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Abstract

Graph-based methods have been extensively applied to
whole slide histopathology image (WSI) analysis due to the
advantage of modeling the spatial relationships among dif-
ferent entities. However, most of the existing methods fo-
cus on modeling WSIs with homogeneous graphs (e.g., with
homogeneous node type). Despite their successes, these
works are incapable of mining the complex structural re-
lations between biological entities (e.g., the diverse inter-
action among different cell types) in the WSI. We propose
a novel heterogeneous graph-based framework to lever-
age the inter-relationships among different types of nu-
clei for WSI analysis. Specifically, we formulate the WSI
as a heterogeneous graph with “nucleus-type” attribute to
each node and a semantic similarity attribute to each edge.
We then present a new heterogeneous-graph edge attribute
transformer (HEAT) to take advantage of the edge and
node heterogeneity during massage aggregating. Further,
we design a new pseudo-label-based semantic-consistent
pooling mechanism to obtain graph-level features, which
can mitigate the over-parameterization issue of conven-
tional cluster-based pooling. Additionally, observing the
limitations of existing association-based localization meth-
ods, we propose a causal-driven approach attributing the
contribution of each node to improve the interpretability
of our framework. Extensive experiments on three pub-
lic TCGA benchmark datasets demonstrate that our frame-
work outperforms the state-of-the-art methods with consid-
erable margins on various tasks. Our codes are available
at https://github.com/HKU-MedAI/WSI-HGNN.

1. Introduction
Histopathology slides provide rich information on diag-

nosis and treatment planning for many cancer diseases. The
*The first two authors contributed equally to this work.

Figure 1. Left: Input WSI. Middle: A WSI with selected patches
and associated node types. (Black - no label; cyan - neoplastic;
red - inflammatory; blue - connective; yellow - dead; green - non-
neoplastic epithelial). Right: Constructed heterogeneous graph
with different types of nodes and edge attributes (Illustrative).

recent technological advancements in tissue digital scanners
facilitate the development of whole slide histopathology im-
age (WSI) analysis. However, traversing through the WSI
with diverse magnifications is time-consuming and tedious
for pathologists due to the large-scale nature of the WSI
(e.g., its typical size is 60,000× 60,000 pixels). Hence deep
learning techniques play an important role as they introduce
accurate and automated analysis of WSIs, which can signif-
icantly relieve the workload of pathologists.

Since it is difficult to fit the complete WSI into the mem-
ory, most of the works adopt multiple instance learning
(MIL) to divide the WSI into instances and then aggre-
gate them for WSI analysis. However, these methods op-
erate on bags of instances that do not emphasize the inter-
relationships between these instances. Recently, the emer-
gence of graph neural networks (GNNs) has made large
progress in representing the spatial relationships between
instances. As a result, there are many attempts to represent
the WSIs as graphs of instances. Figure 1 presents an exam-
ple of a graph constructed from WSI. Unlike convolutional
neural networks (CNNs) that aggregate features based on
locality in the Euclidean space, GNNs focus on locality on
graph topology, which offers more flexibility in analyzing
the deep connections between features in the image data be-
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yond the spatial locality [1]. For example, GNNs are able
to learn relational information and distinguish cells based
on their apposition to tumor cells, or normal stroma (i.e.,
cells which are tumor-infiltrating lymphocytes or from an
adjacency inflammatory response), which are important for
prognosis [5, 27].

However, existing paradigms on graph-based WSI anal-
ysis focus on representing the WSI with a homogeneous
graph structure and then predicting the response via vanilla
GNNs with cluster-based pooling (i.e., based on similarities
of node embeddings). Despite their successes, these meth-
ods suffer from several drawbacks: (i) GNNs on homoge-
neous graphs focus on aggregating direct relational infor-
mation from neighboring nodes, where the complex rela-
tional information of the graphs is often neglected. (ii) For
different graphs, the clusters defined by similarities between
node embeddings have inconsistent meanings. This intro-
duces a large degree of freedom in parameters and leads to
over-parameterization issue [2]. Therefore, GNNs tend to
easily overfit due to a lack of identifiability [14].

