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Abstract

Mobile robots, including autonomous vehicles rely heav-
ily on sensors that use electromagnetic radiation like lidars,
radars and cameras for perception. While effective in most
scenarios, these sensors can be unreliable in unfavorable
environmental conditions, including low-light scenarios and
adverse weather, and they can only detect obstacles within
their direct line-of-sight. Audible sound from other road
users propagates as acoustic waves that carry information
even in challenging scenarios. However, their low spatial
resolution and lack of directional information have made
them an overlooked sensing modality. In this work, we intro-
duce long-range acoustic beamforming of sound produced
by road users in-the-wild as a complementary sensing modal-
ity to traditional electromagnetic radiation-based sensors.
To validate our approach and encourage further work in the
field, we also introduce the first-ever multimodal long-range
acoustic beamforming dataset. We propose a neural aper-
ture expansion method for beamforming and demonstrate
its effectiveness for multimodal automotive object detection
when coupled with RGB images in challenging automotive
scenarios, where camera-only approaches fail or are unable
to provide ultra-fast acoustic sensing sampling rates. Data
and code can be found here1.

1. Introduction
Autonomous mobile robots of today predominantly rely

on several electromagnetic (EM) radiation-based sensing
modalities such as camera, radar and lidar for diverse scene
understanding tasks, including object detection, semantic
segmentation, lane detection, and intent prediction. The most
promising approaches rely on fused data input from these
camera, lidar and radar sensor configurations [7, 42, 50] and
robust data-driven perception algorithms using convolutional
neural networks or vision transformers. However, existing
camera/radar/lidar stacks do not return signal for objects with
low reflectance and in conditions where light-based sensors
struggle, such as severe scattering due to fog. All existing
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EM radiation-based sensor systems (active or passive) are
fundamentally limited by the propagation of EM waves.

Acoustic waves are an alternative and complementary
sensing modality that are not subject to these limita-
tions. Every automotive vehicle generates noise due to
engine/transmission, aerodynamics, braking, and contact
with the road. Even electric vehicles are required by law
to emit sound to alert pedestrians [36]. However, acoustic
sensing is not without challenges. Spatially resolving the
acoustic spectrum at meter wavelengths (e.g., a 1 kHz sound
wave has a wavelength of about 35 cm in air) has limited
existing approaches to low-resolution tracking of 3D spatial
coordinates [11–13, 32, 44].

In this work, we show that acoustic sensing is comple-
mentary to existing EM wave-based sensors, robust to chal-
lenging scenarios, and achieves improved performance when
combined with existing vision-only approaches. To this end,
we captured a large multimodal dataset with a prototype
vehicle equipped with a 1024 (32x32 grid) microphone array
and a plethora of vision sensors, and had them labeled by
human annotators, which we release as the first multimodal
long-range beamforming dataset. To the best of our knowl-
edge, there is no such large and diverse multimodal acoustic
beamforming dataset, as also illustrated in Table 1. We ad-
ditionally propose a neural acoustic beamforming method
for small aperture microphone arrays via learned aperture
expansion. The aperture-expanded beamforming maps re-
cover spatial resolution typically lost in sound measurements,
and facilitate fusion with visual inference tasks. We assess
multimodal visual and acoustic vision tasks in diverse real-
world driving scenarios. We validate that visual and acoustic
signals can complement each other in challenging automo-
tive scenarios and can enable future frame predictions at
kHz frequencies. We also demonstrate that object detec-
tion using vision and acoustic signals outperform that of
vision-only signals in challenging low-light scenarios. Fur-
thermore, we show the applicability of acoustic sensing in
non-line-of-sight and partially occluded scenes where purely
vision-based sensing fails.

Specifically, we make the following contributions:
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Prototype Vehicle Beamforming Map RGB-only Detection Proposed Multimodal Detection

Figure 1. We capture a large dataset of acoustic pressure signals at several frequencies from roadside noise using our prototype test vehicle
(left). Of the available 250-5000 Hz frequency bands in the dataset, we visualize beamformed signals at the 4000 Hz octave band here
(middle left). Using RGB-only result in missed and inaccurate detections at night (middle right). The complementary nature of acoustic
signals, on the other hand, helps robustly detect the objects in challenging night scenarios (right).

