
LayoutDM: Transformer-based Diffusion Model for Layout Generation

Shang Chai, Liansheng Zhuang*

University of Science and Technology of China
chaishang@mail.ustc.edu.cn, lszhuang@ustc.edu.cn

Fengying Yan
Tianjin University

fengying@tju.edu.cn

Abstract

Automatic layout generation that can synthesize high-
quality layouts is an important tool for graphic design in
many applications. Though existing methods based on gen-
erative models such as Generative Adversarial Networks
(GANs) and Variational Auto-Encoders (VAEs) have pro-
gressed, they still leave much room for improving the qual-
ity and diversity of the results. Inspired by the recent suc-
cess of diffusion models in generating high-quality images,
this paper explores their potential for conditional layout
generation and proposes Transformer-based Layout Diffu-
sion Model (LayoutDM) by instantiating the conditional de-
noising diffusion probabilistic model (DDPM) with a purely
transformer-based architecture. Instead of using convo-
lutional neural networks, a transformer-based conditional
Layout Denoiser is proposed to learn the reverse diffu-
sion process to generate samples from noised layout data.
Benefitting from both transformer and DDPM, our Lay-
outDM is of desired properties such as high-quality genera-
tion, strong sample diversity, faithful distribution coverage,
and stationary training in comparison to GANs and VAEs.
Quantitative and qualitative experimental results show that
our method outperforms state-of-the-art generative models
in terms of quality and diversity.

1. Introduction

Layouts, i.e. the arrangement of the elements to be dis-
played in a design, play a critical role in many applications
from magazine pages to advertising posters to application
interfaces. A good layout guides viewers’ reading order
and draws their attention to important information. The se-
mantic relationships of elements, the reading order, canvas
space allocation and aesthetic principles must be carefully
decided in the layout design process. However, manually
arranging design elements to meet aesthetic goals and user-
specified constraints is time-consuming. To aid the design
of graphic layouts, the task of layout generation aims to

*Corresponding author.

generate design layouts given a set of design components
with user-specified attributes. Though meaningful attempts
are made [1, 10, 11, 15, 18, 21, 23–25, 33, 44–46], it is still
challenging to generate realistic and complex layouts, be-
cause many factors need to be taken into consideration, such
as design elements, their attributes, and their relationships
to other elements.

Over the past few years, generative models such as
Generative Adversarial Networks (GANs) [9] and Varia-
tional Auto-Encoders (VAEs) [20] have gained much at-
tention in layout generation, as they have shown a great
promise in terms of faithfully learning a given data dis-
tribution and sampling from it. GANs model the sam-
pling procedure of a complex distribution that is learned in
an adversarial manner, while VAEs seek to learn a model
that assigns a high likelihood to the observed data sam-
ples. Though having shown impressive success in gener-
ating high-quality layouts, these models have some limita-
tions of their own. GANs are known for potentially unstable
training and less distribution coverage due to their adversar-
ial training nature [4, 5, 27], so they are inferior to state-of-
the-art likelihood-based models (such as VAEs) in terms of
diversity [28, 29, 34]. VAEs can capture more diversity and
are typically easier to scale and train than GANs, but still
fall short in terms of visual sample quality and sampling
efficiency [22].

Recently, diffusion models such as denoising diffusion
probabilistic model (DDPM) [14] have emerged as a pow-
erful class of generative models, capable of producing high-
quality images comparable to those of GANs. Importantly,
they additionally offer desirable properties such as strong
sample diversity, faithful distribution coverage, a station-
ary training objective, and easy scalability. This implies
that diffusion models are well suited for learning models
of complex and diverse data, which also motivates us to ex-
plore the potential of diffusion-based generative models for
graphic layout generation.

Though diffusion models have shown splendid perfor-
mance in high-fidelity image generation [8,14,35,39,41], it
is still a sparsely explored area and provides unique chal-
lenges to develop diffusion-based generative models for

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18349



layout generation. First, diffusion models often use con-
volutional neural networks such as U-Net [36] to learn the
reverse process to construct desired data samples from the
noise. However, a layout is a non-sequential data structure
consisting of varying length samples with discrete (classes)
and continuous (coordinates) elements simultaneously, in-
stead of pixels laid on a regular lattice. Obviously, convo-
lutional neural networks are not suitable for layout denois-
ing, which prevents diffusion models from being directly
applied to layout generation. Second, the placement and
sizing of a given element depend not only on its attributes
(such as category label) but also on its relationship to other
elements. How to incorporate the attributes knowledge and
model the elements’ relationship in diffusion models is still
an open problem. Since diffusion models are general frame-
works, they leave room for adapting the underlying neural
architectures to exploit the properties of the data.

