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Figure 1. This paper presents a continuous landmark detector that is controlled intuitively with 3D queries. Once trained, a single model
can be evaluated with the standard 68 landmarks layout (a), any arbitrarily dense layout (b), and can even be evaluated off-surface to get
bone landmarks (c) and (d), which can be used to fit plausible skull and jaw meshes (e) to images. The same network can also be used to
infer extremely dense landmarks, enabling applications such as face segmentation (f) or monocular performance capture (g).

Abstract
Neural networks for facial landmark detection are noto-

riously limited to a fixed set of landmarks in a dedicated
layout, which must be specified at training time. Dedi-
cated datasets must also be hand-annotated with the cor-
responding landmark configuration for training. We pro-
pose the first facial landmark detection network that can
predict continuous, unlimited landmarks, allowing to spec-
ify the number and location of the desired landmarks at in-
ference time. Our method combines a simple image feature
extractor with a queried landmark predictor, and the user
can specify any continuous query points relative to a 3D
template face mesh as input. As it is not tied to a fixed set of
landmarks, our method is able to leverage all pre-existing
2D landmark datasets for training, even if they have incon-
sistent landmark configurations. As a result, we present a
very powerful facial landmark detector that can be trained
once, and can be used readily for numerous applications
like 3D face reconstruction, arbitrary face segmentation,
and is even compatible with helmeted mounted cameras,
and therefore could vastly simplify face tracking workflows
for media and entertainment applications.

1. Introduction
Facial landmark detection has become extremely popular

in computer vision and graphics applications. In particular,
many applications in visual effects such as 3D facial recon-
struction, tracking, face swapping and re-enactment rely on
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accurate facial landmark detection as one of the first steps in
the process. It is therefore a crucial task and has been stud-
ied extensively for the past several decades, and the field has
seen immense progress thanks to advances in deep learning.

State-of-the-art solutions for facial landmark detection
are based on neural networks, and they operate by train-
ing the network to predict a fixed set of landmarks, lever-
aging large datasets of hand-annotated images. Most stan-
dard algorithms predict a set of 68 sparse landmarks spread
across the face (Fig. 1 (a)), in a very specific and prede-
fined layout [33]. However, recent work has shown that
predicting denser landmarks on the face is better for tasks
like face reconstruction [43]. This brings up the question of
how many landmarks one has to predict for optimal perfor-
mance (depending on the application), and what is the pre-
ferred layout of these landmarks? One of the biggest issues
with traditional facial landmark detectors is that you need
to decide on the number and layout of the landmarks ahead
of time, then obtain annotated data with the corresponding
landmarks and ultimately train the detector. Later, at run-
time, the landmark layout cannot be changed.

An ideal landmark detector would not be bound to a spe-
cific fixed landmark layout. Such a detector could be trained
once and then used in several applications with different
landmark configurations. For example, in face image seg-
mentation you may want to track landmarks corresponding
to segment boundaries, but then in 3D reconstruction you
might want to track landmarks corresponding to the ver-
tices of your 3D face mesh. For individuals with specific
face details like freckles or moles, you might want a de-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16858



tector that can track these user-defined points for the appli-
cation of digital video touchup. For each application, with
today’s detectors you would need to train separate landmark
detection networks, one for each landmark layout.

In this work we aim to reformulate how landmarks have
conventionally been predicted with neural networks. We
propose novel architectures for continuous, unlimited land-
mark detection at runtime. In other words, our method al-
lows for an arbitrary number of landmarks to be predicted
in any layout at inference time without retraining. As such,
we propose the ideal landmark detector for multiple appli-
cation use. The design of our method is simple, combining
an image feature extractor with a queried landmark predic-
tor; the latter takes the image descriptor together with a 3D
query point relative to a template 3D face surface and pre-
dicts the corresponding 2D landmark location in the image.
Since the 3D query points can be arbitrary, the result is con-
tinuous and unlimited landmark detection (Fig. 1 (b)). As
our approach is modular, we evaluate multiple architecture
options for both the feature extractor and the queried pre-
dictor, allowing different designs that tradeoff accuracy and
runtime. Furthermore, we will show that the query points
do not even need to lie on the surface of the template face,
allowing to predict 2D landmarks for volumetric features on
the skull, jaw, teeth or eyes (Fig. 1 (c) and (d)).

