ratios. Warped convolution [20] achieves equivari-
ance by warping the input image through a designed func-
tion. But the above two methods can only deal with the
rotation/scaling of 2 DOF. When it comes to the homogra-
phy transformation, the DOF of which increases from 2 to
6 (besides translation, which is equivariant in the standard
convolution). The predefined warping will become burden-
some and impracticable.

Transformer in Deep Homography Estimation. The
performance of homography estimation networks can be
boosted using the transformer. The transformer can be used
either for feature enhancement or homography estimation.
Shao et al. [34] adopt a multiscale transformer that works
locally for the feature enhancement purpose. Hong et al.
[21] employ a series of transformers to predict homography
from the feature pyramids in a coarse-to-fine manner. The
transformer shows powerful ability by significantly improv-

ing the homography estimation accuracy, and a transformer
structure suitable for the recurrent homography framework
is urgently needed.

3. Methodology
Fig. 2 illustrates the architecture of Recurrent homog-

raphy estimation using Homography-guided image Warp-
ing and FocusFormer, named RHWF. The details of Focus-
Former are shown in Fig. 2b. The homography-guided im-
age warping and the attention-focusing mechanism in Fo-
cusFormer are arranged in an interleaved manner, which are
appropriately absorbed into the recurrent framework. We
note that the whole network is tied despite the number of
iteration, which means the framework won’t raise the net-
work parameters. Let’s denote the paired input images as
Ia and Ib, and we aim to obtain the homography matrix H
that relates them.

3.1. Backbone

We employ convolutional neural network (CNN) with
residual connections as our backbone. As illustrated in Fig.
2a, we use CNNs with shared weights for 2 input images.
The input images are processed with a convolutional block
of kernel size 3 × 3 first. The produced feature maps are
then continually processed by the basic blocks consisting of
2 residual layers, with each block accomplishing a 2 × 2
down-sampling in the spatial dimension. Different from
the previous works [6, 34] that use the max-pooling layer
to perform down-sampling, RHWF uses convolution with
stride 2 to reduce the inference computation, which reduces
the inference computational cost at 1 time to 1.43 GFLOPs
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Figure 3. Illustration of the reason and effect of using
homography-guided image warping. The red squares represent
the feature extracted from the left-side ear of the cat in the im-
ages. The color of the squares exhibits the feature similarity, and
the colors become consistent as the feature similarity grows. (a)
The ideal homography-invariant situation. (b) The practical situa-
tion. (c) The effect of homography-guided image warping.

from 2.43 GFLOPs in [6]. Finally, the feature maps are pro-
jected by 1 linear convolutional layer of kernel size 1 × 1.
RHWF only needs a dimension of 96 while achieving far
better results than IHN [6] that needs 256. We stack 2 basic
blocks to produce the feature maps of the spatial dimension
H/4×W/4 and H/2×W/2, where H and W denote the
height and width of the image. We note that, during the
recurrent estimation process, the feature map of Ia is com-
puted once but the one of Ib is computed recurrently due
to the homography-guided image warping. This operation
raises the computational cost of the network, but we will
show the tremendous benefits of doing so.

3.2. Homography-Guided Image Warping

In previous recurrent methods [6, 7], the images of se-
vere homography deformation are used directly to produce
the feature maps for homography estimation. The defect
that the standard convolution is lack of equivary under ho-
mography transformation is ignored. For the homography
estimation task, we want the backbone network to extract
homography equivariant feature maps, which can be formu-
lated by

ϕ(π(I;H)) = π(ϕ(I);H), (1)

where π denotes the coordinate projection, H denotes the
homography matrix that relates Ia and Ib, and ϕ denotes the
backbone CNN. This ideal situation is illustrated in Fig. 3a.
In the ideal situation, the homography deformation won’t
affect feature similarity, making 2 features absolutely match
each other. Unfortunately, in practice, due to the lack of
equivary under homography transformation, the similarity
of corresponding features produced by the backbone CNN
will be weakened as illustrated in Fig. 3b.

