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Abstract

Capturing high frame rate and high dynamic range
(HFR&HDR) color videos in high-speed scenes with con-
ventional frame-based cameras is very challenging. The in-
creasing frame rate is usually guaranteed by using shorter
exposure time so that the captured video is severely inter-
fered by noise. Alternating exposures can alleviate the noise
issue but sacrifice frame rate due to involving long-exposure
frames. The neuromorphic spiking camera records high-
speed scenes of high dynamic range without colors using
a completely different sensing mechanism and visual repre-
sentation. We introduce a hybrid camera system composed
of a spiking and an alternating-exposure RGB camera to
capture HFR&HDR scenes with high fidelity. Our insight is
to bring each camera’s superiority into full play. The spike
frames, with accurate fast motion information encoded, are
firstly reconstructed for motion representation, from which
the spike-based optical flows guide the recovery of missing
temporal information for long-exposure RGB images while
retaining their reliable color appearances. With the strong
temporal constraint estimated from spike trains, both miss-
ing and distorted colors cross RGB frames are recovered to
generate time-consistent and HFR color frames. We collect
a new Spike-RGB dataset that contains 300 sequences of
synthetic data and 20 groups of real-world data to demon-
strate 1000 FPS HDR videos outperforming HDR video re-
construction methods and commercial high-speed cameras.

1. Introduction

The spiking camera [17] and event camera [10] are
neuromorphic sensors working differently from conven-
tional frame-based digital cameras, which have many at-
tractive characteristics, e.g., high-speed (perceiving scene
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Figure 1. (a) We build a spike-RGB hybrid camera system to
achieve 1000 FPS HDR video reconstruction1. (b) The RGB cam-
era uses alternating-exposure mode with a frame rate of 60 FPS,
where ts, 4ts, and 12ts are the short, middle, and long exposure
in our setup, respectively. The sampling frequency of the spiking
camera is 20000 Hz.

radiance changes at the microsecond level), high dynamic
range (HDR, ≥ 100 dB). However, since they only record
neuromorphic signals, i.e., spike trains [64] and event
streams [25], which are less friendly to the human visual
system and cannot be directly processed by CNN-based
models for video frames [40, 41], preprocessing modules
that convert neuromorphic signals into compatible formats
are usually required when applying them to frame-based vi-
sion algorithms [61,65]. In comparison with event streams,
spike trains contain concrete textured information of scene
radiances, which are more suitable for reconstructing high
frame rate (HFR) videos [61–64]. However, since the spik-
ing camera only encodes the absolute intensities of environ-
ments, colors are absent in the reconstructed video frames.

When capturing with a frame-based RGB camera, qual-
ity of recorded colors for each frame is determined by trad-
ing off the exposure time, ambient light, and target objects’
moving speed [57]. For high-speed dynamic scenes, it often

1The video result is available on our project page.
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requires to set shorter exposure time to guarantee a higher
frame rate and avoid motion blur. In such a situation, since
the exposure time is extremely short, the quality of video
frames would be severely degenerated due to noise. Merg-
ing a burst of short-exposure images is a simple yet effec-
tive approach to reduce the noise level [8, 11], however, the
color shift caused by noise is difficult to be corrected. Fus-
ing alternating-exposure (using short, middle, and long ex-
posures) RGB frames is commonly used for synthesizing
well-exposed images [3,19,21]. However, they are not suit-
able for high-speed scenes. As illustrated in Fig. 1(b), given
a sequence of alternating-exposure RGB images, the total
time from the starting of the current exposure to the starting
of the next frame, denoted by T , is consistent for all frames,
and it is composed of the exposure time Texp and interval
time Titv (containing the readout and waiting time). It can
be seen that the information during interval time is lost, and
the frame rate they could achieve is thus limited to dozens
of FPS. Another possible solution is to build a hybrid cam-
era system to capture low frame rate (LFR) color sequence
and high-speed neuromorphic signals simultaneously, then
use the neuromorphic signals to interpolate [51,52] and de-
blur [14, 18, 59] the RGB frames. However, the saturated
regions are usually ignored, leaving the colors of the in-
terpolated frames still unsatisfactory. HDR intensity map
(does not contain any chromatic information) built from the
neuromorphic signals can also be used to compensate the
missing textures in the saturated regions [15]. But such an
approach is not robust for scenes with large areas of satu-
rated regions, due to the heavy reliance on the chrominance
compensation network to hallucinate the color.