In addition, an important benefit of our design is that we
do not need to have training data with a single dedicated
number of landmarks in a specified layout on the face. This
means that our architecture can leverage multiple different
pre-existing datasets at training time, even if they do not
have consistent annotations. This fact, combined with the
beauty of specifying any landmark layout at runtime makes
our continuous landmark detector powerful, with applica-
tions in several areas of face capture including reconstruc-
tion, tracking, segmentation (Fig. 1 (e)-(g)) and many oth-
ers. As a summary, we can enumerate the main benefits of
our new landmark predictor as follows:
• Our method offers the ability to predict any desired

landmark on the face at inference time without retrain-
ing the network.
• We can track non-standard landmarks like pores,

moles or dots drawn on the face without training a spe-
cific predictor.
• Our method is not restricted to the face surface, and al-

lows to predict landmarks for volumetric features like
the skull, jaw, teeth and eyes.
• The size of the neural network is agnostic to the num-

ber of output landmarks.

2. Related Work

Nowadays, detecting facial landmarks is almost always
solved with deep learning. While generally accurate on

frontal views, traditional non-deep methods such as cas-
cade regressions [7, 49] are usually outperformed by their
modern counterparts. We refer the reader to the excellent
surveys of Wang et al. [39] and Wu and Ji [48] for a thor-
ough review of those traditional methods. In the following
we will summarize the most relevant works but refer to the
recent survey of Khabarlak and Koriashkina [22] for a more
in depth summary of the field.

Deep learning based methods generally leverage a back-
bone to extract relevant image features which are then used
to derive the landmarks. The choice of one over another is
often dictated by memory usage and the desired speed or
accuracy of the predictions [14, 16, 22, 54]. Often several
choice of backbones are proposed [13,18,28,50], each with
their own advantages and disadvantages. One can split the
methods predicting landmarks in two categories. So called
direct prediction methods [13,19,28,42,43,50,55,57] which
regress the landmarks coordinates directly and heatmaps
prediction methods [4, 5, 8, 23, 38], which first predict the
distribution of each landmark, followed by an argmax oper-
ation to extract its location. The method we propose falls in
the first category and directly predict the landmark coordi-
nates on the image plane without using heatmaps.

By design of their network architecture, the vast majority
of existing methods can only predict a specific set of land-
marks. The number of channels of the predicted heatmaps
tensor or the width of the last linear layer regressing the
landmarks coordinates dictates how many landmarks are
predicted. Moreover, the datasets used to train existing
methods typically have a fixed set of sparsely annotated
landmarks ranging from 21 to 98 [6, 24, 33, 42, 46]. This
forces existing methods to only train on datasets with com-
patible landmarks layout. Some works have attempted to
alleviate this drawback: Dense Face Alignment [30] fol-
lows the steps of more traditional methods and predicts
landmarks using a deformable 3D face model. It uses the
annotated training landmarks as constraints on the mesh,
thus allowing training with arbitrary layouts. Similarly,
LDDMM-Face [51] shows limited cross-annotation results
by estimating shape model deformations. Finally, Look at
Boundary [46] uses an intermediate face feature boundary
heatmap together with a direct prediction module per lay-
out, allowing to train the method on several datasets, with
a dedicated head for each one. In contrast with these meth-
ods, we do not rely on specific layouts for training nor rely
on having camera estimates, furthermore a user can arbi-
trarily change the queries at inference with our method.

As shown in Section 4, our method also allows for ex-
tremely dense queries, allowing to predict per pixel uv-
coordinates or face segmentation. These dense predictions
are typically acquired using specialized networks [12, 15,
32,34–36], but our method allows a direct extension to face
segmentation within our landmark estimation framework.
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Over the last few years, Transformer architectures were
used in the context of landmark prediction, either as the
feature extraction backbone or as the direct prediction
head [26, 27, 41]. One of the variants proposed in this pa-
per also leverages Transformers but takes inspiration from
works that encode the shape queries on a canonical vol-
ume [10, 11, 29] as we describe in Section 3.

In summary, despite a large body of work in facial land-
mark detection, we present the first method that can be
trained once on any combination of datasets with differ-
ent landmark configurations, and then allows to predict
any sparse or dense landmark set at runtime, including off-
surface features like on the skull, jaw, eyes and teeth.