To cope with the above problem, many strategies have
been proposed [9, 10, 20, 25] to either employ the group
convolution or pre-warp the image by multiple times. How-
ever, both of the above methods bring considerable compu-
tational costs. We propose to interleave the homography es-

timation and image warping process, dubbed homography-
guided image warping, in our RHWF. The whole process is
designed under the inspiration of the alternate update of dif-
ferent variables in conventional optimization frameworks.
For Ia and Ib related by homography H, the interleaved
image warping and homography estimation process can be
expressed as

Fn
b = ϕ(W(Ib; Ĥ

n)),

Ĥn+1 = ψ(Fa;F
n
b ),

(2)

where W denote the homography-guided image warping,
ψ denotes the FocusFormer2 designed for homography es-
timation. The feature consistency between Fa and Fb

together with the homography Ĥ are optimized alterna-
tively. We note that the homography-guided image warping
takes the advantage of the recurrent framework of RHWF,
and hence the redundant pre-designed warping or complex
group convolution is not required. They are replaced by
the warping guided by the present estimated homography.
Meanwhile, the homography-guided image warping facili-
tates the estimation accuracy of the recurrent framework by
relieving the feature inconsistency caused by deformation,
as shown in Fig. 3c. We note that the backbone network re-
currently extracts the feature map of Fn

b with tied weights,
which won’t bring additional parameter costs.

3.3. FocusFormer

The core architecture of RHWF is our FocusFormer that
achieves recurrent residual homography estimation. Focus-
Former mainly contains two parts that accomplish attention
mechanism and homography estimation.

Attention. Following previous works [23, 34, 36, 40],
we interleave the self-attention layer and the cross-attention
layer, which is shown in Fig. 2b. By adopting both self-
attention and cross-attention, FocusFormer can capture the
intra/inter correspondence information of the input image
pair.

As demonstrated in Fig. 2c, along with the network
recurrence, the scope of attention mechanism shrinks in a
global→nonlocal→local manner. This operation is deeply
bounded with the homography-guided image warping pro-
cess and the recurrent framework. At the first iteration, the
deformation between the two images is large due to large
homography deformation. Long range attention is needed
to better capture the intra-inter correspondence. As the it-
eration continues, the deformation is continuously reduced,
and hence the attention can focus on the local area to bet-
ter improve the estimation accuracy. It is worth noting that
the attention-focusing mechanism can reduce the compu-
tational cost to 3.18 GFLOPs from 7.14 GFLOPs, which

2In practice, the FocusFormer predicts the residual translation of 4 cor-
ner points of an image ∆Tn+1, and some simple computation will pro-
duce Ĥn+1 as will be detailed in Section 3.3.
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works in the pure global manner.
Let us denote the coordinate index of the feature map

as x = (u, v), the projected query, key, and value as Q,
K, and V. The self attention-focusing mechanism can be
formulated as

self(x) = softmax
(Qi(N (x))TKi(N (x))√

D

)
Vi(N (x)),

(3)
where N (x) represents the region around x that self-
attention works within. If N (x) is set as the whole image, it
would become the global self-attention, otherwise the non-
local or local one of radius RA. The subscript “i” denotes
that the query, key, and value are from the same image. The
cross attention-focusing mechanism can be formulated as

cross(x) = softmax
(Qi(N (x))TKj(N (x))√

D

)
Vj(N (x)),

(4)
where subscripts “i” and “j” denote that the query is from
one image, while the key and value are from another. As for
other details, we only use 1 self-attention layer and 1 cross-
attention layer. Considering that the whole attention block
functions in the recurrent framework, the effectiveness of
the attention layer would be fully motivated during the it-
erative inference process. The residual connecting, layer
normalization, and feed-forward network are also adopted
as in previous works [34, 40]. The multi-head attention is
discarded as in [40] to improve efficiency.

Homography Estimation. After capturing the in-
tra/inter correspondence of the input image pair, the cor-
relation within local areas is then computed as

C(x, r) = ReLU
(
F′

a(x)
TF′n

b (x+ r)
)
, ∥r∥∞ ≤ RC

(5)
whereRC controls the radius of each local area, making the
correlation volume having the size of H × W × (2RC +
1) × (2RC + 1). This correlation can also be interpreted
as another layer of cross attention [34] for the homography
estimation, while the mapping differs as the desired output
is the residual homography.