Inspired by the above insights, by instantiating the con-
ditional denoising diffusion probabilistic model (DDPM)
with a transformer architecture, this paper proposes
Transformer-based Layout Diffusion Model (i.e., Lay-
outDM) for conditional layout generation given a set of el-
ements with user-specified attributes. The key idea is to
use a purely transformer-based architecture instead of the
commonly used convolutional neural networks to learn the
reverse diffusion process from noised layout data. Benefit-
ting from the self-attention mechanism in transformer lay-
ers, LayoutDM can efficiently capture high-level relation-
ship information between elements, and predict the noise at
each time step from the noised layout data. Moreover, the
attention mechanism also helps model another aspect of the
data - namely a varying and large number of elements. Fi-
nally, to generate layouts with desired attributes, LayoutDM
designs a conditional Layout Denoiser (cLayoutDenoiser)
based on a transformer architecture to learn the reverse dif-
fusion process conditioned on the input attributes. Different
from previous transformer models in the context of NLP
or video, cLayoutDenoiser omits the positional encoding
which indicates the element order in the sequence, as we
do not consider the order of designed elements on a canvas
in our setting. In comparison with current layout genera-
tion approaches (such as GANs and VAEs), our LayoutDM
offers several desired properties such as high-quality gener-
ation, better diversity, faithful distribution coverage, a sta-
tionary training objective, and easy scalability. Extensive
experiments on five public datasets show that LayoutDM
outperforms state-of-the-art methods in different tasks.

In summary, our main contributions are as follows:

• This paper proposes a novel LayoutDM to generate
high-quality design layouts for a set of elements with
user-specified attributes. Compared with existing meth-
ods, LayoutDM is of desired properties such as high-
quality generation, better diversity, faithful distribution

coverage, and stationary training. To our best knowl-
edge, LayoutDM is the first attempt to explore the po-
tential of diffusion model for graphic layout generation.

• This paper explores a new class of diffusion models by
replacing the commonly-used U-Net backbone with a
transformer, and designs a novel cLayoutDenoiser to
reverse the diffusion process from noised layout data
and better capture the relationship of elements.

• Extensive experiments demonstrate that our method
outperforms state-of-the-art models in terms of visual
perceptual quality and diversity on five diverse layout
datasets.

2. Related Work
2.1. Layout Generation

Automatic layout generation has been widely studied for
a long time. Early approaches to layout generation [30, 31]
embed design rules into manually-defined energy func-
tions. In recent years, generative model based methods
are increasingly progressed. LayoutGAN [24] and Layout-
VAE [17] are the first attempts to utilize GAN and VAE to
generate graphic and scene layouts. NDN [23] represents
the relative positional relationship of elements as a graph
and uses a graph neural network based conditional VAE to
generate graphic layouts. READ [33] uses heuristics to de-
termine the relationships between elements and trains a Re-
cursive Neural Network (RNN) [37,38] based VAE to learn
the layout distribution. CanvasVAE [45] generates vector
graphic documents which contain structured information
about canvas and elements. VTN [1] and Coarse2fine [16]
deploy self-attention based VAEs to generate graphic lay-
outs, making progress in diversity and perceptual quality.
LayoutTransformer [11] and BLT [21] define layouts as dis-
crete sequences and exploit the efficiency of transformer
and bidirectional-transformer in structured sequence gener-
ation. LayoutNet [46], TextLogo3K [44] and ICVT [6] pro-
pose conditional layout generative models which can utilize
additional attributes about design elements or entire layouts
to aid layout generation in different application scenarios.
LayoutGAN++ [18] designs a transformer-based genera-
tor and discriminator and generates graphic layouts condi-
tioned on the given element category labels.

2.2. Diffusion Model

Diffusion models [14, 40] have proved its capability of
generating high-quality and diverse samples [8, 14, 35] and
have recently achieved state-of-the-art results on several
benchmark generation tasks [8]. The diffusion model uses
diffusion processes to model the generation and defines the
sampling of data as the process of gradually denoising from
complete Gaussian noise. The forward process gradually

18350



Conditioning

𝑔! Forward diffusion 𝑔!"# 𝑔$

𝑔! 𝑔!"#
conditional layout

denoiser 𝝐%
𝑔$

×(𝑇 − 1)

Layout Attributes 𝒇

category
labels

visual
features

textual
features

...

...

×(𝑇 − 1)

(a) LayoutDM architecture

𝑡

𝒈!

𝒇

Cat

⊕
FC

...

Transformer Layers × L

Multi-Head
Attention

Add＆
Norm

Feed
Forward

Add＆
Norm

FC 𝝐

Predicted
Noise

Geometric
Embedding

Timestep
Embedding

Attributes
Embedding

Element Embedding

...

Element
Tokens

(b) Architecture of conditional layout denoiser ϵθ

Figure 1. a) Architecture of LayoutDM. It consists of a forward diffusion process and a reverse process modeled by a conditional layout
denoiser ϵθ . b) Architecture of our transformer-based conditional layout denoiser, cLayoutDenoiser. cLayoutDenoiser predicts the added
noise conditioned on the layout attributes f and time step t.

adds Gaussian noise to the data from a predefined noise
schedule until time step T . The reverse process uses a neu-
ral backbone often implemented as a U-Net [8, 14, 36, 42]
to parameterize the conditional distribution p(xt−1|xt). In
this work, we instantiate a conditional diffusion model to
achieve conditional layout generation.