In this paper, we propose an all-in-one framework to re-
construct HRF (Fig. 1(a), at the level of 1000 FPS) color
videos with high fidelity from the spike trains and a series of
alternating-exposure frames captured by a Spike-RGB hy-
brid camera system simultaneously (Fig. 1(b)). To make
full use of the color information in RGB images, we pro-
pose a three-stage strategy to deal with different situations
using specific modules: (i) For the blurry middle- and long-
exposure images, we design a spike guided deblurring mod-
ule to recover the corresponding sharp images with faithful
colors; (ii) for missing colors during the interval time, we
design a spike guided interpolation module that exploits the
abundant motion information (SC-Flow [16]) obtained from
spike trains; (iii) for suppressing noise in short-exposure
images and maintaining temporal consistency, we design
a merging module, which exploits the variant of recurrent
U-Net [42] as its backbone, to complete the HFR&HDR
color video reconstruction process. To summarize, this pa-
per makes contributions by proposing:

• an all-in-one framework to reconstruct high-speed
HDR color video by jointly fusing spike trains and a
sequence of alternating-exposure frames;

• a three-stage strategy fusing alternating exposures of
RGB frames for the generation of well-exposure col-
ors, via a recurrent convolution neural network for con-
tinuous frames interpolation guided by spike trains;

• a Spike-RGB hybrid camera system to demonstrate
the applicability of the proposed method for capturing
high-speed and high dynamic range scenes.

Experimental results show that the proposed method out-
performs the state-of-the-art HDR video reconstruction
method [3] and commercial cameras with the slow-motion
photography capability in reconstructing 1000 FPS HDR
color videos on synthetic data and real-world data.

2. Related Work
HDR image and video reconstruction. The most com-
mon way to reconstruct HDR images is to fuse a set of LDR
images with bracketed exposures [7, 34]. Since the results
for dynamic scenes often contain ghosting artifacts, image
alignment [28, 45] and deep learning [20, 55] are employed
to reconstruct sharp HDR images. To better reduce ghost-
ing artifacts, Lee et al. [24] and Shaw et al. [46] apply the
estimated motion information from a high frame rate se-
quence to facilitate the HDR image synthesis. Messikom-
mer et al. [35] also achieve HDR reconstruction by com-
bining bracketed-exposure RGB images and events. There
are methods being designed for HDR reconstruction from
a single image. These methods cannot recover the missing
textures in clipped regions [9, 44]. Abhiram and Chan [1]
reconstruct HDR images with a quanta image sensor (QIS).
Han et al. [15] find that the reconstructed intensity maps
from event streams and spike trains contain abundant tex-
tures saturated in LDR images. Therefore, they exploit in-
tensity maps to guide HDR image restoration. For the cap-
turing of HDR videos, many existing methods use special-
ized hardware, such as scanline exposure [13], per-pixel ex-
posure [37], or multiple sensors [33, 50]. Due to the par-
ticularity of hardware, these methods are limited to nar-
row applications. Merging alternating-exposure image se-
quences is the most common yet effective way to recon-
struct HDR videos [12,19,21,22,30,31]. Recently, Chen et
al. [3] propose a coarse-to-fine network that performs align-
ment and fusion sequentially both in the image and feature
space. However, these methods can only deal with LFR
videos with about 20-60 FPS.
HFR video reconstruction. There is plenty of data re-
dundancy in capturing HFR videos directly by commercial
high-speed cameras, e.g., the Phatom camera2. Building
a hybrid system with a high-resolution LFR camera and a
low-resolution HFR camera, and utilizing HFR signals to
reconstruct a sequence of sharp images from blurred im-
ages [2, 49] is a more data-efficient way for HFR video