The architecture of the homography aggregator is sim-
ilar to the previous correlation-based homography estima-
tion works [6, 34]. The aggregator is composed of the ba-
sic blocks having 2 convolution layers and 1 max-pooling
layer. The only difference is that the depth of the con-
volution layer of our RHWF (denoted as D) is set to be
markedly lower than that of IHN [6] and LocalTrans [34],
which also saves the network parameters. Like most previ-
ous works [6, 12, 34], we parameterize the residual homog-
raphy in the form of the translation of the 4 corner points of
an image, namely T. At iteration n, The parameterization
of Ĥn using T̂n can be easily established by a least square
problem as

Anĥn = bn, (6)

where bn is the coordinate of the projected 4 corner points,
An is composed of the projected 4 corner points and the
original 4 corner points, ĥn is the vectorized Ĥn. The orig-
inal 4 corner points and the projected 4 corner points are
related by T̂n. During the recurrent process, the homogra-
phy estimator produces the present residual translation ∆T,
and the translation T̂ is updated by

T̂n+1 = T̂n +∆Tn+1, (7)

which is equivalent to the homography update illustrated in
Fig. 2a, which can be formulated as

Ĥn+1 = Ĥn∆Hn+1. (8)

3.4. Multiscale Refinement

The performance of our proposed RHWF can be fur-
ther improved by multiscale refinement. As illustrated
in Section 3.1, the feature map of the spatial dimension
H/2×W/2 can be adopted to construct an additional scale
for a more accurate homography refinement. In the refine-
ment scale, a FocusFormer with different weights is em-
ployed. The structures of the FocusFormer of the 2 levels
are basically identical, except for the attention range of the
additional scale, which further shrinks as the initial homog-
raphy is given by the former scale. We will show that the
accuracy of a single scale already outperforms most of the
previous works except for the 2-scale IHN in [6].

3.5. Supervision

We use the L1 loss between the ground-truth translation
Tgt and the estimated one T̂. The loss at each iteration is
weight summed as the final loss

L =

N−1∑
n=0

γ(N−n−1)|T̂n −Tgt|, (9)

where N denotes the recurrent time within 1 scale, γ is less
than 1 to produce a larger weight for the later estimations as
in IHN [6]. If multiscale refinement is employed, the losses
of the 2 scales are summed.

3.6. Implementation Details

In our implementation, the recurrent time N within one
scale is set to 6. We set the attention range in the Fo-
cusFormer as [G, 4, 2, 1, 1, 1] for scale H/4 × W/4 and
[2, 2, 1, 1, 1, 1] for scale H/2 ×W/2, where G denotes the
global attention, and others the radius of the attention area
RA. The radius of correlation is set to RC = 8 and RC = 4
for the 2 scales. The depth of convolution layers is set to
D = 80 and D = 64 for the 2 scales. The network is
trained using AdamW [26] optimizer with the max learning
rate of 0.0004 and the iteration of 120000.
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(a) Evaluation on MSCOCO.
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(d) Evaluation on GoogleMap.

Figure 4. Homography estimation evaluation on MSCOCO, cross-resolution MSCOCO, GoogleEarth, and GoogleMap datasets. MSCOCO
contains common RGB images. Cross-resolution MSCOCO includes image pairs of 4× and 8× resolution gaps. GoogleEarth and
GoogleMap are cross-modal datasets. The suffixes “−1” and “−2” denote the scale of the network.

4. Experiments

4.1. Datasets and Experimental Setup

Datasets. We evaluate our RHWF on MSCOCO [24]
following [6, 7, 12, 15, 22, 34, 48], 4× and 8× cross-
resolution MSCOCO following [34], and cross-modal
GoogleEarth together with GoogleMap following [6, 48].
MSCOCO is a large-scale real world RGB dataset, which
is most widely used for homography estimation evaluation.
The cross-resolution MSCOCO is employed in [34] to meet
the homography estimation requirement in multiscale gi-
gapixel photography [3, 47]. The cross-modal GoogleEarth
and GoogleMap datasets are employed in [48] for the ho-
mography estimation requirement in the navigation sce-
nario [18, 48]. We note that all the methods included for
comparison together with our RHWF are trained and evalu-
ated on the same training and test subset of each dataset for
totally fair comparison.