Table 1. Existing beamforming works and datasets are limited to just a few hundred processed beamforming maps and a single RGB camera
data. In stark contrast, our dataset is very large with acoustic signals captured at 40kHz frequency across 11 frequency bands in diverse
urban scenarios.

Dataset Michel et al. [35] Zunino et al. [51] Guidati [21] Proposed

Ego Motion Static Static Static Dynamic
Frequency Bands 1 1 1 11
Frequency Range ✗ 500 - 6400 Hz ✗ 1 Hz - 20 kHz
Processed Beamforming Frames ✗ 151 ✗ 42250
RGB Cameras 1 1 ✗ 5
RGB Frames ✗ 151 ✗ 3.2 Mio
Lidar Point Clouds ✗ ✗ ✗ 480,000
Annotated Frames ✗ ✗ ✗ 16,324

• We introduce long-range acoustic beamforming of road
noise as a complementary sensing modality for auto-
motive perception, and introduce the first annotated
long-range acoustic beamforming dataset comprising
of sound measurements from planar microphone array,
lidar, RGB images, GPS and IMU data, in urban driving
scenarios.

• We propose neural acoustic beamforming for small aper-
ture microphone arrays via learned aperture expansion.
We validate that this beamforming approach can learn
features with a spatial resolution that allows for fusion
with existing RGB vision tasks.

• We validate that the proposed method complements ex-
isting modalities and outperforms existing RGB-only
and audio-only detection methods in challenging sce-
narios with occlusion or poor lighting.

Scope As the proposed acoustic sensing modality relies
on passive sound from traffic participants, beamforming
measurements are fundamentally limited to sound-producing
vehicles. Beamforming of quieter traffic participants such as
pedestrians and bicycles is challenging. However, we show
that infusing existing vision stacks with acoustic signals can

enable robust scene understanding in challenging scenarios
such as night scenes and under severe occlusion.

2. Related Work
Acoustic Localization and Applications Acoustic local-
ization is an often observed phenomenon in nature. Active
techniques like echolocation, where sound signals are trans-
mitted and the corresponding reflected signals are analyzed
for localization, navigation and prey detection is commonly
observed in animals such as bats and dolphins. Systems
such as sonar (sound navigation and ranging) [46] which
are common for underwater and robotics applications also
operate on the active echolocation principle [27,43]. Passive
techniques, on the other hand, involve analyzing ambient
sound signals using an array of microphones via acoustic
beamforming [6, 11–13, 32, 44]. Beamforming techniques
locate sound sources based on the timing differences in the
sound received by various microphones.

Apart from sound source localization, recent smart home
speakers use several microphones for speech recognition
accuracy from multi-channel inputs [40] and tasks such as
sound source separation [37]. Existing attempts to locate
sound sources from visual inputs by associating image pix-
els to an object [2–4, 22, 24, 28] making a particular sound
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Figure 2. Overview of the pipeline: Roadside noise is measured by a microphone array sensor and a beamforming map of acoustic signals is
computed as complementary modality to existing sensor stacks. A trained neural network translates multimodal signals to interpretable
traffic scene information which can be used for downstream tasks such as object detection and predicting a future RGB camera frame.

often make such audio-visual correlations and localization
via trained neural networks [17, 41, 49]. In contrast, we
take a different approach where we learn high-resolution
feature maps via beamforming that can be fused with visual
inference models.

Beamforming Datasets and Applications While existing
work employs stationary or hand-held microphone arrays for
beamforming, we consider dynamic automotive scenarios for
the first time where the array is mounted on a moving vehicle.
For example, Michel et al. [35] and Zunino et al. [51] use a
stationary array for beamforming on pass-by vehicles. How-
ever, their dataset contains only a single sequence with 151
beamforming maps of a motorcycle passing by. Guidati [21],
on the other hand, used near-field acoustic holography to
generate beamforming maps for engine noise analysis of a
stationary car. Such applications have recently been also
used in commercial products for fault detection applications.
However, existing work has not proposed beamforming for
dynamic automotive scenarios to the best of our knowledge.
Additionally, we are not aware of any existing beamform-
ing datasets with annotated data. Our annotated dataset, in
stark contrast to existing datasets, comprises of 3.2 million
RGB frames with 5 cameras, 480k lidar pointclouds with
IMU/GNSS annotations, raw microphone files and 42250
processed beamforming maps for each of the 11 frequency
bands that we capture.

