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Abstract

Recently, deep Stereo Matching (SM) networks have
shown impressive performance and attracted increasing at-
tention in computer vision. However, existing deep SM
networks are prone to learn dataset-dependent shortcuts,
which fail to generalize well on unseen realistic dataset-
s. This paper takes a step towards training robust models
for the domain generalized SM task, which mainly focuses
on learning shortcut-invariant representation from synthet-
ic data to alleviate the domain shifts. Specifically, we pro-
pose a Hierarchical Visual Transformation (HVT) network
to 1) first transform the training sample hierarchically in-
to new domains with diverse distributions from three levels:
Global, Local, and Pixel, 2) then maximize the visual dis-
crepancy between the source domain and new domains, and
minimize the cross-domain feature inconsistency to capture
domain-invariant features. In this way, we can prevent the
model from exploiting the artifacts of synthetic stereo im-
ages as shortcut features, thereby estimating the dispari-
ty maps more effectively based on the learned robust and
shortcut-invariant representation. We integrate our pro-
posed HVT network with SOTA SM networks and evaluate
its effectiveness on several public SM benchmark datasets.
Extensive experiments clearly show that the HVT network
can substantially enhance the performance of existing SM
networks in synthetic-to-realistic domain generalization.

1. Introduction
Stereo Matching (SM) [7,41,44] aims to find the match-

ing correspondences between a given stereo image pair and
then calculate the disparity for depth sensing in many ap-
plications, such as robot navigation and autonomous driv-
ing [1, 28]. Recently, it attracts increasing attention in the
computer vision community [4, 27, 30, 42].

With the development of deep learning [6, 18, 34–38],
Convolutional Neural Network (CNN) based deep SM net-
works have shown impressive performance benefiting from
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Figure 1. Comparison of the cross-domain SM generalization.
Columns from left to right denote a sample image, ground truth
disparities, the predicted disparities of the pretrained PSMNet
model and our HVT-PSMNet model. Both models are trained on
the synthetic SceneFlow [19] dataset and evaluated on the realistic
datasets: Middlebury, ETH3D, KITTI 2012 and KITTI 2015.

their strong ability of feature representation. However, due
to the scarcity of sufficient labeled realistic training data,
existing state-of-the-art (SOTA) SM networks usually are
trained on synthetic data, e.g. SceneFlow [19], which fail
to generalize well to unseen realistic domains as shown in
Fig. 1. Generally, the generalizability of cross-domain deep
SM networks is mainly hindered by a critical issue: SM net-
works usually learn superficial shortcut features [5] from
synthetic data to estimate the disparity. Specifically, such
shortcut features mainly include two types of artifacts: con-
sistent local RGB color statistics and overreliance on local
chromaticity features, which are domain-sensitive and non-
transferable to unseen domain. The semantic and structural
features that are truly desirable are ignored by most existing
SM networks. Therefore, the key to addressing the chal-
lenging cross-domain SM task is how to effectively learn
the domain-invariant representations of the given stereo im-
age pair for synthetic-to-realistic generalization.

Several attempts [3, 10, 15, 26, 45] have been made to
minimize the synthetic-to-realistic domain gap and learn
the domain-invariant representations for the SM task by
either 1) exploiting labeled target-domain realistic data to
fine-tune the SM network trained with synthetic data [3,10]
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or 2) jointly using the synthetic data and unlabeled target-
domain realistic data to train domain adaptive SM network-
s [15,26,45]. Despite their performance improvement on re-
alistic data, these attempts only work well when the target-
domain realistic data is provided during training and thus
can not improve the out-of-distribution (OOD) generaliza-
tion of SM networks, which are less practically useful in
real-world scenarios.

In this work, we address the important but less explored
challenging problem of single domain generalization in SM,
where only the synthetic data is available for training. Con-
sidering the fact that most existing SM networks are suscep-
tible to exploiting shortcut cues in synthetic data instead of
the semantic and structural correspondences, we propose to
learn shortcut-invariant robust representation from synthet-
ic SM image pairs for OOD generalization. Specifically,
this paper presents a Hierarchical Visual Transformation
(HVT) network to 1) first transform the synthetic training
sample hierarchically into new source domains with diverse
distributions from three levels: Global, Local, and Pixel, 2)
then maximize the image discrepancy between the synthet-
ic source domain and new domains for significantly alter-
ing the original distribution, and minimize the cross-domain
feature inconsistency to capture domain-invariant features.
In this way, we are able to prevent the model from ex-
ploiting the artifacts of synthetic stereo images as shortcut
features, thereby estimating the disparity maps more effec-
tively based on the learned shortcut-invariant feature repre-
sentation. Our basic idea is to diversify the distribution of
training data and thus force the network to overlook the ar-
tifacts from synthetic domain. Note that our proposed HVT
network is simple and can be plug-and-play. We integrate
HVT with SOTA SM networks during training and evalu-
ate its effectiveness on several challenging SM benchmark
datasets. Extensive experiments clearly show that the HVT
network can substantially enhance the performance of ex-
isting SM networks in synthetic-to-realistic domain gener-
alization without using any auxiliary data or features [17].