Experimental setup. Similar to most of the previous
works [6, 7, 12, 15, 22, 34, 48], the input images of size
[128 × 128] are randomly perturbed in the corner points,
with the perturbation range of [−32, 32]. The average cor-
ner error (ACE) is adopted for the homography accuracy
evaluation following [6,7,12,15,22,34,48], which is lower
when achieving higher accuracy.

4.2. Ablation

Ablation Study on MSCOCO Dataset. The ablation
of the homography-guided image warping, the attention-
focusing mechanism, and the multiscale refinement are
shown in Table 1. Mean average corner error (MACE) and

Table 1. Ablation study of RHWF.

Ablation part Setting MACE Parameters

Warping Feature warping 0.203(↑163.6%) 0.94 M
Image warping 0.077 0.94 M

Attention No 0.091(↑18.2%) 0.85 M
Pure global 0.085(↑10.4%) 0.94 M
Pure local 0.082(↑6.5%) 0.94 M

Focus 0.077 0.94 M

Scale 1 scale 0.077(↑97.4%) 0.94 M
2 scales 0.039 1.29 M

network parameters are also listed. All the ablations are
conducted on the 1-scale RHWF unless otherwise specially
mentioned. It is observed that the proposed homography-
guided image warping and attention-focusing mechanism
yields significant gain in accuracy. The global attention has
a range of the whole image, and the local has an attention
radius of 1. We can also find the multiscale refinement very
effective by increasing the accuracy by 97.4%.

Ablation without recurrence. We conduct the abla-
tion with the compared methods with no recurrence and the
RHWF w/ (RHWF) and w/o (RHWF-NF) FocusFormer in
Table 2. It is observed that the FocusFormer is effective.
Table 2. MACEs of RHWF and the compared structures without
recurrent processing.

DHN MHN LocalTrans IHN RHWF RHWF-NF
4.191 3.645 1.987 1.027 0.945 1.019

A Deeper Look at Warping. We further illustrate the
average correlation value, which represents the feature sim-
ilarity at each warping count in Fig. 5. The warping of
feature or image is taken for comparison to evaluate the ef-
fectiveness of homography-guided image warping. It is ob-
served that the image warping can significantly enhance the
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feature similarity as the warping count increases, while the
feature warping weakens it.
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Figure 5. The average correlation value at each warping count of
feature warping and image warping.

4.3. MSCOCO Evaluation

We evaluate RHWF together with other homogra-
phy estimation methods including IHN [6] (previous
SOTA method), LocalTrans [34], MHN [22], UDHN
[46], DHN [12], CLKN [7], AffNet [30], LFNet [33],
PFNet [42], PWC [35], SIFT+ContextDesc+RANSAC
[28], SIFT+GeoDesc+RANSAC [29], SIFT+MAGSAC
[2], and SIFT+RANSAC [27]. The comparison is illus-
trated in Fig. 4a. Following previous works [6,7,22,34,48],
we plot the fraction of the number of images w.r.t. corre-
sponding ACEs of a dataset. It can be observed that our
1-scale RHWF already outperforms other competitors ex-
cept for 2-scale IHN, while 2-scale RHWF outperforms all
others with a large gap. We note that 2-scale RHWF re-
duces previous SOTA MACE by 38.1%. We also plot the
result of 1-scale IHN, which is significantly exceeded by
1-scale RHWF. Please kindly note that CLKN performs IC-
LK iteration with 4 scales, LocalTrans and MHN cascade 3
scales of networks to improve the estimation accuracy, but
our 1-scale RHWF already markedly outperforms them.

We then plot the MACEs at each iteration for IHN and
our RHWF that adopt the recurrent framework in Fig. 6. It
is observed that RHWF exceeds IHN at the 3rd iteration,
while a more iterations won’t make IHN outperform the
RHWF with only 3 iterations. What’s more, RHWF con-
tinues to reduce MACEs obviously with more iterations.