3. Our Method
3.1. Layout Representation

In our model, each layout consists of a set of elements,
and each element is described by both geometric parameters
(i.e. location and size) and its attribute (e.g. category label
or textual features). Formally, a layout l is denoted as a
flattened sequence of integer indices:

l = (g1, f1, g2, f2, · · · , gi, fi, · · · , gN , fN ),

where N is the number of elements in the layout. gi =
[xi, yi, wi, hi] is a vector that presents the geometric pa-
rameters (center coordinates and size) of the i-th element
in the layout. fi is the attributes of i-th element which
might be category label or textual features. For the sake
of convenience, the sequence g = (g1, g2, · · · , gi · · · , gN )
is named layout geometric parameters, the sequence f =
(f1, f2, · · · , fi · · · , fN ) is named layout attributes. Note
here that, the elements in a layout are unordered, so swap-
ping the items in sequence g and f does not affect the mean-
ing of the sequences. We normalize the geometric param-
eters, i.e., [xi, yi, wi, hi], i = 1, 2, · · · , N , to the interval
[−1, 1] . In this way, layouts have a uniform structured rep-
resentation.

3.2. The LayoutDM Architecture

Fig. 1a illustrates the architecture of LayoutDM. From a
high-level perspective, our LayoutDM is an instance of con-
ditional denoising diffusion probabilistic model (DDPM)
with a transformer architecture suitable for layout data.
DDPM learns to model the Markov transition from sim-
ple distribution to layout data distribution and generates

diverse samples through sequential stochastic transitions.
To generate desired layouts, LayoutDM uses the input at-
tributes to guide the generative process in DDPM. We fol-
low the method described in Classifier-Free Diffusion Guid-
ance [13] to realize conditional DDPM, and set the guidance
strength w to zero for simplicity.

Specifically, let q(g0|f) be the unknown conditional data
distribution, where g0 is the geometric parameters of real
layouts, and f is the layout attributes. LayoutDM mod-
els the conditional distribution q(g0|f) by two processes:
a forward diffusion process and a reverse denoising diffu-
sion process. First, LayoutDM defines the forward diffu-
sion process q(gt|gt−1) which maps layout data to noise by
gradually adding Gaussian noise at each time step t:

q(gt|gt−1) = N (gt;
√

1− βtgt−1, βtI) (1)

where {βt}Tt=1 are forward process variances.
Then, LayoutDM defines the conditional reverse diffu-

sion process p(gt−1|gt,f) which performs iterative denois-
ing from pure Gaussian noise to generate high-quality lay-
outs conditioned on layout attributes f :

pθ(gt−1|gt,f) = N (gt−1;µθ(gt, t,f), σ
2
t I) (2)

where σt is the constant variance following [14], µθ is the
mean of the Gaussian distribution computed by a neural net-
work, and θ is the parameters of the network. As shown in
Ho et al. [14], we can reparameterize the mean to make the
neural network learn the added noise at time step t instead.
In this way, µθ can be reparameterized as follows:

µθ(gt, t,f) =
1

√
αt

(gt −
βt√
1− αt

ϵθ(gt, t,f)) (3)

where t is the time step, {βt}Tt=1 are forward process vari-
ances, αt = 1 − βt, and αt =

∏t
s−1 αs. ϵθ(gt, t,f) is

the neural network to predict the added noise for layout ge-
ometric parameters conditioned on elements’ attributes at
time step t. We also call the neural network ϵθ(gt, t,f) as
conditional layout denoiser (cLayoutDenoiser).

18351



3.3. Conditional Layout Denoiser

The inputs to cLayoutDenoiser are layout geometric pa-
rameters gt, layout attributes f and time step t. To deal with
sequences data, the conditional layout denoiser ϵθ(gt, t,f)
employs a purely transformer-based architecture instead of
convolutional neural networks as its backbone. The archi-
tecture of cLayoutDenoiser is illustrated in Fig. 1b. Bene-
fitting from the transformer architecture, cLayoutDenoiser
can deal with the sequence with various lengths, and capture
the relationships among elements. Moreover, cLayoutDe-
noiser adds “attributes embeddings” to the input “geometric
embeddings”, so as to guide the reverse diffusion process at
each time step t. Formally, the architecture of cLayoutDe-
noiser can be described as follow:

hf = AttributesEmbedding(f) (4)
hg = GeometricEmbedding(gt) (5)
E = ElementEmbedding(hf ,hg,TE(t)) (6)
E′ = TransformerLayers(E) (7)
ϵ = FC(E′) (8)

where f is the layout attributes, gt is the noised layout ge-
ometric parameters, hf and hg are their hidden represen-
tations. E is the element tokens computed by element em-
bedding module, E′ is intermediate feature. TE(t) denotes
the timestep embedding, and ϵ is the predicted noise. Note
here that, since the element order in the sequence makes no
sense in our setting, cLayoutDenoiser omits the positional
encoding, which is different from existing transformers in
the context of NLP or video.