Multisensor Detection Over the last decade, several crit-
ical tasks such as object detection [8, 9, 18, 26, 30, 47],
lane detection [23], traffic light detection [25] depth esti-
mation [1, 15, 29] and end-to-end driving models [5, 48]
have been explored. Recent autonomous driving applica-
tions rely on multimodal sensor stacks, including camera,
radar, lidar and gated near-infrared imaging sensors [19, 20].
These multi-sensor feeds are generally fused to jointly un-
derstand the cues in measurements [34] to allow for redun-
dancy in the presence of distortions [38], thereby enabling
vision tasks [14, 47]. Many proposed multi-sensor meth-
ods [9, 26, 31, 47] such as AVOD [26] and MV3D [9] incor-
porate multiple sensor streams that are processed separately
in the feature extraction stage. In our work, we propose
acoustic beamforming as an extended sensing modality to
complement these existing methods. While researchers have

utilized acoustic signals before [10, 16], this work employs
acoustic beamforming to extract high-resolution spatial in-
formation from ambient roadside noise.

3. In-the-Wild Acoustic Beamforming
In this work, we measure environmental sound from am-

bient sources and active road participants using a planar
microphone array, along with other sensor modalities, as
shown in Fig. 1. We interchangeably refer to the environ-
mental sound as acoustic signals here on. In this section,
we introduce acoustic wave propagation and beamforming
in-the-wild.

Acoustic Wave Propagation Sound propagation is gov-
erned by the time-domain acoustic wave equation

∇2p(x⃗, t)− 1

c2s

∂2

∂t2
p(x⃗, t) = f(x⃗, t), (1)

where ∇2 is the Laplacian, p(x⃗, t) is the pressure at location
x⃗ and time t, cs is the speed of sound in homogeneous media
(typically 343ms−1), and f(x⃗, t) is the forcing function
corresponding to the source. The forcing function represents
the sources of disturbances in the air pressure, i.e., the sound
sources, as measured by the microphone sensor at a given
space and time. For a monopole source q located at x⃗s,
the forcing function f(x⃗, t) = q(x⃗s, t)δ(x⃗− x⃗s), where the
Dirac delta function represents the geometric location of the
acoustic source. The pressure resulting from this source at
any given location x⃗ can be computed using the free space
Green’s function [6] as

p(x⃗, t) =
q(x⃗s, t− |x⃗− x⃗s|/cs)

4π|x⃗− x⃗s|
. (2)

Note that the acoustic pressure decays here inversely with the
distance from the source. Also, since the acoustic pressure
signal propagates at a constant speed cs in a given medium,
the measured pressure at any instant at a given location is
from the acoustic pressure produced by the sound source at
a previous instant ∆t = |x⃗− x⃗s|/cs.

Beamforming Model Consider a planar microphone array
consisting of M microphones that are spatially located at
different positions x⃗m. Given a pressure signal p(x⃗m, t) that

984



has originated from a source q(x⃗s, t−∆t), each sensor of
the acoustic camera’s microphone array spatially samples the
incoming pressure wave as y⃗m = p(x⃗m, t). We wish to use
these measurements to construct a spatial map locating the
sound source q via beamforming. For a single sound emitter
at x⃗s, the beamforming spatial map BF can be constructed
following Eq. (2) as

BF(t, x⃗s) =
1

M

M∑
m=0

ym(t−∆tm)

=
4π

M

M∑
m=0

pm(x⃗s, t+∆tm)|x⃗m − x⃗s|,

(3)

where ym are measurements from the microphone array
and ∆tm are unknown time delays induced by travel times
from the sound source to the microphone array. The final
beamforming maps of multiple sound sources is obtained
by scanning through a range of time delays and superposing
those acoustic signals corresponding to constructive inter-
ference of each individual sound source on the focal plane
of the microphone array. Please refer to the Supplementary
Material for additional details on the measurement model.