4.4. Cross-Resolution MSCOCO Evaluation

We conduct the evaluation on 4× and 8× cross-
resolution MSCOCO following [34]. We compare our
RHWF with LocalTrans [34] (previous SOTA method),
MHN [22], UDHN [46], DHN [12], and SIFT+RANSAC
[27]. The resolution gap dramatically increases the diffi-
culty of homography estimation, while it is vital for multi-
scale gigapixel photography [3, 34]. The results of 4× and
8× resolution gap MSCOCO are plotted in Fig. 4b. It is
observed that RHWF ranks top in both scenarios and is sig-
nificantly more robust under the 8× resolution gap.

We further demonstrate the self- and cross-attention map
of RHWF at each iteration in Fig. 7. It is observed that at the

1 2 3 4 5 6
Iteration count

0.0

0.2

0.4

0.6

M
A

C
E 

(in
 p

ix
el

s)

IHN
RHWF

Figure 6. The MACE comparison of IHN and our RHWF at each
iteration count.

1st iteration, the global attention in Ia and Ib(4 ↓) success-
fully captures the correspondence information. However,
in Ib(8 ↓), the global attention becomes ambiguous as the
resolution gap grows. Fortunately, as the recurrence con-
tinues, the homography-guided image warping corrects the
deformation and the attention-focusing mechanism shrinks
the attention range, which gradually clarifies the attention
targets.

4.5. Cross-Modal Datasets Evaluation

The cross-modal data further raises the challenge for ho-
mography estimation, while it can be employed for GPS-
denied navigation [18]. GoogleEarth contains image pairs
across different seasons and GoogleMap the image pairs
cropped from satellite images and their corresponding map
images. We include IHN [6] (previous SOTA method),
the original LK [1], SIFT+RANSAC [27], SIFT+MAGSAC
[2], CLKN [7], DHN [12], MHN [22], DHN+DLKFM [48],
and MHN+DLKFM [48] for comparison. The results of
both datasets are separately demonstrated in Fig. 4c and
Fig. 4d. The MACEs of RHWF and IHN are also illus-
trated for a better comparison. RHWF outperforms IHN by
34.1% on GoogleMap3.

We further illustrate the homography estimation re-
sults of the above-mentioned methods except for CLKN,
DHN+DLKFM, and LK, as they are outperformed by
MHN+DLKFM in [48]. It can be observed in Fig. 8
that under the severe large deformation and modality gap,
SIFT+RANSAC and SIFT+MAGSAC fail as in the exper-
iment of [6]. MHN+DLKFM produces unstable results
as the LK iterator is of theoretical drawback [32]. DHN,
MHN, and IHN are not as accurate as RHWF, as they nei-
ther consider the feature inconsistency caused by homogra-
phy deformation nor introduce an attention mechanism to
capture the intra-inter correspondence information. On the
contrary, our RHWF can produce promising results under
large deformation and modality gaps.

3We notice that the performance of RHWF on GoogleEarth is not that
conspicuous compared to other datasets but still outperforms other meth-
ods. This is because GoogleEarth only contains about 8k image pairs of
fixed homography deformations, which limits the ability of the model by
disabling more deformation augmentation.
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Figure 7. The self- and cross-attention map of RHWF at each iteration. The 1st row: the image Ia of the standard resolution with the
self-attention map. The 2nd and 3rd row: the image Ib with 4× (Ib(4 ↓)) and 8× (Ib(8 ↓)) downsampling and cross-attention maps. The
red arrows denote the query point of attention, and the red and blue boxes separately highlight the self- and cross-attention maps.

ACE>100 ACE>100 ACE=21.2 ACE=5.5 ACE=10.1 ACE=9.3 ACE=2.6

ACE>100 ACE>100 ACE=10.1 ACE=6.3 ACE=24.5 ACE=5.8 ACE=1.7
SIFT+RANSAC SIFT+MAGSAC DHN MHN MHN+DLKFM IHN RHWF (Ours)  

Figure 8. Homography estimation results of methods including IHN [6], SIFT+RANSAC [27], SIFT+MAGSAC [2], CLKN [7], DHN [12],
MHN [22], MHN+DLKFM [48], and our RHWF.