2https://www.phantomhighspeed.com/
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Figure 2. (a) The pipeline of the proposed solution. It contains three steps: Step ① spike preprocessing (Sec. 3.2), Step ② RGB frame
processing (Sec. 3.3), and Step ③ merging into HFR video (Sec. 3.4). Given the spike trains, we firstly estimate the optical flow from
them as well as reconstruct spike frames. Secondly, we rectify the uneven brightness with a linear mapping function and use spike-guided
deblurring (SG-deblur) to reconstruct sharp color frames. Finally, we use spike-guided frame interpolation (SG-interpolation) to recover
the missing colors during Titv, and reconstruct time-consistent color frames. (b) and (c) show the detailed pipeline of SG-deblur and
SG-interpolation.

reconstruction. Li et al. [26] use a stereo pair of low-
resolution HFR and high-resolution LFR cameras to calcu-
late the fast motion and the depth map. Avinash et al. [38]
compute optical flows between two existing frames by uti-
lizing the content of auxiliary HFR videos. Jiang et al. [18]
recover a sharp video sequence from a motion-blurred im-
age by integrating the visual and temporal knowledge that
is contained in the events. Xu et al. [54] achieve real-
world event-based deblurring with a self-supervised learn-
ing method. Tulyakov et al. [52] propose the Time Lens
that utilizes high-speed events to achieve video frame inter-
polation (VFI). Following that, Time Lens++ [51] further
improves the performance. For the reason that real data are
absent, Yu et al. [56] propose a weakly supervised method
with the help of subpixel attention learning. Although the
event-based interpolation realizes HFR video reconstruc-
tion [51, 52], the recovered quality of colors is usually un-
satisfactory due to that single exposure cannot balance ar-
tifacts from noise and blur, we therefore propose to jointly
fuse the high-speed spike signals and alternating-exposure
RGB frames to achieve high-quality reconstruction.

3. Approach
3.1. Overview

Our goal is to reconstruct HFR&HDR videos from the
binary spike trains S(x, y) = {s(x, y, t)} (s(x, y, t) = 1 if
the accumulated photons reach a certain threshold, then the
accumulator is reset and s(x, y, t) = 0 before the next spike
is fired [17]) and LFR alternating-exposure RGB frames
B = {Bk}3, where (x, y) denote the coordinates of spikes, t

3In this paper, we use {·} to denote collections.

denotes the timestamp, and k denotes the index of an RGB
image in the sequence. As shown in Fig. 2(a), to achieve
this goal, we design a pipeline that consists of three steps:

Step ①: Spike preprocessing (Sec. 3.2). We estimate the
optical flow Fi and spike frames Ii from the spike trains:

Fi(x, y) = SC(s(x, y, ti → ti+1)), (1)

Ii(x, y) =

∫ ti+tf/2

ti−tf/2

s(x, y, t)dt, (2)

where SC(·) denotes optical flow estimation with Hu et
al.’s [16] method, i and ti denote the index and timestamp
of spike frames, and tf is the time window. In Sec. 3.2, we
further super-resolve Ii at the feature space.

Step ②: RGB frame preprocessing (Sec. 3.3). For the 60
FPS RGB images captured with alternating exposures, i.e.,
ts, 4ts, and 12ts, we firstly unify the uneven brightness with
a linear mapping function. Then we conduct motion deblur-
ring for 4ts and 12ts images. For the ts images, when ts is
sufficiently short, i.e., 1 ms, we assume the short-exposure
image is free from motion blur, and take ts as the refer-
ence time for the motion deblurring. Consequently, we can
recover 4 and 12 sharp images from 4ts and 12ts images,
respectively. As shown in Fig. 2(b), we use Bl to denote
a blurry image, and the motion deblurring operation can be
formulated as: {Bl

j} = R(Bl, {Ij |j ∈ Nl},Bs), where j
is the index of a recovered sharp image, R(·) is sharp im-
age reconstruction, {Ij |j ∈ Nl} is the corresponding spike
frames, and Bs is the nearest short-exposure RGB frame.