Geometric, attributes and timestep embedding. Three
embedding modules are used to learn meaningful represen-
tations for noised layout geometric parameters gt, layout
attributes f and time step t. Geometric embedding projects
layout geometric parameters to a specific dimension, aiming
to find a more efficient feature space than the original coor-
dinate space. Feature embedding learns the continuous fea-
tures of discrete element attributes by embedding them into
a specific dimension. Following [14], we condition cLay-
outTransformer on time step t by adding a sinusoidal time
embedding TE(t) to make the network aware at which time
step it is operating.

Element embedding. Element embedding module cal-
culates the element tokens used as the input of transformer
layers. Element tokens should contain geometric, attributes
and time step information, so that transformer can effi-
ciently capture the relationship information between ele-
ments conditioned on the time step t and layout attributes
f . We concatenate the geometric embedding and attributes
embedding, and then use a fully-connected layer to fuse el-
ement representation. We further perform an element-wise
plus operation with timestep embedding on the results to
finally obtain the element tokens.

Algorithm 1: Training LayoutDM
Require: conditional layout denoiser ϵθ
repeat

Sample (g0,f) ∼ qdata;
t ∼ Uniform({1, · · · , T});
ϵ ∼ N (0, I);
gt =

√
αtg0 +

√
1− αtϵ;

Take gradient descent step on
∇θ∥ϵ− ϵθ(gt, t,f)∥2;

until converged;

Algorithm 2: Sampling
Input: layout attributes f
Output: layout geometric parameters g0
gT ∼ N (0, I);
for t = T, · · · , 1 do

z ∼ N (0, I) if t > 1, else z = 0;
gt−1 = 1√

αt
(gt − 1−αt√

1−αt
ϵθ(gt, t,f)) + σtz

end
return g0

Transformer layers. Generating an effective layout re-
quires understanding the relationships between layout ele-
ments. Self-attention mechanism in Transformer [43] has
proven effective in capturing high-level relationships be-
tween lots of elements in layout generation [1, 11, 15]. In
this paper, we adopt multihead attention mechanism to cap-
ture relationship information between elements from ele-
ment tokens. We stack multiple transformer layers (8 in our
model) to enable cLayoutDenoiser to capture relationships
between layout elements from the element tokens. Posi-
tional encoding is omitted because of the unordered nature
of elements.

Ê = LayerNorm(El−1 +Head(el−1
1 , · · · , el−1

N )) (9)

El = LayerNorm(Ê+ FFN(Ê)) (10)

where l = 1, · · · , L denotes the layer index, Head,
LayoutNorm and FFN denote multi-head attention layer,
Layer Normalization [3] and fully connected feed-forward
network. El−1 = (el−1

1 , · · · , el−1
N ) are the intermediate el-

ement tokens used as the input of l-th transformer layer.

3.4. Training and Inference

Following denoising diffusion probabilistic model [14],
we optimize random terms Lt which are the KL divergences
between pθ(gt−1|gt,f) and forward process posteriors. Af-
ter simplifying the objective function following the method
in [14], the final loss function is as follows:

Lsimple(θ) = ∥ϵ− ϵθ(gt, t,f)∥2

= ∥ϵ− ϵθ(
√
αtg0 +

√
(1− αt)ϵ, t,f)∥2

(11)

18352



where ϵ ∼ N (0, I), ϵθ is our conditional layout denoiser,
gt ∼ N (gt;

√
αtg0, (1−αt)I) is computed using the prop-

erty of Gaussian distributions and g0 is the real layout geo-
metric parameters. {βt}Tt=1 are forward process variances,
αt = 1− βt and αt =

∏t
s−1 αs.

The training and sampling algorithm of LayoutDM are
illustrated in Algorithm 1 and Algorithm 2 respectively.

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our method on five public
datasets of layouts for documents, natural scenes, maga-
zines, text logos and mobile phone UIs. Rico [7] is a dataset
of user interface designs for mobile applications, contain-
ing 72,219 user interfaces from 9,772 Android apps. Pub-
layNet [47] contains 330K samples of machine-annotated
scientific documents crawled from the Internet with five cat-
egories (text, title, figure, list, table). Magazine [46] is a
magazine layout dataset that covers a wide range of maga-
zine categories. It consists of semantic layout annotations.
COCO [26] is a large-scale labeled image dataset that con-
tains images of natural scenes with instance segmentation.
TextLogo3K [44] is a recently released dataset of text lo-
gos. It consists of 3,470 text logo images with manually
annotated bounding boxes and pixel-level masks for each
character.

Evaluation metrics. To validate the effectiveness of
LayoutDM, we employ four metrics in the literature to mea-
sure the perceptual quality of layouts. To be a fair com-
parison, we follow the guidance in [18] to evaluate these
metrics. Specifically, FID [12] measures the distribution
distance between real layouts and generated layouts. We
use the pre-trained classifiers in [18] to compute FID. Max.
IoU [18] measures the similarity between the generated lay-
outs and the reference layouts. It is designed to find the best
match for each layout from the generated set to the refer-
ence set. Overlap and Alignment measure the perceptual
quality of generated layouts. Overlap measures the total
overlapping area between any pair of bounding boxes in-
side the layout. Additionally, we measure the Alignment by
computing an alignment loss proposed in [25].