In view of these limitations, we propose a novel frame-
work for WSI analysis, which leverages a heterogeneous
graph to learn the inter-relationships among different types
of nodes and edges. The heterogeneous graph introduces a
“nucleus-type” attribute to each node, which can serve as
an effective data structure for modeling the structural inter-
actions among the nuclei in the WSI. To tackle the aggrega-
tion process in the heterogeneous graph, we propose a novel
heterogeneous-graph edge attribute transformer (HEAT) ar-
chitecture which can take advantage of the edge and node
heterogeneity. Thus, the diverse structural relations among
different biological entities in the WSI can be incorporated
to guide the GNN for more accurate prediction. Further,
to obtain the graph-level representations for slide-level pre-
diction, we propose a semantic-consistent pooling mecha-
nism — pseudo-label (PL) pooling, which pools node fea-
tures to graph level based on clusters with a fixed definition
(i.e., nucleus type). The proposed PL pooling can regularize
the graph pooling process by distilling the context knowl-
edge (i.e., pathological knowledge) from a pretrained model
to alleviate the over-parameterization issue [2]. Addition-
ally, we propose a Granger causality [13] based localization
method to identify the potential regions of interest with clin-
ical relevance to provide more insights to pathologists and
promote the clinical usability of our approach.

We extensively evaluate our method on three TCGA pub-
lic benchmark datasets, including colon adenocarcinoma
cancer (COAD) and breast invasive carcinoma (BRCA)
datasets from the TCGA project [35] and the Camelyon
16 dataset [3], and compare to various latest state-of-the-art
(SOTA) methods. Our method outperforms the competitors
on cancer staging, cancer classification, cancer typing, and
localization tasks.

2. Related Works

Multiple Instance Learning on WSIs. Existing WSI anal-
ysis approaches generally adopt MIL [5,7,12,26,30,33,41],
which first divide the WSI into fixed-size patches and
then compress the information of these patches into low-
dimensional vectors. Conventional methods aggregate bags
of instances to learn WSI-level features for final predictions.
Tellez et al. [30] compress the WSI-level image into em-
bedding vectors and use a standard CNN to perform patch-
level and WSI-level cancer classification. These CNN-
based methods analyze local areas in the Euclidean space on
fixed connectivity (i.e., fixed-size kernels), limiting the per-
formance beyond the spatial locality. Graph-based methods
[5,15,41] have recently been proposed, which model the in-
teractions between instances via graphs. Their capability of
modeling instances based on graph topology provides more
flexibility to analyze complex structures of WSIs. Chen
et al. [5] propose patch-GCN, a method of modeling WSI
with homogeneous graphs, and regress survival data with
a graph convolutional neural network (GCN) [36]. Zheng
et al. [41] propose a graph-based MIL method using graph
transformer networks [40]. In spite of their power, most of
these WSI methods use homogeneous graphs, which limits
the information mined from WSIs. A recent method [15] is
proposed to model WSIs with heterogeneous graphs, where
the heterogeneity in each patch is introduced by different
resolution levels. However, it only considers the resolution
level heterogeneity of patches, with insufficient ability to
model the complex contextual interaction between patches
in the same resolution level.

Graph Neural Networks. Although the SOTA GNNs
have shown great successes in many problem domains
[16, 19, 20], they are mostly focused on homogeneous
graphs [32, 36, 37, 40, 42]. These architectures extract the
locality information on the graph topology and learn the
graph representations by performing aggregation on neigh-
boring nodes. However, the potential heterogeneity in
nodes and edges is not incorporated by these homogeneous
GNN algorithms, and therefore their capability in mining
the structural information is limited. Several works attempt
to address the heterogeneity in their architectural designs
[16, 28, 34] and assume that the relation type is finite and
discrete. However, when modeling images with graphs, the
heterogeneity in relations is typically continuous (e.g., the
similarity between nodes) or high-dimensional. Although
there are several attempts [5, 10] to extend SOTA GNNs
[32, 36] to incorporate edge attributes, their works are lim-
ited to homogeneous graphs.

Graph Pooling. Graph pooling aims to aggregate node-
level features to obtain graph-level features. Conventional
methods [36] directly take the average of node-level fea-
tures to extract graph-level features, which tends to over-
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Figure 2. The paradigm of our proposed heterogeneous graph-based WSI analysis framework, which includes heterogeneous graph con-
struction, heterogeneous-graph edge attribute transformer (HEAT) for structural information aggregation, pseudo-label-based (PL) graph
pooling for slide-level prediction and casual-driven localization.

smooth the signals of the nodes and cannot generate rep-
resentative graph-level features. Recently, there is exten-
sive development of graph pooling algorithms based on the
clusters of the embeddings [6, 15, 25]. However, the clus-
ters constructed based on similarity are inconsistent across
graphs. This leads to a large degree of freedom in parame-
ters which easily causes overfitting. A semantic-consistent
pooling method is therefore needed.