3. Continuous Landmark Detection
We propose a novel, modular framework for continuous

unlimited landmark detection on faces. Our neural solution
primarily consists of two components; i) an image feature
extraction network F , and ii) a queried landmark predictor
P (see Fig. 2). The feature extraction network F takes a
2D image of a face as the input and yields an image de-
scriptor. The queried landmark predictor P combines the
information from the image descriptor and a collection of
3D queries defined on a canonical face shape C to predict
locations corresponding to the queried landmarks in screen
space. We will now describe the details of both these com-
ponents and offer insights into how this simple formulation
substantially increases the flexibility and power of 2D land-
mark predictors. Note that we purposely keep our algorithm
description at a high level in Section 3.1 and Section 3.2,
and then offer several specific implementation options in
Section 3.3, which we evaluate in Section 4.

Figure 2. Here we show how a single 3D query point on the face
(pk) results in a corresponding 2D landmark on the image (lk) with
corresponding confidence (ck).

3.1. Image Feature Extraction

The input to our feature extraction network F is an im-
age I of a face. We apply a traditional normalization strat-
egy [20] to ensure that the face is centered in the image and

normalized in position, orientation and scale. This normal-
ization step requires the detection of four face landmarks,
two for the eyes and two for the mouth. Although the en-
tire goal of our work is to predict face landmarks in images,
we recognize that sparse landmark detection is a well stud-
ied problem and we leverage an off-the-self predictor [3] to
detect these four landmarks used only for normalization.

The feature extraction network outputs a d-dimensional
image descriptor fi, specifically

fi = F(I) ∈ Rd, (1)

where d = 768 in practice. The image descriptor fi will
be used by the queried landmark prediction network P to
output the final 2D landmarks, as we describe next.

3.2. Queried Landmark Predictor

The second component of our architecture is a queried
landmark predictor P which operates on the descriptor fi
and point samples from a canonical shape C. The canoni-
cal shape is a fixed template face from which we can sample
3D position queries that implicitly map to the 2D landmarks
we wish to predict. Specifically, any 3D position pk corre-
sponding to a desired output landmark lk is sampled from
C and position encoded to obtain query qk ∈ RB . We fix
B = 64 for all our experiments and for position encoding
we use a 2-layer MLPM to learn the mapping from pk to
qk during training. The function of the positional queries qk
is to inform P about the landmarks it needs to predict from
the feature descriptor fi for image I. For example, if a user
would like to predict the location of the nose tip in the in-
put image I, the query point qj would be derived from the
3D point pj corresponding to the nose tip on the canonical
shape C. Note that the canonical shape already implicitly
serves as a spatial prior over the distribution of facial land-
marks in the output. We will show in Section 4.5 that our
method allows to sample 3D points even off the surface of
the canonical shape C, yielding 2D landmark tracking for
volumetric objects like bones.

For decoding 2D landmarks, a positional query qk is con-
catenated with the image descriptor fi and fed as input to
P . Note that if multiple output landmarks have to be pre-
dicted for the same input image, the image descriptor fi is
duplicated n times (given n landmarks) and concatenated
with the n queries [q0, q1, ...qn−1]. In other words, the im-
age descriptor fi remains the same irrespective of the land-
marks predicted on the output side. This disentanglement
is a crucial property of our design that encourages the fea-
ture extraction network F to learn a very expressive feature
space. Taking the concatenated data as its input, the queried
landmark predictor P yields a 2D landmark lk and a scalar
confidence value ck [43], which indicates how confident P
is about the predicted landmark location. Mathematically
speaking,
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qk =M(pk),

lk, ck = P(fi, qk),
(2)

where fi ∈ Rd, qk ∈ RB , lk ∈ R2 and ck ∈ R1.
As our network only predicts the 2D position of the 3D

query from the canonical shape, our architecture has several
advantages. The first is that it allows us to mix and match
datasets with inconsistent annotations as long as the anno-
tations from the individual datasets have a corresponding
query point in a canonical space. Note that these queries
have to be defined only once per dataset (irrespective of the
size of the dataset) and are therefore very inexpensive to
annotate. The second is that since the landmark predictor
operates on a per-query basis, the size of the network does
not grow with the number of output landmarks. If a user
is interested in predicting multiple landmarks correspond-
ing to multiple queries, these queries can simply be stacked
along the batch dimension to predict multiple landmarks for
the input image in parallel. We also note that one could also
choose to operate in an alternate canonical space (UV do-
main for instance) and continue to retain all the benefits of
our method.