Implementing details. The max time step T in Lay-
outDM is set to 1000. We set the forward process vari-
ances to constants increasing linearly from β1 = 10−4 to
βT = 0.02 following Ho’s design [14]. We use eight
transformer layers which use 8-head attention in our model.
Adam optimizer [19] with a learning rate of 1 × 10−5 is
used to optimize learnable parameters. The batch size is
set to 1024. We implement our model with PyTorch [32]
and PyTorch Lightning. All experiments are performed on
a single NVIDIA Quadro RTX 6000 GPU device.

Dataset Rico
Model FID↓ Max. IoU↑ Alignment↓ Overlap↓
LayoutGAN-W [24] 162.75±0.28 0.30±0.00 0.71±0.00 174.11±0.22
LayoutGAN-R [24] 52.01±0.62 0.24±0.00 1.13±0.04 69.37±0.66
NDN-none [23] 13.76±0.28 0.35±0.00 0.56±0.03 54.75±0.29
LayoutGAN++ [18] 14.43±0.13 0.36±0.00 0.60±0.12 59.85±0.59
VTN [1] 9.31±0.21 0.36±0.00 0.88±0.11 59.31±0.45
LayoutDM(Ours) 3.03±0.06 0.49±0.00 0.36±0.06 57.55±0.48
Real data 4.47 0.65 0.26 50.58

Dataset PublayNet
Model FID↓ Max. IoU↑ Alignment↓ Overlap↓
LayoutGAN-W [24] 195.38±0.46 0.21±0.00 1.21±0.01 138.77±0.21
LayoutGAN-R [24] 100.24±0.61 0.24±0.00 0.82±0.01 45.64±0.32
NDN-none [23] 35.67±0.35 0.31±0.00 0.35±0.01 16.5±0.29
LayoutGAN++ [18] 20.48±0.29 0.36±0.00 0.19±0.00 22.80±0.32
VTN [1] 13.07±0.47 0.37±0.00 0.30±0.01 13.15±0.24
LayoutDM(Ours) 4.04±0.08 0.44±0.00 0.15±0.00 3.73±0.08
Real data 9.54 0.53 0.04 0.22

Dataset Magazine
Model FID↓ Max. IoU↑ Alignment↓ Overlap↓
LayoutGAN-W [24] 159.2±0.87 0.12±0.00 0.74±0.02 188.77±0.93
LayoutGAN-R [24] 100.66±0.35 0.16±0.00 1.90±0.02 111.85±1.44
NDN-none [23] 23.27±0.09 0.22±0.00 1.05±0.03 30.31±0.77
LayoutGAN++ [18] 13.35±0.41 0.26±0.00 0.80±0.02 32.40±0.89
VTN [1] 12.34±0.39 0.25±0.00 1.07±0.03 39.97±0.62
LayoutDM(Ours) 9.11±0.15 0.29±0.00 0.77±0.03 32.53±0.72
Real data 12.13 0.35 0.43 25.64

Table 1. Quantitative comparison conditioned on element category
labels. For reference, the FID and Max. IoU computed between
the validation and test data, and the Alignment and Overlap com-
puted with the test data are shown as real data. LayoutGAN-W
and LayoutGAN-R denote LayoutGAN with wireframe rendering
discriminator and with relation-based discriminator.

4.2. Quantitative Evaluation

Comparison with state-of-the-art models. We quan-
titatively evaluate the quality of conditional layout gener-
ation results on benchmark datasets: Rico, PublayNet and
Magazine. Since most methods are designed for uncondi-
tional layout generation and have no available public im-
plements, we compare our method with conditional Lay-
outGAN [24], NDN-none [23] and LayoutGAN++ [18] by
citing the results in [18]. Moreover, we also implement a
conditional VTN [1] as our comparison baseline model, so
that we can compare with methods based on both VAEs and
GANs. All the metrics are computed on the full test splits
of the datasets. We report the mean and standard deviation
over five independent evaluations for each experiment.

The comparison results are reported in Tab. 1. From this
table, we can observe that: (1) Our method outperforms
SOTA methods on both FID and Max. IoU on all three
benchmark datasets, which indicates that the generated lay-
outs by our method are more similar to the real layouts than
those by SOTA methods. This verifies that our LayoutDM
can produce higher-quality and more diverse layouts than
SOTA methods, since FID captures both diversity and fi-
delity. (2) Layouts generated by our method have a lower

18353



IoU↓ [21] Overlap↓ [24] Alignment↓ [23]
L-VAE [17] 0.45±1.3% 0.15±0.9% 0.37±0.7%

NDN [23] 0.34±1.8% 0.12±0.8% 0.39±0.4%

VTN [1] 0.21±0.6% 0.06±0.2% 0.33±0.4%

Trans. [11] 0.19±0.3% 0.06±0.3% 0.33±0.3%

BLT [21] 0.19±0.2% 0.04±0.1% 0.25±0.7%

Ours 0.0053±0.5% 0.01±0.1% 0.22±1.2%

Table 2. Comparison with extended methods on PublayNet. Qual-
itative results are cited from [21]. “Trans.” denotes “LayoutTrans-
former” and “L-VAE” denotes “LayoutVAE”.