Explaining GNNs. Despite the success of graph neural net-
works, their poor interpretability of the parameters makes
them notoriously recognized as “blackboxes”. With the ad-
vances in network attribution methods [29], extensive at-
tempts have been made to open such “blackboxes” [24,39].
Generating network explanation is an important qualitative
step in the WSI analysis since it can highlight the abnor-
mal regions for further investigation. Conventional explain-
ers try to find the associations between the parameters in
deep neural networks (or the nodes in GNNs) and the pre-
dictions. GNNExplainer [39] is the SOTA method explain-
ing the contributions of node features to the GNN pre-
dictions. It trains feature masks on each node and edge
feature to minimize the prediction loss of a trained GNN.
PGExplainer [24] shares the same objective as GNNEx-
plainer and trains a generative model to generate explana-
tions. Recently, there has been emerging attention in gener-
ating causal explanations for GNNs [23,29], and most of the
methods focus on the Granger causality as the explanation

objective. Gem [23] trains explanation generators from the
causal perspective. Causal explainers attempt to provide ex-
planations of features that are causal rather than associated
with the neural network prediction.

3. Preliminaries

Heterogeneous Graph: A heterogeneous graph is defined
by a graph G = (V, E ,A,R), where V, E ,A represent the set
of entities (vertices or nodes), relations (edges), and entity
types, respectively. And R represents the space of edge
attributes. For v ∈ V , v is mapped to an entity type by a
function τ(v) ∈ A. An edge e = (s, r, t) ∈ E links the
source node s and the target node t, and r is mapped to an
edge attribute by a function ϕ(e) = r ∈ R. Every node v
has a d-dimensional node feature x ∈ X , where X is the
embedding space of node features.

Granger Causality [13, 23]: Let I be all the available in-
formation and I−X be the information excluding variable
X . If we can make a better prediction of Y using I than
using I−X , we conclude that X Granger-causes Y .

WSI Classification: Given a WSI X and a heterogeneous
graph G constructed from X , we wish to predict the label
y with a GNN model M. We also aim to assign an im-
portance score f(v) to each node v ∈ V in G as the causal
contribution of each patch to the prediction for localization.
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Figure 3. Examples of introduced meta-relations in a heteroge-
neous graph constructed from a WSI.

4. Methodology
4.1. Heterogeneous Graph Construction

We introduce our methodology of modeling the WSI
with a heterogeneous graph. Figure 2 presents the overall
workflow of our proposed framework. We adopt the com-
monly used OTSU thresholding algorithm [5] and sliding
window strategy to crop each WSI into non-overlapping
patches. Uninformative patches with backgrounds are re-
moved. These patches define the nodes of the graph con-
structed. To define the corresponding node type, we use
HoverNet [12] pretrained on the PanNuke dataset [8] to
classify the patches into predefined types. HoverNet de-
tects nuclei in each patch and assigns types to these nuclei.
By majority votes, we take the most frequently predicted
nucleus type to be the type of the patch. Figure 1 presents
an example of a WSI with patches selected from the OTSU
and node types generated by HoverNet [12]. We use a pre-
trained feature encoder (i.e., KimiaNet [26]) to obtain the
embeddings of each patch, which serves as the features of
each node in the heterogeneous graph.

Based on the nodes and node features, we define the
edges and edge attributes between the patches. For each
node v ∈ V , we use the k-nearest neighbor algorithm to
find k nodes that have the most similar features to that node,
and connect edges between node v and these neighboring
nodes. For each edge, we compute the Pearson R corre-
lation between the head and tail node features as the edge
attributes. The edge attributes introduce heterogeneity in
edges and highlight meta-relations in the WSI. We adopt
data augmentations (e.g., randomly removing some edges)
during training to alleviate the potential noises introduced
by the edge attributes. As a result, we obtain a hetero-
geneous graph G with heterogeneity introduced by differ-
ent node types and edge attributes. As shown in Figure 3,
a heterogeneous graph outlines the meta-relations between
the nuclei in a WSI. Mining these meta-relations can reveal
the structural interactions between the cells, leading to im-
proved performances on different tasks.

4.2. Heterogeneous Edge Attribute Transformer

The conventional graph attention mechanism is inca-
pable of tackling the heterogeneity of the graph. Inspired
by the transformer architecture [31] and its extension on
graphs [16, 17, 40], we propose a new graph aggrega-
tion layer, named the Heterogeneous Edge Attribute Trans-
former (HEAT) layer, to aggregate the structural relations
between biological entities in the built heterogeneous graph.
We explicitly incorporate the node types and continuous
edge features into the aggregation process, which guides
the learning of edge similarities. Our proposed architec-
ture also generalizes the existing architecture to incorporate
continuous or high-dimensional edge attributes and simpli-
fies the use of linear layers to avoid overfitting led by model
over-parameterizations.