Step ③: Merging into HFR video (Sec. 3.4). Follow-
ing Step ②, for the interval time (Titv) that colors are not
recorded, we bidirectionally query two nearest sharp RGB

22182



𝐈𝐈𝑖𝑖𝐈𝐈𝑖𝑖−1𝐈𝐈𝑖𝑖−2 𝐈𝐈𝑖𝑖+2𝐈𝐈𝑖𝑖+1

warping

Figure 3. For the sake of increasing spatial resolution, we adopt
flow-based warping to merge adjacent 5 spike frames.

images {B+
i ,B

−
i } for each spike frame Ii, and get the

warped images {B̂+
i , B̂

−
i } with optical flow, where + and

− denote the forward and backward warping, respectively.
In Fig. 2(c), we provide an illustration of the interpolation
procedure. Finally, as shown in Fig. 4, we reconstruct time-
consistent color frames, and each frame Ci is generated by
merging the spike frame Ii with {Ci−1, B̂

+
i , B̂

−
i } with the

strong constraint of optical flow.

3.2. Spike preprocessing

The optical flow estimation and spike frame reconstruc-
tion using in Eqn. (1) and Eqn. (2) are theoretically, yet the
reconstructed frames practically have two issues: Since the
integration time tf is very short, noise is relatively strong;
the spatial resolution of the first generation spiking camera
(VidarOne [17]) is much lower than the RGB camera. To re-
duce the noise and increase the spatial resolution, inspired
by the burst-based super-resolution [4] and denoising [27]
for conventional RGB images, it is feasible to merge a group
of adjacent spike frames with the help of spatial alignment.
Moreover, thanks to the continuous motion recording ca-
pability of spiking cameras, the optical flow [16] estimated
from spike trains makes the alignment even more stable than
RGB images. As illustrated in Fig. 3, we design a compu-
tationally efficient module for spike frames, which is for-
mulated as: Îi = {WFj→i

(Ij)|j ∈ Ni}, where WFj→i
(·)

denotes the flow-based warping operation, Ni denotes a col-
lection of adjacent frames. Then, we feed Îi to a set of con-
volutional layers, and we use PixelShuffle [47] to increase
the spatial resolution while decreasing the channel of fea-
tures. It should be noted that the method for spike frame
reconstruction is not unique, which means users can choose
other learning-based methods [61, 62, 64]. However, those
deep learning models are relatively heavy, and less efficient
as a submodule fitting to our pipeline.

3.3. RGB image preprocessing

RGB linear mapping. Following previous methods for
HDR video reconstruction [3, 19, 21], we first unify the
brightness of alternating-exposure RGB frames. Since we
use an industrial camera (details in Sec. 3.5) that can ac-
quire data without a nonlinear radiometric response func-
tion, the linearity of the captured frames is maintained. We
find that the brightness of the frames can maintain a linear
relationship with the duration of exposure time. Hence we
use the global linear mapping to unify the frame brightness:
α ·Bk(x, y) → Bk(x, y), where α denotes a linear scalar.

Spike-guided deblurring. The physical model of the blur-
ring process can be simply formulated as the average of a
group of sharp images, i.e., Bl(x, y) = 1

N

∑N
j=1 B

l
j(x, y),

where N denotes the number of sharp images. However,
due to the limited dynamic range of the RGB camera, that
simplified equation does not hold in the clipped regions
of real-world long-exposure frames. In general we should
have: Bl(x, y) ≤ 1

N

∑N
j=1 B

l
j(x, y). Therefore, for recon-

structing a sequence of sharp HDR images from Bl, we di-
vide it into two sub-tasks: (i) For the well-exposure regions,
we use the sharp spike frames to guide motion deblurring;
(ii) for the clipped regions where colors are lost, we com-
pensate them with well-retained colors extracted from the
adjacent short-exposure image Bs.

Figure 2(b) shows the spike-guided deblurring (SG-
deblur) from Bl (Bl may be a middle- or long-exposure
image). Similar to Xu et al. [54] that exploit event frames
to motion deblurring, we first concatenate Bl with {Ijl },
then extract shallow features and increase feature channels
with PixelShuffle [47], which is followed by a set of resid-
ual dense blocks (RDBs) [60] and a decoder. To make the
colors in over-exposure regions be compensated by the ad-
jacent short-exposure RGB image Bs

j , we warp the short-
exposure image with the optical flow estimated from spike
trains: Bs

j = WFs→j (B
s), where WFs→j (·) denotes the

warping operation from timestamp ts to the timestamp of
tj . Subsequently, we extract features from {Bs→j

l } and
add residual links between them and the decoder. Finally,
we obtain a sequence of sharp color images. Note that the
SG-deblur for the middle- and long-exposure RGB images
share the same architecture while the parameters are not
shareable. SG-deblur outputs four images for both 4ts and
12ts frames. For the case of 12ts frame, we interpolate the
4 frames to 12 frames with flow-based warping.