Measuring Environment Sounds Note that physical con-
tinuous acoustic pressure signals p(t) are sampled at discrete
time intervals p(n∆t) and are interpreted digitally for the
purpose of beamforming. However, the measured signals are
prone to uncorrelated measurement noise at the array sen-
sors. The measured cross-spectral power between any two
microphone pairs, in the presence of measurement errors, is
given by

Cmn = E[(p̃m(ω) + ζm(ω))(p̃m(ω) + ζm(ω))∗], (4)

where p̃(ω) is the frequency domain pressure obtained by
Fourier-transforming the time domain measurement and
ζ(ω) is the measurement error. Assuming that these mea-
surement errors have a zero mean and finite variance σ, and
are statistically independent from the ambient acoustic sig-
nals, the cross-correlation between the errors as measured
by any two microphones must be zero. Therefore, the above
cross-power spectrum can be computed as

Cmn = E[(p̃m(f))(p̃m(f))∗] + σ2I, (5)

where σ2I is the statistical variance of the measurement er-
rors. As can be seen, the measurement errors only affect
the diagonal elements of the cross-power spectrum matrix.
To this end, we remove the auto-power from the beamform-
ing power signal output by eliminating the diagonal of the
cross-power spectrum matrix. Removing the main diagonal
elements from the cross-spectral matrix reduces the effects
of measurement errors and further thresholding against a
noise floor suppresses ambient noise.

4. Neural Acoustic Beamforming
The diffraction limit of an acoustic camera is given by

0.5λ/NA where λ is the wavelength of the acoustic sig-
nal and NA is the numerical aperture of the system [33].
Therefore, a large aperture is desirable for achieving high-
resolution beamforming that facilitates fusion with visual
information from camera or lidar sensors. Fig. 4 shows the
beamforming of traffic environment where the sound pro-
duced by the vehicle tires are clearly visualized. A small
aperture acoustic camera results in larger PSFs, thereby cor-
rupting the beamformed reconstruction. However, a large
microphone array is challenging to integrate in automotive
vehicles. In this work, we propose a learned method that syn-
thesizes a virtual large aperture microphone array, thereby
increasing the resolution of beamforming spatial maps. We
experimentally show that these features from the beamform-
ing maps of acoustic signals benefit downstream tasks when
combined with other sensor modalities.

The proposed reconstruction network architecture broadly
comprises of four stages: the beamforming stage fBF, a syn-
thetic aperture expander fAE, a deconvolution stage fDeconv,
and task-specific applications fTask. Our overall neural beam-
forming can be formally represented as

OBF = fDeconv
(
fAE(fBF(p,F)), fBF(δ,F))

)
, (6)

where δ is a synthetic audio point source, p is the raw
microphone measurement of the pressure signals, F =
[f1, f2, ..., fn] are a set of acoustic frequencies used for
beamforming. An illustration of our network architecture is
also presented in Fig. 2.

The aperture expander is constructed as a fully convo-
lutional neural network, whereas the beamforming stage
is implemented as described in Section 3. The synthetic
aperture expander network learns to scale the beamform-
ing maps corresponding to a smaller aperture into that of a
larger aperture, thereby effectively reducing the PSF of our
acoustic sensor. The beamforming measurements are then
deconvolved with the PSF of a synthetic point source δ in
order to mitigate the PSF blur on final measurements, see
Supplementary Material. Finally, the deconvolved features
OBF can be used directly for downstream tasks such as object
detection and future frame interpolation. Specifically, the
downstream task can be performed as

OTask = fTask(OBF), (7)

where fTask is the function performing the downstream task
and OTask is the corresponding task-specific output. In the
subsequent sections, we describe how these beamforming
features can be used for object detection on unseen in-the-
wild traffic scenarios (fTask = fdetect) and future frame pre-
diction (fTask = ffuture).

Aperture Expansion We define the beamforming map of
a microphone array spanning d× d m2 as Id = fBF(pd,F).
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Figure 3. (a) We collect a large dataset of acoustic pressure signals from road traffic, along with camera, lidar, GPS and IMU sensory streams.
(b) Our data consists of a variety of traffic scenes with multiple object instances. (c) The raw sound signals are processed for a range of
frequency bands in our dataset. (d) A snapshot visualization of our dataset with beamforming maps overlayed on RGB images.

Synthetic Aperture
Expander

Small Aperture Scene Synthetic Large Aperture 

Figure 4. Neural aperture expansion: We train a network to syn-
thetically expand the aperture of the microphone array to produce
higher fidelity beamform maps with smaller PSF corruption. The
above beamforming maps visualize sound from the vehicles (center,
see arrows). As can be observed, a smaller aperture (left) results in
blurry beamforming outputs compared to larger aperture (right).