For each edge e = (s, r, t) and each attention head i, we
project the target node t into a query vector with a linear
projection layer W i

τ(s), and the source node into a key vec-
tor with W i

τ(t). We also compute the value vector hi
value of

each source node by the same projection layer W i
τ(s)

hi
key = W i

τ(s)H
(l−1)
s , hi

query = W i
τ(t)H

(l−1)
t ,

hi
value = W i

τ(s)H
(l−1)
s ,

where H(l−1)
v is the input node feature for node v ∈ V from

the (l−1)-th layer. These projection layers can project node
features of various node types into a node-type-invariant
embedding space. The edge attributes from the (l − 1)-th
layer h(l−1)

e are also projected to h′
e = Wedgeh

(l−1)
e by a

linear projection layer Wedge. After projecting the node em-
beddings, we compute the dot-product similarity between
the query and key vectors and further multiply the linear
transformed edge attribute to the similarity score to incorpo-
rate the edge attributes in G. We then concatenate the scores
from each head and take the softmax of the score (i.e., over-
weights of incoming edges for all neighboring nodes) to ob-
tain the final attention scores to the value vector hi

value,

Attention(e) = softmax
∀s∈N(t)

(
∥

i∈[1,h]

ATT(e, i)
)
,

ATT(e, i) =
(
hi

keyh
′
eh

i
query

)
/
√
d,

where N(t) is the set of all the source nodes pointing to
target node t, d is the dimension of node embeddings,
ATT(e, i) represents the i-head attention score of edge e,
∥i∈[1,h] is the concatenation operator concatenating the at-
tention scores from all heads and Attention(e) represents
the final attention score of the edges aggregating all the
heads. We multiply the attention score obtained by the value
vector to obtain the output features. By doing so, the out-
put features contain both the node-type and edge-attribute-
specific information. Hence the HEAT layer can capture the
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Algorithm 1 The HEAT algorithm.
Input:
Heterogeneous graph Gl−1 with node features
{H(l−1)

i ,∀i ∈ V} and edge attribute {h(l−1)
e ,∀e ∈ E};

Node-type specific projection layers {W i
a,∀a ∈ A}

Edge attribute transformation layer Wedge.
Output: The updated graph Gl with node features
{H(l)

i ,∀i ∈ V}, and the edge features {h(l)
e ,∀e ∈ E}

1: Initialize projection layers for each node type
2: for e = (s, t) ∈ E do
3: hi

key = W i
τ(s)H

(l−1)
s ▷ Project the source node

4: hi
value = W i

τ(s)H
(l−1)
s ▷ Compute value vector

5: hi
query = W i

τ(t)H
(l−1)
t ▷ Project the target node

6: h′
e ←Wedge · h(l−1)

e ▷ Project the edge attribute

7: ATT(e, i) =
(
hi

keyh
′
eh

i
query

)
/
√
d

8: Attention(e) = softmax
∀s∈N(t)

(∥i∈[1,h]ATT(e, i))

9: h
(l)
e ← h′

e ▷ Compute latent edge features
10: end for
11: for t ∈ V do
12: H

(l)
t = ⊕∀s∈N(t)(∥i∈[1,h]h

i
value · Attention(e))

13: end for
14: return Gl

structural information in G by transforming the node fea-
tures from different node types. It can also model different
semantic relations since edge attributes are included in the
aggregation.

Finally, we perform target-specific aggregation to update
the feature of each target node by averaging its neighbor-
ing node features. We concatenate all h attention heads to
obtain the attention vector for each pair of source and tar-
get nodes. For each target node t, we conduct a softmax
operation on all the attention vectors from its neighboring
nodes and then aggregate the information of all neighbor-
ing source nodes of t together. The updated node features
H

(l)
t for Gl can be represented as

H
(l)
t =

⊕
∀s∈N(t)

(
∥

i∈[1,h]

hi
value · Attention(e)

)
,

where ⊕ is an aggregation operator (e.g., mean aggrega-
tion). The updated graph Gl is returned as the output of the
l-th HEAT layer. Algorithm 1 demonstrates the overall pro-
cess of our proposed HEAT layer.

4.3. Pseudo-label Graph Pooling

We introduce a novel pooling method — pseudo-label
(PL) pooling, to aggregate information with respect to the
pseudo-labels (i.e., node types) predicted from a pretrained
teacher network (e.g., HoverNet [12]). Unlike conventional

Algorithm 2 The PL-Pool Algorithm
Input: Heterogeneous graph G with node features
{Hi,∀i ∈ V} and node type set A.
Output: The pooled graph-level feature S ∈ R|A|×d.