3.3. Implementation Details

For the feature extraction network, we propose to use
the recently developed ConvNext encoder [31], which is a
convolutional encoder that has achieved almost state-of-the-
art performance on several image processing benchmarks.
However the modular nature of our architecture allows this
feature extractor F to be replaced with any other network
depending on the user’s application scenario. For exam-
ple, it might be interesting to consider lightweight feature
extraction backbones such as MobileNetV3 [17] to achieve
real time performance on mobile devices. We evaluate both
ConvNext and MobileNetV3 in Section 4.7.

Similar to the modular nature of the feature extraction
networkF , we also propose two different design choices for
the queried landmark predictorP . In particular, we evaluate
i) a 4 layer MLP that operates on individual queries, and ii)
a transformer [37] that can operate on a sequence of queries
at once, leveraging self-attention to correlate landmark posi-
tions in the output. We show a quantitative evaluation based
on both accuracy and performance of these architectural op-
tions in Section 4.7, and we provide a detailed explanation
of the architecture variants in the supplemental document.

Both the feature extraction network F and the queried
landmark predictor P are trained end-to-end using a gaus-
sian log likelihood loss function in a supervised fashion,
similar to Wood et. al [43], wherein the landmarks are nor-
malized in screen space to stay in the range of [-1, 1]. Such
a formulation allows for errors in the output as long as the
network is not confident about such landmarks.

3.4. Training Data

We train our method on a multitude of datasets includ-
ing sparse and dense facial landmarks, both in-the-wild and
in studio, and also off-surface landmarks corresponding to
anatomical structures like eyes, teeth, skull, and jaw.

For facial surface landmarks, we use 300-W [33] and the
Fake-it-till-you-make-it [42] dataset, both containing sparse
landmark annotations in-the-wild, and a studio dataset con-
sisting of dense landmark annotations (≈ 50000 landmarks
per image). The dense landmark dataset is obtained from
a multi-view 3D face database [9], where dense 3D surface
points are projected into the multi-view face imagery. Note
that we generally train with a mix of sparse and dense anno-
tations as the dense annotations from the studio dataset pro-
vides information about how to spatially interpolate land-
marks for in-the-wild imagery. That said, we also provide
an evaluation of performance when training on different
subsets of the data in Table 1 (Section 4). Furthermore, sev-
eral publicly available alternatives to the studio data we use
are possible, for example FaceScape [52], which we evalu-
ate in the supplemental document.

As mentioned earlier, our formulation allows for query-
ing 3D points anywhere in the volume around the canon-
ical face C, allowing to train on unique datasets that con-
tain tracked 2D positions for non-standard landmarks, such
as on eyes, teeth or even on bones inside the head. In or-
der to obtain tracked landmarks for these objects to use for
training data, we turn to recent digital human reconstruc-
tion methods that have focused specifically on reconstruct-
ing subject-specific teeth geometry [44], estimating rigid
skull motion [1,45], and tracking rigid jaw motion [58]. Ap-
plying these techniques on the multi-view 3D face database
mentioned earlier [9] yields the ability to obtain anatomi-
cal landmarks for training our predictor. In these cases, the
3D geometry of the teeth, skull and jaw shapes in canon-
ical space allow to naturally sample query points, and the
corresponding projections of those points in the multi-view
imagery provides the ground truth 2D landmarks for train-
ing. Furthermore, we extend our dataset with sparse eye
landmarks by utilizing DatasetGAN [53], which allows to
efficiently obtain annotated landmarks on synthetic face im-
ages with minimal human effort. Here we annotate 10 eye
landmarks (5 on each eye) on 20 synthetic face images gen-
erated by StyleGAN2 [21], and apply DatasetGAN to auto-
matically annotate an additional corpus of synthetic images.
The query points for the eye landmarks are also manually
annotated (one time) in 3D space relative to the canonical
face mesh C.