Next, we briefly explain the reason why this event-based
model [54] can be applied to a spike-based task. Both event
streams and spike trains with the high-speed property have
been used for motion deblurring and latent frame recon-
struction [14,18,54]. It is necessary to convert them to event
frames and spike frames, both of which belong to the cate-
gory of 2D images. But event frames and spike frames have
different physical meanings: Pixel values in an event frame
reveal the residual (relatively sparse information) between
two adjacent frames, while pixel values in a spike frame rep-
resent exactly the texture (relatively dense information) of
the corresponding frame. Since both event frames and spike
frames are 2D images and the spike frames have denser
texture information, we can replace event frames in such
a model with spike frames, so as to make the solution to the
problem more well-posed.

3.4. Merging into HFR video

RGB interpolation. Given each middle- and long-exposure
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Figure 4. Network architecture of the CNN-RNN-based merging module for reconstructing HFR&HDR videos from alternating-exposure
RGB frames and HFR spike frames. This module outputs HDR color frames in a step-wise manner. We unroll the module for M steps
during training.

frame, SG-deblur recovers 4 and 12 images. Therefore,
the recovered RGB frames have a frame rate of 3404 FPS.
But temporal distribution of them is quite uneven, e.g.,
there is no recovered color frame interval time Titv. For-
tunately, the spike train contains continuous and dense tex-
ture information in the temporal domain. In Step ③, we
use the SG-interpolation module to interpolate RGB frames
into a sequence of uniformly distributed images. For each
spike frame Ii, we bidirectionally query its two nearest re-
covered RGB frames {B+

i ,B
−
i } and interpolate two color

frames {B̂+
i , B̂

−
i } with the optical flow estimated from

spike trains. When {B̂+
i , B̂

−
i } are fed into our merg-

ing module, they are weighted by a linear coefficient (⊕
in Fig. 4) related to the distance between ti and {t+, t−} ,
where {t+, t−} denote the timestamp of {B̂+

i , B̂
−
i }.

Merging module. The aforementioned modules recon-
struct coarse HFR video frames, which need to be re-
fined for smoothing over time. We build a CNN-RNN-
based HFR&HDR video reconstruction network to merge
the spike frames and RGB frames, which is shown in Fig. 4.
The merging module consists of three encoders, i.e., EI , EB ,
and EC , which are respectively designed for feature extrac-
tion from the current spike frame Îi, the interpolated RGB
images {B̂+

i , B̂
−
i }, and the previously reconstructed image

Ci−1. In EI , we use PixelShuffle [47] to make the spatial
resolution of spike features consistent with RGB features.
The extracted features are denoted as EI , {EB−,EB+},
and ECi−1 , respectively.

Considering the spike frames and RGB frames may not
be perfectly aligned at pixel level for real-world data, we
add deformable convolution layers [6] to improve the ro-
bustness to this issue. In order to output flicker-free color
frames, we adopt two constraints in the merging module:

4From 60=20×3 to 340=20×(1+4+12).

Table 1. Details of the composition of the dataset (res. is the
abbreviation of resolution).

data RGB res. spike res. train/test time
full-synthetic 500×800 250×400 80/20 0.1s
real-synthetic 600×800 250×400 160/40 0.101s

real-world 484×784 242×392 -/20 0.101s

(i) We add three ConvLSTM layers [48] to feed previous
states forward in temporal domain; (ii) we feed ECi−1

into
the current step and align it with the current features with
flow-based warping. We then use a decoder to reversely
map deep features to the current output HDR frame Ci. We
achieve the multi-module signal fusion by adding concate-
nation links between {ECi−1 ,EB−,EB+} and the decoder.