1: Initialize readout layers for each node type a ∈ A.
2: Initialize aggregate feature matrix S.
3: for a ∈ A do
4: Xa ← feature matrix of nodes of type a
5: ha ← readouta(Xa) ▷ Pool feature with readout

layer
6: Sa = ha ▷ Assign pooled feature to the a-th row

of S
7: end for
8: return S

methods of pooling features based on clusters, we define
clusters using a pretrained node classifier. Pooling from
pseudo-labels ensures the semantic consistency in cluster
definitions and distills the context knowledge (e.g., nuclei
features) from the teacher network. Specifically, for each
node type a, we pool all node features belonging to type
a into a single vector ha with a readout layer. The pooled
features from each node type are then aggregated into a fea-
ture matrix S ∈ R|A|×d. The graph level feature is then
determined by another readout layer (e.g., mean readout).

Algorithm 2 presents the workflow of the proposed PL
Pooling. By pooling with the pseudo-labels, we are able to
cluster patch representation according to nuclei types, such
that the graph-level features are enhanced with the prior
knowledge on nuclei type distributions. The detailed mech-
anism of the PL Pool is presented in the supplementary ma-
terials. We also perform an ablation study in Table 4 and
show that PL Pooling outperforms existing pooling meth-
ods in cancer classification tasks.

4.4. Prior Knowledge Regularization

Here we discuss the motivation for introducing prior
knowledge in our proposed HEAT and PL pooling algo-
rithms. In the context of WSI analysis when the data
are scarce, while data distributions are sparse and high-
dimensional. The curse of high dimensionality makes the
sampling distributions difficult to approximate the prop-
erties of true distributions of the WSIs. This leads to
a significant gap between training and testing distribu-
tions. Hence regularization techniques are needed to reduce
the model variance and mitigate performance deterioration
when transferring the model from training to testing envi-
ronments. Since WSI data contain enriched prior knowl-
edge (e.g., the interaction among different cell types), inte-
grating such knowledge into the framework regularizes the
model, such that the testing performance improves. There-
fore, we design the above two designs by integrating prior
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Cancer Staging (Four Stages) Cancer Classification
Model AUC Accuracy Macro-F1 AUC Accuracy Macro-F1
ABMIL [18] 53.8 (3.7) 19.2 (7.8) 35.8 (4.4) 97.7 (2.3) 98.3 (0.9) 95.8 (2.2)
DSMIL [21] 59.3 (1.4) 35.7 (5.7) 37.9 (2.8) 99.7 (0.2) 98.6 (0.5) 96.9 (0.9)
ReMix [38] 58.3 (1.5) 33.9 (7.8) 24.8 (7.5) 94.3 (3.4) 96.0 (4.6) 92.8 (5.9)
PatchGCN [5] 62.5 (4.9) 38.2 (3.1) 38.5 (5.7) 91.1 (5.3) 97.1 (2.0) 98.8 (1.0)
GTNMIL [41] 54.2 (2.6) 29.3 (1.4) 24.3 (3.9) 97.3 (2.6) 98.1 (1.3) 95.9 (2.4)

T
C

G
A

–C
O

A
D

H2-MIL [15] 58.6 (2.7) 38.5 (5.4) 33.0 (5.0) 99.7 (0.4) 99.2 (0.5) 97.4 (1.7)
HEAT (Ours) 63.4 (2.5) 40.0 (2.1) 41.3 (2.7) 99.9 (0.2) 99.9 (0.3) 99.2 (0.4)
ABMIL [18] 54.7 (4.6) 19.0 (10.0) 23.9 (3.2) 97.3 (1.7) 98.3 (1.1) 97.3 (1.6)
DSMIL [21] 51.4 (4.7) 18.3 (14.9) 23.2 (2.3) 98.7 (0.5) 95.6 (1.4) 93.3 (2.0)
ReMix [38] 58.8 (2.2) 35.6 (16.2) 27.6 (5.8) 96.1 (0.7) 95.8 (2.6) 93.0 (3.4)
PatchGCN [5] 50.3 (0.2) 41.6 (0.5) 25.1 (0.3) 96.2 (1.7) 98.2 (0.8) 98.4 (0.8)
GTNMIL [41] 53.0 (3.7) 41.3 (4.4) 25.1 (2.3) 94.7 (1.0) 94.5 (0.2) 93.7 (1.7)