Fig. 3 shows a very small overview of our entire dataset.
In total we train with the 3129 face images containing 68-
landmark annotations from 300-W, 100000 images with 70-
landmark annotations from Fake-it-till-you-make-it, 100000
face images with dense (≈ 50000) landmark annotations
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from the studio dataset, a subset of 25000 studio images
with annotated skull (1000 landmarks) and jaw (500 land-
marks), a subset of 3000 with annotated teeth landmarks
(500 for upper teeth, 500 for lower teeth), and finally 3000
synthetic images with 10 eye landmarks each.

Figure 3. Our method can leverage a collection of different land-
mark datasets with inconsistent annotations. Here we show a small
overview of the 2D landmarks (red, top row), along with the cor-
responding 3D queries (green, bottom row). From left to right:
sparse in-the-wild landmarks [42], dense studio landmarks [9], eye
landmarks [53], skull landmarks [1, 45], jaw landmarks [58], and
teeth landmarks [44].

To regularize the training of the model, we perform
color-space augmentations (eg. hue, saturation, brightness,
contrast, pixel jitter) and geometric augmentations (integral
and fractional shifts, isotropic and anisotropic scaling, rota-
tion) of the image and the ground truth landmarks, to make
our model robust to these effects at runtime. Although we
train the network using discrete landmark locations on the
face, the smooth nature of the predictor will allow any (in-
between) landmark to also be queried accurately.

4. Results

We now present the results of our method and offer var-
ious evaluations and ablation studies. Please refer to the
supplemental video and document for additional details and
evaluations.

4.1. In-the-Wild Landmark Detection

We show the ability of our method to predict both sparse
and dense 2D landmarks for in-the-wild test images in
Fig. 4. Note that the same pre-trained network is used at
inference time to predict all of the layouts shown in Fig. 4.
For predicting different landmark layouts on the same im-
age, only the 3D canonical queries need to be modified and
the image feature extraction network needs to be evaluated
only once. Due to the fact that we can train on many dif-
ferent datasets, the extensive variety of data available to our
network allows our predictor to even work well in the com-
plex situation of helmet-mounted camera imagery (Fig. 5),
where dot tracking is often used for facial motion capture in
digital productions. Our approach could ultimately remove
the requirement for dot makeup.

Figure 4. Our method can predict arbitrary landmark layouts on
faces in-the-wild at runtime without re-training.

Figure 5. Our trained network can also be used for the complex
situation of helmet-mounted camera images, such as often used in
facial performance capture in film productions.

We next evaluate our landmark predictor quantitatively
on the 300-W challenge dataset [33]. As described in
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Section 3, the modular nature of our method naturally al-
lows for multiple choices for the feature extraction net-
work F and the query prediction network P . In our
work, we evaluate two choices for the feature extraction
network F : i) a ConvNext encoder [31], and ii) Mo-
bileNetV3 [17], and two choices for the query prediction
network P: i) a 4 layer MLP, and ii) a 4 layer Transformer
MLP with 8 self attention heads (please see the supplemen-
tal document for exact network architecture details). As
such, we could consider four different combinations of ar-
chitectures (ConvNext+MLP, ConvNext+Transformer, Mo-
bileNet+MLP, MobileNet+Transformer). As the primary
motivation for using the MobileNet backbone is speed and
transformers are traditionally slow, we leave out the con-
figuration combining a MobileNet backbone with a trans-
former query predictor from our evaluations. Addition-
ally, the ability of our method to leverage multiple train-
ing datasets, even with inconsistent annotations for training
adds another dimension to consider for quantitative evalu-
ations. Here, we again consider two scenarios: i) training
only on a synthetic dataset with 70 sparse annotations [42],
which we refer to in the evaluation as the Fake-it dataset,
ii) training on the full dataset described in Section 3.4 with
a mix of in the wild sparse ground truth and dense annota-
tions from studio captures for the skin and facial anatomy
(referred to as all data). Table 1 presents the results of the
evaluation on the 300 faces in the wild challenge [33]. We
report the normalized mean error on the 300-W Common
and Challenging subsets even though our method was not
trained on this dataset. We demonstrate comparable per-
formance to state-of-the-art methods trained on the 300-
W dataset, while outperforming Wood et al. [43], which
is the method closest to ours in terms of predicting dense
face landmarks. We further note that unlike Wood et al.,
we do not perform label translation to account for the dif-
ferences in annotation between the training and evaluation
datasets. In Table 4, we also show results of training our
ConvNext+MLP variant only on the 300-W training set.