3.5. Implementation Details

Due to the setting of our method being different from
existing HDR and video frame interpolation methods, there
are no suitable datasets for training and testing our method.
Therefore, we collect a new one with three components,
whose details are summarized in Table 1 and sample im-
ages are provided in Fig. 5.
Part 1: Full-synthetic data. This part of data is obtained
by using the spike simulator proposed by Hu et al. [16].
We render 2000 RGB images with their computer graph-
ics based solution as ground truth and generate 2000 spike
planes (0.1 s). Since the photons arriving at the sensor
follow Poisson probability distribution [43], we synthesize
alternating-exposure 60 FPS RGB frames with a Poisson
noise model. For the full synthetic data, we randomly select
starting time of each group of training data. We randomly
shift the RGB frames within 3 pixels to make the trained
model more robust to the misalignment in real-world data.
Part 2: Real-synthetic data. To reduce the domain gap
between full-synthetic data and real-world data, we design
a method to collect real-synthetic (the scenes are real while
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Figure 5. Example frames from the proposed dataset. Each group
shows three alternating-exposure RGB frames (left, from top to
bottom rows) and the corresponding spike signals (right).

the spike trains are synthetic) data, and we use this part of
data to fine-tune our model. The RGB frames are captured
with an alternating-exposure mode in slow-motion scenes.
Then we synthesize blurry middle-exposure RGB frames
by averaging 4 adjacent middle-exposure RGB images, and
blurry long-exposure RGB frames are synthesized in a sim-
ilar way. We synthesize spike trains from ground truth RGB
frames with the integrate-and-fire methodology [61].
Part 3: Real-world data. We build a Spike-RGB hy-
brid camera (Fig. 6) to capture real-world data. The sys-
tem is composed of an industrial camera (Basler acA800-
510uc5) with alternating exposure capability and a spiking
camera [17]. There is a beam splitter in front of the two
sensors. We conduct geometric calibration and time syn-
chronization to align bimodal signals collected by them.
Loss and training. The SG-deblur module and the merging
module reconstruct images in the linear luminance domain,
which covers a high dynamic range of pixel values. Follow-
ing existing methods for HDR reconstruction, for the output
images C, we compress the range of pixel values by apply-
ing the following function proposed by Kalantari et al. [20]:
T (C) = log(1 + µC)/log(1 + µ), where T (·) denotes the
tone mapping operation and µ denotes the amount of com-
pression. For these two modules, we employ widely used
l1 loss, Structure similarity (SSIM) loss [53], and Learned
Perceptual Image Patch Similarity (LPIPS) loss [58]. The
total loss at step i for both the motion deblurring and merg-
ing modules is

Ltotal(i) = Ll1(i) + β1LSSIM(i) + β2LLPIPS(i), (3)

where β1 = 1 and β2 = 1. For spike-based optical flow es-
timation using [16], we fine-tune the parameters with full-
synthetic data. During training, we resize the RGB images
and spike frames to 512 × 800 and 256 × 400. We imple-
ment our model with PyTorch, set the batch size to 4, and
use ADAM optimizer during the training process. We first
train the model on full-synthetic data. The SG-deblur mod-
ule is trained with 50 epochs, before training the merging

5https://www.baslerweb.com/en/products/cameras/
area-scan-cameras/ace/aca800-510uc/

beam splitter

spiking cameraalternating-exposure RGB camera

incident light

Figure 6. The prototype of our Spike-RGB imaging system com-
posed of a spiking camera and an RGB camera.

module. We unroll the merging module for M steps, and
we find M = 4 achieves a suitable balance between train-
ing time and recovery quality. The total loss for the unrolled
M steps is Lmerge =

∑M
i=1 LM

total(i), where LM
total(i) de-

notes the total loss for the merging module at step i. The
initial learning rate for both two modules is 0.001, we de-
cay it to 10−6 with a linear strategy. For the real-synthetic
data, we fine-tune another group of parameters to reduce
the gap between synthetic data and real-world data. We use
one NVIDIA Tesla A100 for training, and the training pro-
cedure consumes about 30 hours.