T
C

G
A

–B
R

C
A

H2-MIL [15] 52.1 (7.2) 53.7 (2.6) 21.2 (2.5) 97.9 (2.7) 98.0 (1.5) 97.6 (2.2)
HEAT (ours) 61.9 (3.8) 55.8 (6.4) 27.7 (16.3) 98.8 (0.7) 98.3 (0.5) 99.5 (0.7)

Table 1. Cancer staging and classification results [%] of various methods on TCGA–COAD and TCGA–BRCA datasets.

knowledge into the feature aggregation procedure. Specifi-
cally, for the HEAT layer, we integrate the prior knowledge
of node type and node attributes when extracting node-level
features. For PL Pooling, we pool node-level features us-
ing prior definitions on node clusters. Moreover, we per-
form data augmentations (e.g., random pruning on edges
and nodes) to regularize the learning from training distribu-
tions. Besides that, other regularization such as imposing a
Gaussian prior on the model weights (i.e., using a Bayesian
neural network) would also achieve the goal.

4.5. Causal-driven Localization

We make use of the Granger causality to outline causal
regions in the WSI with the causal graph explainer [23].
Given a trained GNN modelM, the causal contribution of
each node v is given by

∆δ,v = L(y, ỹG)− L(y, ỹG\{v}), (1)

where y is the true label and ỹG = M(G) and ỹG\{v} =
M(G\{v}) are the predicted labels from M with input
graphs G and G\{v}, respectively. The causality heatmap
of the patches can then be visualized with the causal con-
tribution computed for each patch (i.e., node). Addressing
causality in instance interpretation can adjust for observa-
tional and selection biases, which would improve the ex-
planation accuracy. Moreover, the causal property of the
explainer could facilitate pathologists to find out potential
biomarkers for diagnosis and prognosis by highlighting the
patches with clinical relevance in the WSI.

5. Experiments
5.1. Datasets

We use WSIs from the public TCGA–COAD (cancer
staging task: 1304 cases, classification task: 1434 cases),

Model AUC Accuracy Macro-F1
ABMIL [18] 79.5 (7.5) 80.3 (8.4) 81.3 (7.4)
DSMIL [21] 92.5 (1.7) 87.3 (2.0) 86.3 (2.0)
ReMix [38] 92.5 (7.2) 90.0 (8.1) 90.3 (7.7)
PatchGCN [5] 88.6 (3.5) 92.1 (2.3) 92.3 (2.4)
GTNMIL [40] 89.7 (4.7) 81.2 (4.8) 89.2 (4.9)
H2-MIL [15] 92.1 (3.9) 88.2 (5.8) 88.0 (5.8)
HEAT (ours) 92.8 (2.5) 92.7 (2.2) 93.3 (1.9)

Table 2. Cancer typing results [%] of our method compared to
various methods on the TCGA–ESCA dataset.

TCGA–BRCA (cancer staging task: 1328 cases, classifica-
tion task: 1712 cases), and TCGA–ESCA (typing task: 213
cases) from the TCGA project [35] and Camelyon 16 [3]
as the benchmark datasets. On average, around 300 patches
are sampled from each WSI in the TCGA datasets (around
5,000 for Camelyon 16), where each patch corresponds to
a node in the final heterogeneous graph. For the TCGA–
COAD and the TCGA–BRCA datasets, we conduct two
tasks for the benchmark methods — cancer staging and can-
cer classification. For the cancer staging task, all the cases
are divided into the “Stage I”, “Stage II”, “Stage III”, and
“Stage IV” classes. For the cancer classification task, all the
cases are divided into the “Normal” and “Tumor” classes.
For the cancer typing task, we use TCGA–ESCA dataset
where all the cases are divided into two classes i.e., “Type I:
adenocarcinoma” and “Type II: squamous cell carcinoma”.
We also evaluate the localization ability of our framework
on the Camelyon 16 dataset, as this dataset provides the tu-
mor mask annotations. A detailed summary of datasets is
provided in supplementary materials.

5.2. Implementation Details

The proposed framework is implemented in Python with
the Pytorch library on a server equipped with four NVIDIA
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GNN Architecture AUC Accuracy Macro-F1
GCN [36] 90.8 90.9 90.0
GAT [32] 85.8 86.4 88.9
GIN [37] 91.6 90.9 83.3
HetRGCN [28] 82.5 83.3 88.9
HGT [16] 87.8 87.5 83.3
HEAT (ours) 92.8 92.7 93.2

Table 3. Cancer typing results [%] of our method compared to
various GNN architectures on the TCGA–ESCA dataset.