Table 3. Parameter comparison.
RHWF IHN LocalTrans DHN MHN UDHN DLKFM

1.29 M 1.71 M 9.56 M 34.19 M 2.57 M 21.29 M 19.24 M

4.6. Parameter and FLOPs Comparison

We conduct the parameter and FLOPs comparison in Ta-
ble 3. It is observed that compared to previous methods,
our RHWF owns the least parameter cost, which is reduced
by 86.5% and 24.6 % compared with previous SOTA works
LocalTrans [34] and IHN [6].

In Table 4, we compare the FLOPs of models and
MACEs on MSCOCO with the previous SOTA recurrent
methods including IHN, its improved version IHN-mov,
and DLKFM. Compared to IHN-mov and DLKFM, the
computational costs spent on the homography-guided warp-
ing in RHWF are much more effective. We also take the
RHWF of the recurrent time 3 (fewer FLOPs), namely
RHWF-3, which outperforms IHN-mov and DLKFM.

Table 4. FLOPs of models with MACEs on MSCOCO.
RHWF RHWF-3 IHN IHN-mov DLKFM

FLOPs 16.96 G 9.64 G 8.34 G 20.32 G 110.51 G
MACE 0.077 0.176 0.191 0.177 0.550

4.7. Failure Case

Fig. 9 shows 2 failure cases, the left one is caused by
the error accumulation, and the right the imperfect initial
estimations.

 
Figure 9. Failure cases.

5. Conclusions

We have proposed a novel recurrent homography es-
timation framework, named RHWF. RHWF absorbs the
homography-guided image warping and the FocusFormer,
which facilitate the homography estimation by enhancing
the feature consistency and capturing the intra/inter corre-
sponding information in a global→nonlocal→local man-
ner, into the recurrent framework. Experimentally, RHWF
outperforms previous methods by a large gap with signifi-
cantly fewer parameters. The computation cost is raised by
the homography-guided image warping and attention oper-
ation, which is the limitation of our proposed framework.

Acknowledgement
This work was supported in part by the “Pioneer” and

“Leading Goose” R & D Program of Zhejiang under grant
2023C03136 and in part by the Ten Thousand Talents Pro-
gram of Zhejiang Province under grant 2020R52003. We
also thank the generous help from Jun Ma, Zhejiang Uni-
versity and Tianyu Guo, Peking University.

9840



References
[1] Simon Baker and Iain Matthews. Lucas-Kanade 20 years on:

A unifying framework. International Journal of Computer
Vision, 56(3):221–255, 2004. 1, 7

[2] Daniel Barath, Jiri Matas, and Jana Noskova. MAGSAC:
marginalizing sample consensus. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10197–10205, 2019. 7, 8

[3] David J Brady, Michael E Gehm, Ronald A Stack, Daniel L
Marks, David S Kittle, Dathon R Golish, EM Vera, and
Steven D Feller. Multiscale gigapixel photography. Nature,
486(7403):386–389, 2012. 1, 6, 7

[4] Matthew Brown and David G Lowe. Automatic panoramic
image stitching using invariant features. International jour-
nal of computer vision, 74(1):59–73, 2007. 1

[5] Thomas Brox, Oliver Kleinschmidt, and Daniel Cremers.
Efficient nonlocal means for denoising of textural patterns.
IEEE Transactions on Image Processing, 17(7):1083–1092,
2008. 2

[6] Si-Yuan Cao, Jianxin Hu, Zehua Sheng, and Hui-Liang Shen.
Iterative deep homography estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1879–1888, 2022. 1, 2, 3, 4, 5, 6, 7, 8

[7] Che-Han Chang, Chun-Nan Chou, and Edward Y Chang.
CLKN: Cascaded lucas-kanade networks for image align-
ment. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2213–2221,
2017. 1, 2, 4, 6, 7, 8

[8] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 2

[9] Taco Cohen and Max Welling. Group equivariant convolu-
tional networks. In International Conference on Machine
Learning, pages 2990–2999. PMLR, 2016. 1, 2, 3, 4

[10] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max
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