Our contributions can be briefly summarized as follows:
• We devise a simple yet effective domain generalized SM

framework. It leverages a hierarchical visual transforma-
tion network to effectively diversify the distribution of
training data which prevents the model from exploiting
the artifacts in synthetic data as shortcuts.

• We formulate novel learning objectives that force the
model to effectively optimize three complementary vi-
sual transformations by maximizing domain discrepancy
and minimizing feature inconsistency between synthetic
domain and new domains, thereby facilitating the learn-
ing of domain-invariant feature representation.

• Extensive experiments on four realistic SM datasets
clearly demonstrate the effectiveness and robustness of
our HVT network. The out-of-distribution generalization

ability of four SOTA SM methods has been significantly
boosted, benefiting from our solution.

2. Related Work
This section briefly introduces the learning based stere-

o matching (SM) methods from two perspectives: 1) In-
Distribution SM and 2) Our-of-Distribution SM.
In-Distribution SM. In the past decade, deep learning has
triggered the fast development of the task of SM. Mayer et
al. [19] introduced an end-to-end SM network which us-
es the correlation layer to generate the cost volume and
the 2D-CNN to aggregate the cost volume. SegStereo [33]
and EdgeStereo [27] exploit the semantic and edge cues
to help the disparity prediction. To learn better features,
AANet [30] integrates both normal convolution and de-
formable convolution for feature extraction. Furthermore,
GCNet [14] concatenates left and right features for cost
volume generation and aggregation with 3D convolutions.
GwcNet [10] proposes the group-wise correlation to con-
struct the cost volume with lower memory cost. PSM-
Net [3] proposes the spatial pyramid pooling module and
the stack hourglass network to expand the receptive field.
GANet [42] designs the image content guided layers to
globally and locally update the cost volume. LEAStere-
o [4] introduces the neural architecture searching into S-
M. In recent several years, the Cascade-based SM method-
s [9, 25, 39] first use the coarsest resolution feature maps
to predict an initial disparity, and narrow down the dispar-
ity search range to refine the disparity based on the initial
disparity. Despite the good performance of existing deep-
learning based SM networks, their training set and testing
set always follow the independent and identically distribut-
ed (IID) assumption. Most existing works usually fail to
generalize well on unseen realistic data.
Out-of-Distribution SM. Most recently, the synthetic-to-
realistic generalized SM networks [5, 16, 25, 43] have re-
ceived increasing attention. Different from those fine-
tuning or adaptation-based methods [3, 15, 26, 42, 45], they
aim to directly learn SM networks that can generalize to
unseen domains. Some works propose to improve the gen-
eralization ability by devising novel network architectures.
For example, DSMNet [43] proposes the domain normal-
ization layer and the trainable non-local graph-based filter
to learn domain-invariant structural feature. Besides, both
CFNet [25] and RAFT-Stereo [16] introduce a network ar-
chitecture with multi-scale cost volume fusion and aggre-
gation to learn robust semantic or structural features. Some
other efforts attempt to design flexible modules that can fa-
cilitate the cross-domain generalization of more existing S-
M networks. MS-Net [2] points out that learned feature is
the core reason for the poor generalization performance,
and proposes to use the traditional feature descriptors to
construct the cost. FC-Net [46] uses the stereo contrastive
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Figure 2. The pipeline of our domain-generalized SM approach. It leverages a hierarchical visual transformation module to improve the
diversity of training domain by training a domain discriminator φ(·). Its main goal is to optimize a feature extractor f(·) that can learn
shortcut-robust and domain-invariant representation, thereby facilitating the generalization of SM network in unseen realistic domains.

feature loss and the stereo selective whitening loss to en-
courage the stereo feature consistency across different do-
mains. GraftNet [17] leverages the robust broad-spectrum
feature which is trained on large-scale datasets to replace
the original feature to improve the generalization ability.
ITSA [5] generates the pixel-perturbed image through the
gradient of the features with respect to the input image, and
guides the network to learn shortcut-invariant feature.

Different from these methods, we introduce a simple yet
effective method to enhance the synthetic-to-realistic gen-
eralization. We design a hierarchical visual transforma-
tion module to diversify the training domain by maximizing
the cross-domain visual discrepancy and propose to learn
domain-invariant feature representation by minimizing the
cross-domain feature inconsistency. ITSA [5] can be gen-
erally seen as a special case of our work that diversifies the
distribution in the Pixel level. Experiments in the Sec. 4.
have clearly validated the effectiveness of our method on
improving the synthetic-to-realistic generalization of SM.