Pooling Method AUC Accuracy Macro-F1
Sum pooling 95.5 99.3 99.2
Max pooling 95.1 98.6 99.2
Mean pooling 97.7 95.8 99.8
Global attention pooling [22] 94.7 97.9 99.2
IH-Pool [15] 99.3 97.2 88.1
ASAP [25] 99.2 98.6 95.1
PL-Pool (ours) 99.6 99.3 99.8

Table 4. Cancer classification results [%] on TCGA–COAD of
our pooling method to various comparable pooling methods using
GCN and KimiaNet feature encoder.

TESLA V100 GPUs. We use openslide [11] as the tool to
process the WSIs. The dropout ratio of each dropout layer
is selected as 0.2. All models are trained with 150 epochs
with early stopping. The batch size is selected as 2. We
adopt the cross-entropy loss to train the network for classi-
fication tasks. We use the Adam optimizer to optimize the
model with a learning rate of 5× 10−5 and a weight decay
of 1 × 10−5. We perform data augmentations on the train-
ing graphs by randomly dropping the edges and nodes, and
adding Gaussian noises to the node and edge features.

5.3. Experiment Settings and Evaluation Metrics

We compare our method with an array of SOTA meth-
ods, including MIL or graph-based methods. We use five-
fold cross-validation to evaluate the overall performance of
our framework and other methods. We used the pretrained
KimiaNet as the feature extraction for all methods for a fair
comparison. The details of compared methods are listed be-
low.

• ABMIL [18]: a MIL framework aggregating bag-level
instance information by the attention mechanism.

• DSMIL [21]: a dual-stream multiple instance learning
method using max pooling and attention to aggregate
the signals from the individual patches.

• ReMix [38]: a general and efficient MIL’s based
framework for WSI analysis that takes the advantage
of data augmentation and reduces method to produce
rich features.

• PatchGCN [5]: a hierarchical graph-based model on
survival data with patient-level and WSI-level aggre-
gations. We adapt this method as a GCN model with
global attention pooling [22].

Balanced dataset AUC Accuracy Macro-F1
TCGA–COAD 99.1 (1.8) 99.1 (1.8) 99.2 (1.7)
TGCA–BRCA 98.7 (2.5) 98.7 (2.5) 98.7 (2.6)

Table 5. Cancer classification results [%] of our method on
TCGA–COAD and TCGA–BRCA balanced datasets.

• GTNMIL [41]: a graph-based MIL method based on
the graph transformer network [40].

• H2-MIL [15]: a tree-graph-based multiple instance
learning method that utilizes different magnification
levels to represent hierarchical features.

For the cancer staging, classification and typing tasks,
we use AUC, classification accuracy, and macro F-1 score
as the evaluation metrics. Percentage [%] values are re-
ported for each of the metrics. Standard errors are reported
in brackets. For all metrics, a higher value indicates a better
performance. Detailed definitions of the evaluation metrics
can be found in the supplementary materials.

5.4. Comparison with Other Methods

Quantitative Results. Table 1 shows the cancer staging and
classification results on the TCGA–COAD and the TCGA–
BRCA datasets, and Table 2 presents cancer typing results
on the TCGA–ESCA dataset. Compared to graph-based
WSI analysis methods [5, 15, 41], our method demonstrates
improved performance, which indicates our graph model-
ing method potentially better represents the interaction of
patches in a WSI than existing graph-based methods. We
also observe that aggregation on a graph of instances is
more effective than aggregation on bags of instances in the
staging tasks, which implies graph-based methods are more
capable of capturing the global information of WSI for stag-
ing tasks than conventional MIL methods [18, 21, 38]. We
further compare HEAT on the BRCA subtyping task with a
recent SOTA method on WSI — hierarchical image pyra-
mid transformer (HIPT) [4]. Our method achieves an AUC
of 89.69 (SD: 3.63), which outperforms the AUC of 87.4
(SD: 6.0) by HIPT.

Additionally, we perform a t-test on the AUCs to demon-
strate the statistical significance of our improvements over
the SOTA methods, for which the results are presented in
Table 6. We observe that the improvements are statistically
significant over most of the baseline methods under the 0.05
significance level.