FID score than the real ones in validation splits. This is
because the generated layouts have identical attributes to
those in the test split, while the real layouts in the validation
split have different attributes from those in the test split. We
provide more analysis on this point in the supplementary
material. (3) With regards to Alignment and Overlap, Lay-
outDM is slightly weaker on Rico and Magazine. Because
our method lacks a discriminator that guides the generator
to generate layouts with better alignment and overlap prop-
erties as in GANs and does not introduce the layout refine
module in NDN. This is likely to cause LayoutDM to be
inferior to the state-of-the-art on these two metrics.

Note here that, we don’t compare LayoutDM to other
state-of-the-art methods such as LayoutTransformer [11]
and Coarse2fine [16], because these methods focus on un-
conditional layout generation problem which is different to
our setting. Recently, Kong et al. [21] reimplement the
conditional version of VTN and LayoutTransformer, and
compare their proposed BLT model with these models un-
der the settings of conditional layout generation. However,
they compute the metrics (IoU [21], Alignment [23], Over-
lap [24]) in different ways. As an extended comparison, we
adopt the metrics used by BLT [21], and compare our Lay-
outDM with VTN, LayoutTransformer, LayoutVAE, NDN
and BLT on PublayNet. The comparison results are re-
ported in Tab. 2. As shown in this table, our model also
outperforms SOTA methods on all metrics.

Effect of transformer layers. We conduct ablation
experiments to demonstrate the effectiveness of the trans-
former layers in LayoutDM. Quantitative results are re-
ported in Tab. 3 and qualitative comparisons are shown in
Fig. 3. We have the following observation: After replacing
the transformer structure in LayoutDM with a sequence of
FC layers, the model can still predict a suitable size for each
element, but the positional relationships between elements
can not be handled, resulting in significant overlapping and
misalignment. This proves that the transformer layers play
an essential role and can efficiently capture and utilize the
high-level relationships between elements to generate high-
quality layouts which follow design rules and aesthetic prin-
ciples.

Rico
Architecture FID↓ Max.IoU↑ Alignment↓ Overlap↓
w/o transformer 52.64 0.29 1.08 58.13
Full model 3.03 0.49 0.36 57.55

PublayNet
Architecture FID↓ Max.IoU↑ Alignment↓ Overlap↓
w/o transfomer 99.60 0.27 0.89 63.87
Full model 4.04 0.44 0.15 3.73

Table 3. The quantitative results of ablations on transformer lay-
ers. “Full” denotes our full model. “w/o transformer” denotes
model without transformer layers.

4.3. Qualitative Comparisons

Generation quality comparison. To qualitatively com-
pare the generation performance of different models, we
compare with the state-of-the-art method LayoutGAN++
and our implemented conditional VTN. We randomly sam-
ple layouts from the test dataset and use the element cate-
gory labels as conditional inputs. Fig. 2 shows the quali-
tative comparison results. As one can see, LayoutDM can
arrange elements in a reasonable and complicated way, gen-
erating higher quality layouts than the other two, with fewer
overlapping and better alignment.

Generation diversity comparison. The diversity of re-
sults is also an important factor in evaluating the method.
We compare the diversity of layouts generated by condi-
tional VTN, LayoutGAN++, and LayoutDM. Fig. 4 show
the comparison results. One can see that conditional VTN
and LayoutDM generate more diverse results. The Figure
element in the results floats on the page. Compared to the
other two models, LayoutGAN++ captures less diversity,
which places a large Figure element on the top of the pages
in columns 2,4, and 5. LayoutDM performs well in diver-
sity because it breaks the generation into a series of con-
ditional diffusion steps which are relatively easy to model.
This alleviates the mode collapse problem in strongly con-
ditional generation task that can lead to the generation of
similar modes. We provide more qualitative comparisons
on diversity in the supplementary material.

Rendering results comparison. We render graphic
pages for better visualization using the generated layouts.
Fig. 5 show the rendering results comparison on PublayNet.
We find the layouts generated by LayoutDM follow design
rules well and reasonably allocate page space. Compared
to the results generated by LayoutGAN++, our results are
better in alignment and have no overlapping between ele-
ments. Note that we crop the elements from the original
document and then render the pages using a simple resize-
to-fit method, so the text areas and figures will suffer some
distortion. In real design scenarios, this problem can be
solved by element customization (e.g., adjust the font size).

18354



Figure 2. Qualitative comparison on Rico and PublayNet. Element labels indicate the labels of elements used as conditional inputs.

Figure 3. Ablation study on the effect of transformer layers. “w/o
transformer” denotes model without transformer layers. “Full” de-
notes our full model.