We then train our aperture expansion stage by minimizing

LAE = (L2 + Ls)(fAE(Id), Id′), (8)

where L2 is the mean-squared error, Ls is a spatial gradient
loss, Id is a smaller aperture beamforming input, and Id′ is
a larger aperture beamforming target. In our experiments,
we collect groundtruth from a 32 × 32 microphone array
and train our neural aperture expansion on smaller 24× 24
sub-array.

Multimodal Downstream Tasks Next, we describe how
we apply our complementary beamforming signals to spe-
cific vision tasks. We describe both multimodal tasks in
detail in Section 6. The multimodal optimization loss, re-
lying on visual and acoustic inputs for object detection
(fTask = fdetect) is given by

Ldetect = LIoU(fdetect(IRGB, OBF), Bgt), (9)

where LIoU is the intersection-over-union loss and Bgt is the
ground truth bounding box.

For future frame prediction, we extrapolate from a previ-
ous RGB frame ItRGB at time t using signals Ot+kτ

BF , where
k is current BF sample modulo sampling rate, τ is sam-
pling time of BF sensor, and t + kτ the current time. The
corresponding loss for this task is given by

Lfuture =
(
Lperc + Ladv

)(
Ot+kτ

RGB , It+kτ
RGB

)
, (10)

with Ot+kτ
RGB = ffuture(O

t−n+1,...,t,t+kτ
BF , It−n+1,...,t

RGB ), n is
integer time steps, Lperc and Ladv are perceptual and adver-
sarial losses respectively [45]. In this approach, we exploit
the high framerate of acoustic measurements. Specifically,
we feed n RGB and n+1 audio frames into the network and
train it to predict the n+ 1-th RGB frame.

In the following Section 5, we describe our prototype test
vehicle and dataset. We then discuss and validate our method
on the aforementioned downstream tasks in Section 6.
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5. Dataset
To assess long-range acoustic beamforming for automo-

tive scene understanding, we have acquired a large dataset
of roadside noise along with ambient scene information cap-
tured by an RGB camera, lidar, global positioning system
(GPS) and an inertial measurement unit (IMU).

5.1. Sensors and Data Acquisition

In this section we present details on our dataset collec-
tion. To the best of our knowledge, we provide a far-field
multimodal acoustic beamforming dataset.

Sensor Configuration We equipped a prototype vehicle
with RGB cameras, lidar, IMU/GNSS, and a microphone
array for beamforming, as shown in Fig. 1. Specifically, the
prototype vehicle has the following sensor configuration.

- One Sorama CAM1K 1024 channel microphone array
operating at 46875 Hz sampling rate, 1 Hz - 20 kHz fre-
quency range, covering 640mm× 640mm measurement
area. Each microphone has 63 dB SNR (A-weighted, at 1
KHz), -26 dBFS sensitivity, and 116 dB acoustic overload
point. The microphone channels are arranged in a 32× 32
grid with a 20mm grid spacing. For far field beamforming,
the sensor’s large surface area of 409 600mm2 enables op-
erations on larger wavelengths and therefore measurement
of lower frequency sources, whereas the microphone grid
spacing dictates the upper frequency bounds. Our capture
system is configured to sense frequencies as low as 250
Hz and as high as 10kHz emanating from ambient sources.

- Logitech C920 RGB camera operating at 1280× 720 res-
olution, 25 Hz frame rate, 70.42°HFoV and 43.3°VFoV.

- Four Leopard Imaging LI-AR0231 GMSL serial cameras
with 1920 × 1200 resolution, 30 Hz frame rate, 1/2.7”
OnSemi AR0231 CMOS, rolling shutter and 60°HFoV

- Hesai Pandar 64 channel lidar operating at 20 Hz,
360°HFoV, 40°VFoV, covering a 200m range and
0.4°angular resolution.

- Novatel PwrPak7-ED1 GNSS 20 Hz dual antenna naviga-
tion system, GPS/GLONASS/Galileo/BeiDou.