3. The Approach

3.1. Problem Overview

This work aims to improve the synthetic-to-realistic do-
main generalization for SM. Given a synthetic training set
Ds as input, consisting of |Ds| synthetic stereo image pairs
{Xl

i,X
r
i }
|Ds|
i=1 and the corresponding ground-truth dispari-

ty maps {Ygt
i }
|Ds|
i=1 , the goal is to learn a cross-domain SM

network that can effectively predict the disparity between a
pair of stereo images from unseen domains Dr. A typical
SM network FΘ(·, ·) can be formally formulated as:

Ŷ = FΘ(Xl,Xr) = s
(
g
(
f(Xl), f(Xr)

))
, (1)

where Θ denotes the total network parameters and f(·) is
a feature extraction module that yields the feature map of

stereo images. g(·) is a joint network module that first gen-
erates the cost volume by correlation or concatenation strat-
egy, and then performs the cost aggregation and refinement.
The final disparity map Ŷ is estimated by converting the re-
fined cost volumes with the soft-argmin [14] operation s(·).
The typical SM network FΘ(·, ·) is optimized by minimiz-
ing the smooth-`1 loss Lsm-`1

(
FΘ(Xl,Xr),Ygt

)
[3].

In the past years, existing efforts primarily focus on how
to devise an effective sub-network g(·) for cost volume gen-
eration and cost aggregation, while overlook the importance
of learning robust feature representations of stereo images
that can preserve the semantic and structural cues. Recent
studies pointed out that most existing SM networks trained
on synthetic data are susceptible to learn superficial shortcut
features [5] instead of the desirable semantic and structural
features, which leads to poor generalization performance in
unseen (realistic) domain due to the significant synthetic-
realistic domain gap. Therefore, the main research problem
in this work is how to train an effective feature extraction
network f(·) on only synthetic data that can learn gener-
alizable representation of stereo images, so as to estimate
reliable disparity map on unseen domain.

3.2. Our Proposed Method

Our target is to tackle the synthetic-to-realistic general-
ization in SM. Its main challenge is that we only have syn-
thetic data for training, which has the high risk of overfit-
ting to synthetic data due to its limited diversity. Inspired
by [13, 29, 40, 47], we address the domain generalized SM
from a new perspective in this work. The rest of this section
will introduce our proposed network for this task in detail.
The pipeline of our proposed HVT is shown in Fig. 2

3.2.1 Hierarchical Visual Transformation
As we know, the key to addressing domain generalization
is learning domain-invariant feature, also called causal fea-
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ture. Although the explicit form of causal feature is un-
known in general, we have the prior that causal feature
should remain invariant to certain transformations [29]. For
example, the semantic and structural features can be treat-
ed as two domain-invariant (causal) features of stereo im-
ages for SM, while adjusting the luminance, contrast, or
saturation of a stereo image pair will not affect the corre-
sponding disparity map. Our intuitive idea is to leverage
the visual transformations that do not change the underlying
domain-invariant feature to increase the diversity of training
domain, thereby enhancing the generalization performance
of SM network. It is a straightforward but effective way.
To this end, we design a Hierarchical Visual Transforma-
tion (HVT) network to diversify the distribution of training
domain. Specifically, we learn a set of visual transforma-
tions T = {T1, · · · , TM} at different levels to transform
the original stereo image pairs as

(
T (Xl), T (Xr)

)
, where

T ∈ T . We force the visual transformation T (·) to meet the
following three requirements:

• T (·) should induce large visual discrepancy between the
original stereo image and the transformed images to en-
large the diversity of training domain.

• T (·) should not change the target disparity map of the
original stereo image pairs. We should minimize the
smooth-`1 loss Lsm-`1(FΘ(T (Xl), T (Xr)),Ygt) where
the transformed stereo images are fed into.

• The representation of the transformed stereo images
f (T (X)) should be consistent with that of the original
images f (X), so as to learn domain-invariant features.

Following the above-listed requirements, we describe the
implementation of our proposed HVT network as follows.

Implementation of HVT. To effectively learn domain-
invariant feature representation for the challenging SM task,
we transform the stereo image from three complementary
perspectives: Global, Local, and Pixel.