4.4. Extended Layout Generation Tasks

Text logo layout generation. TextLogo3K [44] dataset
contains character and word embedding of texts in the lo-
gos. Although the dataset does not provide any label infor-
mation, we can still generate logo layouts conditioned on
the provided textual features. Positional encoding is added
to LayoutDM to make the transformer structure aware of
the reading order in textual feature sequences. We compare
the logo layout generation results of LayoutDM and those
generated by the logo layout generator provided by TextL-
ogo3K [44]. The qualitative results are shown in Fig. 6. As

Figure 4. Diversity comparison on PublayNet. We show five sam-
ples generated by giving the same category attributes as condition:
one Figure and five Texts. The Figure is drawn in purple and the
Texts are drawn in red.

one can see, our model generates reasonable logo layouts
while maintaining the correct reading order and aesthetic
principles. Compared to LogoGAN, the style of the logos
generated by our model is more flexible, not simply arrang-
ing the text from left to right. Our model also performs bet-
ter when there are large numbers of characters in the layout,
where LogoGAN fails to generate reasonable results.

Scene layout generation. Our model can also generate

18355



R
ea
lp
ag
es

La
yo
ut
G
A
N
++

La
yo
ut
D
M
(O
ur
s)

Table Text Figure Title

Figure 5. Rendering results comparison. Top: Rendered pages us-
ing layouts generated by LayoutGAN++. Middle: Rendered pages
using layouts generated by LayoutDM. Bottom: Real paper pages
in PublayNet.

Lo
go
G
A
N

La
yo
ut
D
M

R
ea
lL
og
o

C
on
di
tio
n

乡村爱情/
7/圆舞曲

美丽/的/
秘密

我的/奇妙
/男友

等你/
爱我

Figure 6. Text logo generation results. “LogoGAN” denotes the
text logo generation model proposed in [44]. “Condition” repre-
sents the textual features (including character and word embed-
dings) used as conditional input in LogoGAN and LayoutDM. “/”
is the symbol for splitting tokens.

natural scene layouts. We illustrate the qualitative results
of the scene layout generation on COCO in Fig. 7. Given
the labels of scene elements in a scene, our model gen-
erates reasonable scene layout proposals. We then use a
downstream layout-to-image generation application [2] to
finally render natural scene images. The results show that
our model learns the principle of scene layouts well and can
understand the complex relationships between elements in

Figure 7. Natural scene layout generation results on COCO. Our
model uses scene element labels as conditional input to generate
reasonable scene layouts.

natural scenes. For example, the boat should be in the river
and the cloud should be in the upper part of the scene.

4.5. Limitations

Although our method shows impressive results in the
conditional layout generation problem in comparison to ex-
isting methods, it still has limitations. For example, like
other layout generation methods, our approach treats design
elements as being on a single-layer canvas. This can not
model a layout with multiple layers occluding each other.
Our method also has no advantage over other generative
models in generation speed because the generation of the
diffusion model requires an iterative denoising process. We
leave the solution to the above problems for future work.

5. Conclusion
This paper proposes a transformer-based diffusion model

LayoutDM to address conditional layout generation. We
introduce a purely transformer-based Layout Denoiser to
model the diffusion reverse process. Benefitting from both
DDPM and transformer, in comparison to existing methods,
LayoutDM can generate high-quality generation with de-
sired properties such as better diversity, faithful distribution
coverage, and stationary training. Quantitative and quali-
tative results demonstrate that our model outperforms the
state-of-the-art methods in terms of visual perceptual qual-
ity and diversity.
Acknowledgment. This work was supported in part to Dr.
Liansheng Zhuang by NSFC under contract No.U20B2070
and No.61976199, in part to Dr. Fengying Yan by NSFC
under contract No.42341207.

18356



References
[1] Diego Martı́n Arroyo, Janis Postels, and Federico Tombari.

Variational transformer networks for layout generation. In
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 13637–13647, 2021. 1, 2,
4, 5, 6

[2] Oron Ashual and Lior Wolf. Specifying object attributes and
relations in interactive scene generation. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
4560–4568, 2019. 8

[3] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
normalization. ArXiv, abs/1607.06450, 2016. 4

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
ArXiv, abs/1809.11096, 2019. 1

[5] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick
Weston. Neural photo editing with introspective adversarial
networks. ArXiv, abs/1609.07093, 2017. 1

[6] Yunning Cao, Ye Ma, Min Zhou, Chuanbin Liu, Hongtao
Xie, Tiezheng Ge, and Yuning Jiang. Geometry aligned vari-
ational transformer for image-conditioned layout generation.
In Proceedings of the 30th ACM International Conference
on Multimedia, MM ’22, page 1561–1571, New York, NY,
USA, 2022. Association for Computing Machinery. 2

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hib-
schman, Daniel Afergan, Yang Li, Jeffrey Nichols, and Ran-
jitha Kumar. Rico: A mobile app dataset for building data-
driven design applications. In Proceedings of the 30th An-
nual Symposium on User Interface Software and Technology,
UIST ’17, 2017. 5

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, ed-
itors, Advances in Neural Information Processing Systems,
volume 34, pages 8780–8794. Curran Associates, Inc., 2021.
1, 2, 3

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 1

[10] Shunan Guo, Zhuochen Jin, Fuling Sun, Jingwen Li, Zhaorui
Li, Yang Shi, and Nan Cao. Vinci: An intelligent graphic
design system for generating advertising posters. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, New York, NY, USA, 2021.
Association for Computing Machinery. 1