The microphone array is mounted on a rail attached to the
front bumper, while the C920 camera is co-planar with, and
mounted 36 cm below the array center on the same frame.
This minimizes the projection errors of beamformed maps
on the image caused by mount vibrations. The four AR0231
cameras are mounted on the roof and face, along with the
lidar and the dual antennas for the GNSS navigation system.
The four AR0231 cameras are mounted on roof rails in a dual
stereo camera configuration of two different baselines. The
PwrPak7 receiver unit which houses the IMU and the GNSS
module serves as the car coordinate frame’s origin, and is

mounted in the trunk above the rear-axle mid-point. For a
description of calibration and synchronization of sensors,
please see Supplementary Material.

Acquisition Focused on urban scenes, the data acquisition
took place in an urban northern American city, as shown in
Fig. 3(a). The dataset spans 66 km of urban roads, amount-
ing to 14 TB of storage. 2.8 million images were collected at
30 Hz by the four AR0231 cameras. The C920 camera was
enabled for capturing only during the sound measurements
by the microphone array and totalled 42250 images at 25 Hz.
480240 64-channel lidar point clouds were recorded at 20
Hz. All measurements were time-stamped and synchronized
with GNSS as time reference.

The microphone array signals were recorded at 10 second
intervals at a sampling rate of 46.875 kHz. All acoustic
captures are highlighted in Fig. 3(a) in red. To the extent
possible, the vehicle speed was kept constant between 30
km/h to 40 km/h, to minimize the effect of high winds on
the sound readings. 79.2 million samples were collected
from each of the 1024 microphones, resulting in more than
81.1 billion sound pressure samples in the dataset. Please
see Supplementary Material for additional details on the
diversity and distribution of our dataset.

5.2. Ground Truth Annotations

Manual annotations were done for visual and sound
classes on data sampled at 5 Hz, for a total of 16324
keyframes, 11 sound classes and 6 vision classes. In ad-
dition to image class labels, each sampled image was also
annotated with sound labels in two domains: dominant (dis-
tinct and in foreground) and secondary (in the background).
All labels were created by highly experienced human anno-
tators using a custom toolset. Their work passed through
subsequent phases of verification and quality assurance to
ensure high-quality labels. All object instances were anno-
tated using tightly fitted 2D bounding boxes aligned to image
axis, and encoded as top left and bottom right coordinates
in the image frame. Please see Supplementary Material for
details on annotations.

6. Applications
We demonstrate that acoustic beamforming, when com-

bined with RGB data, can allow for multimodal scene under-
standing tasks and future frame prediction better than using
existing RGB-only or acoustic-only methods. Note that our
training and test video frames come from entirely different
video sequences. Instead of holding out frames from the
same sequences for splitting train and test sets, e.g., as in
Stereo-sound by Gan et al. [16], our evaluation is conducted
on completely unseen sequence frames. Multimodal inputs
to the network consisted of concatenated vision and audio
beamforming signals.
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Figure 5. Complementary nature of RGB and acoustic signals. Traffic sound provides complementary signals that improve detections
significantly on challenging scenarios where low-light, glare, and motion blur reduce the accuracy of RGB detections. Furthermore,
beamforming allows us to reliably detect multiple sound source in the scene.

Table 2. The proposed detection method that utilizes beamform
features in addition to RGB features outperform detections using
audio spectrograms and RGB only. All evaluations were performed
using YOLOv5 [39] with fine-tuning, see Supplementary Material
for details. BF denotes Beamforming and NAE denotes Neural
Aperture Expansion. AP50(D) and AP50(N) is the Average Preci-
sion scores for Day and Night scenes respectively.

Method Detector AP50(D) AP50(N) APAve

RGB + BF (NAE) Fine-tuned 81.2 64.3 29.5
RGB + BF Fine-tuned 80.7 61.8 28.3
RGB-only Fine-tuned 79.4 37.2 18.1
BF-only Fine-tuned 62.5 61.1 21.3
Stereo-sound [16] Fine-tuned 0 0 0

6.1. Object Detection on Sound and RGB Streams

We validate the proposed method for multimodal automo-
tive object detection using RGB and acoustic signals, that is

fTask = fdetection. We employ a YOLOv5 [39] detection net-
work for all experiments shown in Table 2. Fine-tuning the
detector on concatenated image and beamforming maps al-
lowed us to achieve high performance on challenging scenes,
where low-light, motion blur, and glare confound the RGB
detector. In contrast to small aperture measurements, beam-
forming signals via neural aperture expansion (NAE) showed
improved performance as shown in Table 2. Compared to
Gan et al. [16], we observe that the stereo-sound signals pro-
vided by spectrograms are insufficient for accurate detection
with vanilla detector networks. We attribute this to the spa-
tial cues provided by the beamforming signal maps. Please
see the Supplementary Material for additional qualitative
object detection results and comparisons.