We also evaluate dense landmark prediction in the form
of dense normalized mean error (NME) on left-out samples
from the 3D dataset of Chandran et al. [9], for the different
versions of our network in Table 2. Our queried landmark
predictor allows predicting interpolated landmarks, even
when trained on the sparse 70-landmark Fake-it dataset, as
shown in Fig. 6 ((a) and (b)). Note, however, that in this
case the method does not extrapolate well to dense land-
marks given the sparse training data (Fig. 6 (c)). Only when
trained on the full dataset including dense landmarks does
our method produce accurate dense predictions in the wild
(Fig. 6 (d)).

4.2. Query Optimization
In addition to specifying landmarks to predict as 3D

query points, another use case is when a user defines one

Table 1. Quantitative evaluation on the 300-W challenge.

Method (Dataset) Common
Subset

Challenging
Subset

LAB [47] (300-W) 2.98 5.19
AWING [40] (300-W) 2.72 4.52

ODN [56] (300-W) 3.56 6.67
LUVLi [25] (300-W) 2.76 5.16

Wood et. al [43] (Fake-it) 3.03 4.80
Ours

ConvNext+MLP (Fake-it) 3.17 5.96
MobileNet+MLP (Fake-it) 3.62 7.85

ConvNext+Transformer (Fake-it) 2.99 4.71
ConvNext+MLP (all data) 3.16 4.46
MobileNet+MLP (all data) 3.20 6.14

ConvNext+Transformer (all data) 2.87 4.42

Table 2. Quantitative evaluation on dense 2D landmarks.

Model (Dataset) Dense NME
ConvNext+MLP (all data) 1.4
MobileNet+MLP (all data) 1.95

ConvNext+Transformer (all data) 1.07

a) b) c) d)

Figure 6. We show the performance of our method when trained
solely on the Fake-it dataset [42] and querying a) the 70 landmarks
seen at training time, b) interpolated positions between the training
landmarks and c) dense 500 landmarks (failing). In d) we show a
comparison of querying the same dense landmarks but trained on
our full dataset as described in Section 3.4. While training with
only 70 landmarks allows querying interpolated positions, only the
model trained on the full dataset allows to query dense landmarks.

or more 2D points on a face image that they wish to track.
For example, an artist may specify particular points on a
person’s face like moles or blemishes that they wish to paint
out of a video. In these cases, our method allows to optimize
for the corresponding 3D query point corresponding to each
desired 2D image pixel. Using those query points for pre-
diction, our network can track the specified face pixels over
any video or additional image of that person. We show such
an example of tracking a user-defined face point in Fig. 7,
and compare the tracking to traditional optical flow [2]. No-
tice how our predictor can handle frames where the face
point is occluded, which tends to cause tracking failures for
optical flow.

A collection of queries can also be optimized at the same
time. We demonstrate a practical application where such a
feature might be necessary for consistent dot placement for
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Figure 7. Our method allows to track user-defined features across
a video, as shown by the pink dot on the eyebrow. In contract to
optical flow tracking [2], our method is not affected when the face
point is occluded.

Figure 8. Query optimization for markers in an HMC image. Left
to right: Single frame annotation of markers, optimized queries on
the canonical shape, a new frame without dot makeup, and pre-
dicted markers on that frame to aid consistent dot placement.

helmet-mounted camera (HMC) face tracking in Fig. 8. By
annotating a single frame containing makeup dot positions,
our method can track facial markers through the remaining
video. Furthermore, to aid consistent marker placement, we
show the predicted landmarks on the same subject without
markers captured during a different session.

4.3. Face Segmentation

Our method can also be used in facial segmentation
tasks, where the goal is to divide a face image or video into
different pre-defined regions (e.g. the nose, lips, eyes, etc).
Usually facial segmentation is solved using specialized net-
works. However the ability of our method to predict arbi-
trarily dense landmarks extends it for the purpose of face
segmentation as well. A user can further segment the face
into multiple layouts at inference time, as shown in Fig. 9.

4.4. Artistic Texture Editing

Our method enables new possibilities in 2D face editing
by allowing applications such as video face painting with-
out requiring an explicit 3D reconstruction of the face. In
Fig. 10 we show how a tattoo can be propagated across mul-
tiple identities, expressions and environments in a consis-
tent manner. This can be achieved by simply annotating or
designing the tattoo on the canonical shape and query these
positions from our model.