[11] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry
Davis, Vijay Mahadevan, and Abhinav Shrivastava. Layout-
transformer: Layout generation and completion with self-
attention. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 984–994, 2021. 1, 2, 4, 6

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page

6629–6640, Red Hook, NY, USA, 2017. Curran Associates
Inc. 5

[13] Jonathan Ho. Classifier-free diffusion guidance. ArXiv,
abs/2207.12598, 2022. 3

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages
6840–6851. Curran Associates, Inc., 2020. 1, 2, 3, 4, 5

[15] Zhaoyun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang Lou,
and Dongmei Zhang. Coarse-to-fine generative modeling for
graphic layouts. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 36:1096–1103, 06 2022. 1, 4

[16] Zhao Chun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang
Lou, and D. Zhang. Coarse-to-fine generative modeling for
graphic layouts. In AAAI, 2022. 2, 6

[17] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Si-
gal, and Greg Mori. Layoutvae: Stochastic scene layout gen-
eration from a label set. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 9894–9903,
2019. 2, 6

[18] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota
Yamaguchi. Constrained graphic layout generation via latent
optimization. In ACM International Conference on Multime-
dia, MM ’21, pages 88–96, 2021. 1, 2, 5

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[20] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. CoRR, abs/1312.6114, 2014. 1

[21] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan
Hao, Haifeng Gong, and Irfan Essa. Blt: bidirectional layout
transformer for controllable layout generation. In European
Conference on Computer Vision, pages 474–490. Springer,
2022. 1, 2, 6

[22] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo
Larochelle, and Ole Winther. Autoencoding beyond pixels
using a learned similarity metric. In International conference
on machine learning, pages 1558–1566. PMLR, 2016. 1

[23] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B. Le, Haifeng
Gong, Ming-Hsuan Yang, and Weilong Yang. Neural design
network: Graphic layout generation with constraints. In An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer Vision – ECCV 2020, pages 491–
506, Cham, 2020. Springer International Publishing. 1, 2, 5,
6

[24] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,
and Tingfa Xu. Layoutgan: Synthesizing graphic lay-
outs with vector-wireframe adversarial networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(7):2388–2399, 2021. 1, 2, 5, 6

[25] Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu,
Christina Wang, and Tingfa Xu. Attribute-conditioned lay-
out gan for automatic graphic design. IEEE Transactions on
Visualization and Computer Graphics, 27(10):4039–4048,
2021. 1, 5

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

18357



Zitnick. Microsoft coco: Common objects in context. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014, pages 740–
755, Cham, 2014. Springer International Publishing. 5

[27] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. ArXiv, abs/1802.05957, 2018. 1

[28] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W.
Battaglia. Generating images with sparse representations.
ArXiv, abs/2103.03841, 2021. 1

[29] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 1

[30] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann.
Designscape: Design with interactive layout suggestions. In
Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, page 1221–1224,
New York, NY, USA, 2015. Association for Computing Ma-
chinery. 2

[31] Peter O’Donovan, Aseem Agarwala, and Aaron Hertz-
mann. Learning layouts for single-pagegraphic designs.
IEEE Transactions on Visualization and Computer Graph-
ics, 20(8):1200–1213, 2014. 2

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 5

[33] Akshay Gadi Patil, Omri Ben-Eliezer, Or Perel, and Hadar
Averbuch-Elor. Read: Recursive autoencoders for document
layout generation. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages
2316–2325, 2020. 1, 2

[34] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Advances
in neural information processing systems, 32, 2019. 1

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2021. 1, 2

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, pages 234–
241, Cham, 2015. Springer International Publishing. 2, 3

[37] Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and
Christopher D. Manning. Parsing natural scenes and natural
language with recursive neural networks. In Proceedings of
the 28th International Conference on International Confer-
ence on Machine Learning, ICML’11, page 129–136, Madi-
son, WI, USA, 2011. Omnipress. 2

[38] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher Potts.
Recursive deep models for semantic compositionality over
a sentiment treebank. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA, Oct. 2013. As-
sociation for Computational Linguistics. 2

[39] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In
Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume
37, ICML’15, page 2256–2265. JMLR.org, 2015. 1

[40] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2

[41] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. Advances in neural
information processing systems, 32, 2019. 1

[42] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv preprint arXiv:2011.13456, 2020. 3

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 4

[44] Yizhi Wang, Gu Pu, Wenhan Luo, Pengfei Wang, Yexin
ans Xiong, Hongwen Kang, Zhonghao Wang, and Zhouhui
Lian. Aesthetic text logo synthesis via content-aware layout
inferring. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022. 1, 2, 5, 7, 8

[45] Kota Yamaguchi. Canvasvae: Learning to generate vec-
tor graphic documents. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5461–5469,
2021. 1, 2

[46] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson W. H.
Lau. Content-aware generative modeling of graphic design
layouts. ACM Trans. Graph., 38(4), jul 2019. 1, 2, 5

[47] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-
laynet: largest dataset ever for document layout analysis. In
2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1015–1022. IEEE, Sep. 2019.
5

18358