We present object detection on unseen scenes using the
proposed multimodal approach in Fig. 1 and 5 and demon-
strate significantly improved detections compared to RGB-
only methods. To demonstrate the complementary nature
of the acoustic signals, we also present the measured beam-

988



Table 3. Frame Interpolation and Future Frame Prediction. We
evaluate the utility of beamform maps for predicting t = 1, 2, 3
RGB frames into the future. We observe that the audio maps
provide temporal context cues that enable more accurate future
predictions than RGB frames or direct extrapolation of optical flow
from previous frames.

PSNR (dB)
Future frame prediction t+ 1 t+ 2 t+ 3

Beamforming + RGB 28.56 27.47 22.94
RGB only 27.62 25.57 21.50
Optical Flow Extrapolation 23.18 21.45 18.90
Last RGB Frame 23.06 21.31 18.85

forming signal maps in the last row of Fig. 5. Note that
these video sequences were not used for training. Whereas
detection on RGB-only frames need to contend with variable
environmental factors such as glare and low-lighting, the
accompanying beamforming maps demonstrate consistent
complementary signals for automotive detection whether in
night or day, allowing for superior detection performance.

6.2. Multimodal Future Frame Prediction

We also demonstrate that beamforming maps provide
useful context cues for predicting future RGB frames from
RGB streams with low temporal resolution, fTask = ffuture.
Given the 46 kHz sampling rate of our acoustic capture sys-
tem, we are able to extrapolate previous RGB frames at the
same ultra-fast update rate using a temporal sliding window
of beamforming, despite the RGB camera operating only
at 30 Hz. Note that we do not access future beamforming
maps. For this task, we train a modified Pix2PixHD net-
work [45] to take temporal information of both RGB images
and beamforming maps, essentially implementing Eq. (10).
We show in Table 3 that incorporating audio cues improves
future frame prediction over RGB-only extrapolation. We
also compare against predictions using extrapolated optical
flow and we demonstrate significant improvement. In order
to predict several frames into the future, we cascade pre-
dictions by using previously predicted RGB frames and the
corresponding measured audio inputs, following Eq. (10).

6.3. Multimodal Edge Cases

Non-line-of-sight and Partial Occlusion Scenarios Next,
we further validate the complementary nature of acoustic
sensors to photon-based sensors for the detection of an on-
coming object that is not directly visible to an RGB or lidar
sensor, e.g., hidden behind an opaque wall. Fig. 6(a)(top)
shows an example of such a non-line-of-sight detection in
our test dataset where a car not visible in the RGB camera
view except for a thin roof region is detected robustly by the
acoustic sensor. Similarly, Fig. 6(a)(bottom) reports an edge
case of a low light scenario where a vehicle is partially oc-

Figure 6. (a) Scenes with oncoming vehicles (arrows) being fully
(top) or partially (bottom) occluded in the RGB frame but detected
by the acoustic sensor (center column). (b) Edge case with loud
vehicle exceeding the dynamic range, corrupting beamforming.

cluded by a pedestrian but is robustly detected with acoustic
features present. This validates that multi-modal acoustic
sensing can allow for new redundancies, where acoustic
sensors provide information that the other sensors cannot.
Acoustic Edge Cases In the following, we discuss acoustic
edge cases where pressure signals can saturate the micro-
phones. As discussed in Section 3, we suppress ambient
noise by thresholding against a noise floor. The employed
microphones have a high dynamic range of -26 dBFS +/-
1.5dB (94 dB SPL at 1kHz), which covers roadside sound
from quiet electrical vehicles to large passenger trucks. Sim-
ilarly, as the capture setup is mounted in front of the vehi-
cle, beamforming also removes the ego-vehicle components.
However, very large construction vehicles in close proximity
can exceed 100 dB SPL in close proximity and saturate the
microphones resulting in errors in detection and tracking,
as shown in Fig. 6(b), where sound exceeds the acoustic
overload point.