Figure 9. Face segmentation in arbitrary layouts is also enabled by
our method by predicting dense landmarks for each segment class
on the query shape.

Figure 10. Our method can readily be used to artistically edit face
images without the need for 3D face reconstruction.

4.5. Facial Anatomy Tracking

As described in Section 3.4, we can also leverage
anatomy datasets for training. While not producing anatom-
ically accurate results, our method can provide plausible,
temporally smooth 2D landmarks which can be used to
rigidly track 3D facial anatomy, as shown in Fig. 11. Fur-
thermore, by adding eye landmarks to the training data, our
method can just as well predict eye landmarks in the wild,
as shown in Fig. 12. Please see the supplemental content
for more examples including teeth landmark prediction.

4.6. Facial Performance Capture

Since our method can predict an arbitrarily dense num-
ber of landmarks, it can also be useful for face reconstruc-
tion in 3D. Fig. 13 shows the result of fitting an actor-
specific face model (defined by Wu et al. [45]) to the land-
marks predicted by our method. Using the monocular re-
construction method of Wu et al. [45] as a baseline, we
present mean, median and standard deviation of 3D recon-
struction errors for different landmark configurations in Ta-
ble 3. The results in Fig. 13 correspond to the last row of
Table 3, which produce the lowest errors. Please refer to
our supplemental video for more 3D reconstruction results.

16864



Figure 11. We show how our method can predict non-standard
volumetric landmarks corresponding to skull and jaw features (top
and middle row), and these can be used to fit anatomical geometry
(bottom row).

Figure 12. Our method can predict high quality eye landmarks,
which could be used in eye tracking applications.

Table 3. Quantitative evaluation on 3D face reconstruction.

Ours Mean error
(mm)

Median
error
(mm)

Std

68 landmarks 2.88 2.48 1.94
500 landmarks 2.63 2.07 1.95
50K landmarks 2.34 1.74 1.93
68 landmarks, 3 views 2.76 2.14 2.06
500 landmarks, 3 views 2.26 1.73 1.86
50K landmarks, 3 views 2.13 1.59 1.76

a) captured imagery

b) Our estimated geometry (overlayed)

Figure 13. Using dense landmark prediction, our method can be
used for high quality 3D facial performance reconstruction.

4.7. Ablation Studies

Runtime Analysis We analyze the inference time of our
three architectural variants in Fig. 14. Since the number of

Figure 14. Run time vs. Number of decoded queries for each
of our network variants. Our ConvNext + MLP variant offers a
middle ground between performance and accuracy.

Table 4. Effect of color and geometric augmentations while train-
ing on the 300-W [33] train set and evaluating on the 300-W Com-
mon test set.

Method NME
ConvNext+MLP (No Augmentations) 4.27

ConvNext+MLP (Color only)) 4.24
ConvNext+MLP (Affine only) 3.87

ConvNext+MLP (Color + Affine only) 3.63

decoded queries also influences run-time, we plot the speed
of inference in frames per second for different architectural
choices. As the number of queries increases, we see that
the transformer variant drops in run-time performance sig-
nificantly, while the MLP variants retain real time or inter-
active frame rates. The numbers were computed on a Nvidia
1080Ti GPU and were obtained by averaging 1000 runs.

Effect of augmentation Similar to many state-of-the-art
landmark prediction networks, we employ image space aug-
mentations (in color and geometry) on the training data to
make our models robust to common image degradations. In
Table 4, we demonstrate the effect of these augmentations
on one of our architectural variants on the 300-W dataset.

5. Conclusion

In this work we present a new formulation for facial
landmark detection based on 3D query points. For the first
time, our method allows to predict arbitrary landmark loca-
tions at runtime without re-training the network. Addition-
ally, our approach allows to leverage a multitude of existing
training datasets, even with inconsistent annotations. We
propose a simple network design that is modular and al-
lows different architecture variants with tradeoffs of speed
and accuracy. Our method can predict sparse or dense land-
marks, both on the face and off surface, allowing applica-
tions beyond traditional landmark detection like face seg-
mentation, artistic texture editing, facial anatomy tracking,
performance capture, and user-specific landmark tracking.
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