4. Experiments
4.1. Quantitative Evaluation using Synthetic Data

Validation on full-synthetic data. Figure 8 shows a group
of results on full-synthetic data. We can see that both the
flying objects in the short-exposure image and the over-
saturated clouds (see the regions marked by boxes) in the
long-exposure image are recovered successfully. The re-
sults with rich textures and consistent colors show the fea-
sibility of our proposed method.
Evaluation on real-synthetic data. To the best of our
knowledge, the proposed method is the first framework
to reconstruct HFR&HDR videos with the combination of
spike trains and alternating-exposure RGB frames. There-
fore, it is unfair to compare our method with existing ones,
i.e., Kalantari13 [21], Kalantari19 [19], and Chen21 [3]6,
which are designed for low frame rate HDR videos.

We choose a state-of-the-art HDR video reconstruction
method Chen21 [3], which also uses alternating-exposure
RGB frames (the closest setup to ours) as a reference. Fig-
ure 7 shows the reconstruction results on real-synthetic
data of the proposed method and Chen21 [3]. Thanks
to the complementary motion information provided by
spike trains, the abundant color extracted from alternating-
exposure RGB frames, and the accurate textures contained
in spike frames, the proposed method is capable of recon-
structing rich texture details with less motion blur. For ex-

6In this section, we use “Last name of the first author+year” as syn-
onyms of methods for comparison.
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Figure 7. Visual equality comparison of real-synthetic data between the proposed method and the state-of-the-art HDR video reconstruction
method: Chen 21 [3]. We present two sets of results in (a) and (b). Please zoom-in electronic versions for better details, and watch the
HFR videos on the project page.
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Figure 8. Validation on the synthetic data.

ample, in the long-exposure frame in the first row of (a), the
building marked by a yellow box suffers from severe mo-
tion blur and overexposure. Chen21 [3] partially recovers
the colors of this building, but it fails to remove the blurry
artifacts. In the results generated by our method, the edges
are sharp and the colors are vivid. In Fig. 7(b), the mo-
tions across RGB frames have a very large span, Chen21 [3]
can only recover the corresponding LFR videos, while our
method can reconstruct an HFR video with smooth motion.

We evaluate the reconstructed HDR in terms of PSNR,
SSIM, HDR-VDP-2 [32], and HDR-VQM [36]. Table 2
clearly shows that our framework outperforms the state-of-
the-art method [3] in all the metrics on the real-synthetic
data in the condition of 60 FPS. And we achieve excellent
performance in the condition of 1000 FPS. We designed
ablation experiments and used them to demonstrate the ef-
fectiveness of the modules in our framework. For “w/o I”,
we simply stack the spike trains with a time window, and
upsample them using bilinear interpolation; for “w/o PS”,
we replace PixelShuffle with a convolutional layer. The
two groups of experiments verify the effectiveness of spike
frame preprocessing in Step ①. For “w/o F1” and “w/o F2”,
we remove the flow-based interpolation in the deblurring
module and the merging module. The two groups of ex-

Table 2. Quantitative results and ablation study on our real-
synthetic data. We sample 60 FPS videos from our results for
the comparison with Chen21 [3]. ↑ (↓) indicates larger (smaller)
values are better.

Comparison with the state-of-th-art method
Method PSNR↑ SSIM↑ HDR-VDP2↑ HDR-VQM↓ FPS
Chen21 [3] 18.46 0.697 27.34 0.536 60Ours 30.14 0.921 60.14 0.093
Chen21 [3] / / / / 1000Ours 24.38 0.903 47.79 0.120

Ablation study
w/o I 23.15 0.886 46.03 0.143

1000

w/o PS 23.98 0.881 46.47 0.141
w/o F1 19.76 0.723 38.95 0.314
w/o F2 18.04 0.716 35.89 0.356
w/ t-loss 22.41 0.864 43.64 0.142
w/o DeConv 24.31 0.897 47.66 0.127
w/o DM 19.01 0.714 37.97 0.338

periments verify the effectiveness of SC-Flow [16] based
interpolation in Steps ② and ③. To further verify the effec-
tiveness of deblurring module, we completely remove it in
“w/o DM”. For “w/o DeConv”, we replace the deformable
convolutional layers with traditional convolution layers. For
“w/ t-loss”, we remove the warping operation on Ci−1 and
add the temporal consistent loss that is estimated by a pre-
trained optical flow model [23], which is widely used in
video processing [5, 39]. Since the Ci−1 is warped by ac-
curate optical flow Fi−1 and merged into the current step i,
our method fundamentally has a strong temporal consistent
constraint for video processing. Thus, our merging module
does not need this loss during training.