Methods COAD-S COAD-C BRCA-S BRCA-C
ABMIL 1.91e-16 0 5.75e-5 6.08e-6
DSMIL 0.0005 0.0333 3.26e-9 0.3790
ReMix 1.36e-5 0 0.0759 1.2e-16
PatchGCN 0.2899 0 5.14e-11 2.74e-15
GTNMIL 2.7e-15 0 5.58e-7 2.94e-35
H2-MIL 4.5e-5 0.0343 3.94e-8 0.0082

Table 6. P-values of two-sample t-tests on AUCs between our
method and baselines (S: cancer staging; C: cancer classification).
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Qualitative Results. We compute the causal contribution
of each patch using Equ. (1). We visualize the patch im-
age associated with that node to outline the causal regions
related to the predictions. We also compare our causal ex-
planation method to numerous baseline graph interpretation
methods based on associations [39]. Figures in the supple-
mentary materials present the explanation results with dif-
ferent graph explainers on the Camelyon 16 dataset. It is
observed that using an association-based explainer provides
a smooth heatmap where many regions are highlighted as
important. A such heatmap is less accurate in localizing the
tumor regions and pathologists still need to traverse a large
number of abnormal regions suggested by the explainer to
identify tumor regions. On the contrary, we observe that us-
ing a causal explainer can outline the tumor regions in the
WSIs more accurately, with the heatmap more concentrated
on the ground-truth tumor regions compared to association-
based explainers (e.g., GNNExplainer [39]).

5.5. Analysis of Our Framework

Effectiveness of Heterogeneous Graph Construction.
We compare our method with other SOTA GNNs [16, 28,
32,36,37] to evaluate the effectiveness of our heterogeneous
graph construction. For heterogeneous graph transformer
(HGT) [16] and HetRGCN [28], we define the discrete edge
types — each relation either has the “positive” type repre-
senting positive correlations between the nodes of the edge,
or the “negative” type representing negative correlations.
Table 3 presents cancer typing results of our method com-
pared to various SOTA GNN aggregation methods on the
TCGA–ESCA dataset. Not only our method outperforms
SOTA homogeneous GNN architectures [32, 36, 37], but it
is also superior to some recently heterogeneous GNN ar-
chitectures [16, 28]. This implies the advantage of our pro-
posed architecture for graph-based WSI analysis.

Analysis of Different Pooling Strategies. We compare
our proposed pooling strategy to a variety of comparable
pooling methods, including basic pooling methods, such
as sum/max/mean poolings and advanced pooling strate-
gies [15, 25]. Table 4 presents the comparison results of
cancer classification on TCGA–COAD dataset. We fix the
model architecture to be GCN [36] and the feature encoder
as KimiaNet [26]. It is observed that our pooling strategy
outperforms the competitors, which validates the advantage
of using semantic-consistently defined clusters in pooling.

Performance on Different Class Distributions. We ob-
serve the WSI datasets for cancer classification is imbal-
anced (i.e., approximately ten cancer WSIs to one nor-
mal WSI). We thus compose a balanced dataset (i.e., nor-
mal:cancer = 1:1) with the undersampling strategy to study
how the difference in class distributions affect the perfor-
mance of our model. Table 5 presents the comparison. It

is observed that our method achieves similar performance
with the unbalanced setting (See Table 1).

Generalizability. The pretrained features are a key compo-
nent of our proposed framework. As the pretrained embed-
ding models are from a diverse WSI context, they can ex-
tract good features from most of the WSI datasets. Because
the PanNuke dataset [9] (used to pretrain the HoverNet node
type classifier) contains WSIs of most of the common can-
cer types, this leads to a broad generalization of HoverNet.
Furthermore, one may adopt contrastive learning to fine-
tune the pretrained models to improve their generalizability
to new datasets in potential deployment scenarios.

Accuracy of HoverNet. The performance of the Hover-
Net classifier would influence the sensitivity of our frame-
work. Since the PanNuke dataset contains WSIs of most of
the common cancer types and cohorts of the TCGA dataset
(e.g., COAD), there are domain overlaps between them.
Hence the HoverNet trained on the PanNuke dataset can be
transferred to the TCGA dataset for patch types classifica-
tion with good performance. Furthermore, we perform can-
cer classification on COAD using node types generated by
unsupervised K-means clustering. The performance (AUC:
98.5) is lower than that using HoverNet predicted node
types (AUC: 99.9). This demonstrates that incorporating
the pretrained HoverNet outperforms unsupervised methods
and improves WSI analysis.

6. Conclusion
We present a novel heterogeneous graph-based frame-

work for WSI analysis. By modeling WSI as a heteroge-
neous graph with various node types and edge attributes,
our method not only leverages the locality information, but
also mines the complex relational information of WSI. We
further design a novel heterogeneous edge attribute trans-
former architecture to aggregate the structural information
in the graph and a semantic consistent pooling method
to address the potential over-parameterization problems in
conventional pooling. We provide a causal explanation
mechanism to highlight the causal contributions of the in-
stances to improve the clinical usability of our work. Exten-
sive experiments on public datasets validate the effective-
ness of our proposed framework and our framework could
be adapted to other graph-based computer vision tasks, such
as 3D point cloud analysis and anomaly detection.
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