7. Conclusion
We introduce a method for learning from acoustic mi-

crophone arrays and interpret roadway traffic noise as a
complementary sensing modality for automotive imaging
and scene understanding. When combined with camera data,
we validate that this sensing modality provides complemen-
tary information that facilitates detection within challenging
environmental conditions. To train and evaluate the proposed
method, we capture an automotive acoustic dataset. We en-
vision researchers developing and evaluating multimodal
methods incorporating acoustic information from roadside
noise, in addition to existing sensory data. Motivated by the
complementary nature and multi-modal experiments in this
paper, areas for future work include extending our approach
to arbitrary and optimizable camera and microphone array
system geometries.
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Steered response power localization of acoustic passband
signals. IEEE Signal Processing Letters, 24:717–721, 2017.
1, 2

[12] Joseph H. DiBiase, H. Silverman, and M. Brandstein. Robust
localization in reverberant rooms. In Microphone Arrays,
2001. 1, 2

[13] Jacek P. Dmochowski and J. Benesty. Steered beamforming
approaches for acoustic source localization. 2010. 1, 2

[14] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and
James Diebel. Path planning for autonomous vehicles in
unknown semi-structured environments. The International
Journal of Robotics Research, 29(5):485–501, 2010. 3

[15] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In Advances in neural information processing systems,
pages 2366–2374, 2014. 3

[16] Chuang Gan, Hang Zhao, Peihao Chen, David Cox, and An-
tonio Torralba. Self-supervised moving vehicle tracking with
stereo sound. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019. 3, 6,
7

[17] Ruohan Gao and Kristen Grauman. 2.5 d visual sound. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 324–333, 2019. 3

[18] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 3

[19] Yoav Grauer. Active gated imaging in driver assistance sys-
tem. Advanced Optical Technologies, 3(2):151–160, 2014.
3

[20] Tobias Gruber, Frank Julca-Aguilar, Mario Bijelic, and Felix
Heide. Gated2depth: Real-time dense lidar from gated im-
ages. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1506–1516, 2019. 3

[21] Sandro Guidati. Advanced beamforming techniques in ve-
hicle acoustic. In Berlin Beamforming Conference (BeBeC),
2010. 2, 3

[22] John R Hershey and Javier R Movellan. Audio vision: Using
audio-visual synchrony to locate sounds. In Advances in
neural information processing systems, pages 813–819, 2000.
2

[23] Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz.
Recent progress in road and lane detection: a survey. Machine
vision and applications, 25(3):727–745, 2014. 3

[24] Hamid Izadinia, Imran Saleemi, and Mubarak Shah. Mul-
timodal analysis for identification and segmentation of
moving-sounding objects. IEEE Transactions on Multimedia,
15(2):378–390, 2012. 2

[25] Morten Bornø Jensen, Mark Philip Philipsen, Andreas
Møgelmose, Thomas Baltzer Moeslund, and Mohan Manub-
hai Trivedi. Vision for looking at traffic lights: Issues, survey,
and perspectives. IEEE Transactions on Intelligent Trans-
portation Systems, 17(7):1800–1815, 2016. 3

[26] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,
and Steven L Waslander. Joint 3d proposal generation and
object detection from view aggregation. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 1–8. IEEE, 2018. 3

[27] John J Leonard and Hugh F Durrant-Whyte. Directed sonar
sensing for mobile robot navigation, volume 175. Springer
Science & Business Media, 2012. 2

[28] Xiaofei Li, Yutong Ban, Laurent Girin, Xavier Alameda-
Pineda, and Radu Horaud. Online localization and tracking of
multiple moving speakers in reverberant environments. IEEE
Journal of Selected Topics in Signal Processing, 13(1):88–
103, 2019. 2

[29] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.
Learning depth from single monocular images using deep
convolutional neural fields. IEEE transactions on pattern
analysis and machine intelligence, 38(10):2024–2039, 2015.
3

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

990



Ssd: Single shot multibox detector. In European conference
on computer vision, pages 21–37. Springer, 2016. 3

[31] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious:
Real time end-to-end 3d detection, tracking and motion fore-
casting with a single convolutional net. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 3569–3577, 2018. 3
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