4.2. Qualitative Evaluation using Real Data

In order to demonstrate the effectiveness of the proposed
framework on real-world scenes, we collect 20 sets of real-
world data, which are captured by our hybrid camera sys-
tem shown in Fig. 6. We have compared our slow-motion
capability with that of the commercial cameras. As shown
in Fig. 9(a), the electric fan is moving at about 40 rounds
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Figure 9. Visual quality comparison of real-world data between the proposed method and commercial cameras with the slow-motion
capability. In (a), we show two adjacent frames for the video captured by smartphones that have slow-motion capability. The commercial
cameras are not calibrated so their results are not strictly aligned with ours. (b) is the comparison with Phantom camera set to 1000 FPS.
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Figure 10. Qualitative visualization of our method in a super fast
scene: a balloon bursting. We select 38 frames from our results
for showing.

per second. The short-exposure image is severely underex-
posed with less blurry artifacts, and the middle- and long-
exposure images have severe blurring and oversaturated ar-
tifacts. With the accurate motion and texture information
captured by the spiking camera, we have recovered tem-
porally smooth video sequences. Four recovered images
are shown for the middle- and long-exposure images. For
the videos captured by iPhone 13 and Mi 10, the motions
between frames are not continuous. And the electric fan
captured by Mi 10 is deformed due to the rolling shutter.
In Fig. 9(b), we compare our method with the Phantom7

camera set to 1000 FPS. Since the exposure time of the
Phantom camera is extremely short, it fails to capture re-
gions where scene radiance is weak.

5. Conclusion
We propose an HFR&HDR video reconstruction method

with a hybrid camera that is composed of an alternating-
exposure RGB sensor and a spiking sensor. Extensive ex-
periments on synthetic and real-world data demonstrate the
superior performance of the proposed method.

7Refer to footnote 2. Camera model: VEO 640, F/1.8, 85mm lens.

Discussion. (i) For super fast scenes, e.g., a balloon burst-
ing, it is difficult to capture clear motions with a conven-
tional RGB camera at 60 FPS. Therefore, the well-exposed
color of the bursting balloon is not captured with the short
exposure, which brings challenges to our reconstruction
of accurate color. In our results, although the colors are
somewhat distorted, we can still recover a smooth video
sequence. Once the frame rate of the RGB camera is in-
creased, e.g., 120 FPS, temporally smoother video with
more accurate color is expected to be more reliably recov-
ered. (ii) Since QIS [1, 29] share the same imaging model
with the spiking camera, our method is ready to be applied
to it. We show the simulation in supplementary material.
Limitation and future work. Beam splitter is arguable
for making a practical system on mobile devices. But
when compact design is not a hard constraint, beam split-
ter has unique advantages in spatial alignment, that is why
it is broadly adopted in building a hybrid prototype for
HDR [15, 24, 33, 50]. Side-by-side arrangement with par-
allax unavoidably introduces occlusions and alignment is-
sues, which is a promising direction to explore for our fu-
ture work. Due to the low spatial resolution (250×400) of
the current model we use is, we have to super-resolve the
spike frames in feature space. If higher-resolution spike sig-
nals can be directly obtained, our method can achieve better
visual quality. Besides, there is a domain gap between syn-
thetic spike trains and real-captured spike trains since the
noise of the spiking camera is more complex than the sim-
ulator. For time complexity, our approach is better suited
as a post-processing module. The number of parameters
is 45.7M and the time cost per frame is 0.371s with a sin-
gle NVIDIA GeForce RTX 3090 graphics card. We hope
to tackle these issues in the future work and achieve higher
frame rate reconstruction.
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