(1) Global: The Global visual transformation TG(·) aims to
globally change the distribution of stereo images by sequen-
tially adjusting the basic visual attributes of images: Bright-
ness, Contrast, Saturation, and Hue based on the four corre-
sponding sub-transformations {TB

G , T
C
G , T

S
G , T

H
G }, follow-

ing the pipeline of automatic image editing [12]. The three
sub-transformations {TB

G , T
C
G , T

S
G} can be formulated as:

T I
G(X) = αI

GX + (1− αI
G)oI(X), (2)

where I ∈ {B,G, S}. The αI
G is a randomly selected posi-

tive constant in an adjustable range of [τ Imin, τ
I
max],{

τ Imin = 1−
(
µσ(%Il ) + β

)
τ Imax = 1 +

(
µσ(%Ih) + β

) , (3)

where σ(·) denotes the sigmoid function, %Il ∈ R1 and
%Ih ∈ R1 are two learnable parameters, µ and β are two
positive hyper-parameters. The operation oI(·) in Eq. (2)

is customized as follows. Specifically, for the Brightness,
oB(X) = X·O where O denotes a zero matrix all of whose
entries are zero. For the Contrast, oC(X) = Avg(Gray(X))
where Gray(·) transforms the RGB image into a gray-scale
image and Avg(·) computes the mean value of all pixels.
For the Saturation, oS(X) = Gray(X). The Hue adjust-
ment is defined as:

TH
G (X) = Rgb([h + αH

G , s,v]), (4)

where [h, s,v] = Hsv(X) denotes the three components of
X in the HSV color space and h denotes the Hue compo-
nent. Rgb(·) transforms the image from the HSV space into
the RGB space. The αH

G ∈ R1 is randomly selected from an
adjustable range of [τHmin, τ

H
max], where τHmin = −µσ(%Hl )−β

and τHmax = µσ(%Hh ) + β.
Note that the order of the sequential sub-transformations

{TB
G , T

C
G , T

S
G , T

H
G } is random to improve the diversity.

(2) Local: The Local visual transformation TL(·) aims to lo-
cally modify the distribution of stereo training images. The
basic pipeline is that we first slice the given stereo image
into N ′ ×N ′ non-overlapping patches {xp

1, · · · ,x
p
N ′×N ′},

then transform each image patch xp
i by a global transfor-

mation T p
L(·), and finally merge these transformed image

patches into the stereo image based on the original sequen-
tial order. The output can be described by

TL(X) = Merge
(
[T p

L(xp
1), · · · , T p

L(xp
N ′×N ′)]

)
, (5)

where Merge(·) denotes the Merge operation.
Note that patch-level transformation T p

L(·) for each patch
doesn’t share parameters with each other to improve the di-
versity. T p

L(·) can be implemented by existing style trans-
fer networks, e.g. Adain [22] or Fourier-based method [31].
To better complementing our Global transformation, patch-
level transformation T p

L(·) is implemented by TG(·) in E-
q.(2) and Eq.(4) for its simplicity and effectiveness.

(3) Pixel: The Pixel visual transformation TP (·) aims to
perturb the given stereo images with a pixel-level perturba-
tion matrix. It can be formulated as:

TP (X) = X +
(
µσ(W) + β

)
P (6)

where P ∈ RH×W×3 is a randomly generated Gaussian
matrix with the mean of 0 and the standard deviation of 1,
and W ∈ RH×W×3 is a learnable matrix. Different from
the Global and Local transformations, TP (·) can alter the
distribution of synthetic data in a more granular fashion.

Remark: The implementation of HVT is mainly motivat-
ed by the empirically found evidence [5] that existing SM
networks are susceptible to exploit common artifacts (e.g.
consistent local RGB color statistics and overreliance on
local chromaticity features) of synthetic stereo images as
shortcuts, which can be clearly illustrated by Fig. 3. We
observe from Fig. 3 that the PSMNet is quite sensitive to
the different levels of perturbation. It reflects that PSM-
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Figure 3. Examples of visualized output of three visual transfor-
mations (top-2 rows of (a) and (b)) and the corresponding disparity
error maps |Ŷ−Ygt| (the 3-rd row of (a) and (b)) of the PSMNet
trained on the synthetic SceneFlow dataset. The EPE values are
marked in the bottom of the 3-rd row for comparison.

Net doesn’t capture the robust semantic and structural fea-
tures of stereo images. Our method is specially devised to
improve the robustness and generalization ability of exist-
ing SM method. The design of the three different transfor-
mations {TG(X), TL(X), TP (X)} can effectively diversify
the training domain and prevent the shortcuts from being
encoded into the stereo image representation f(X).

3.2.2 Learning Objectives

To effectively train our proposed HVT network for the do-
main generalized SM task, we introduce the following loss
terms for network optimization.
Maximizing Cross-Domain Visual Discrepancy: In this
work, without having access to the target domain, we pro-
pose to improve the SM network’s generalization by trans-
forming the synthetic source domain data into several new
source domains {TG(X), TL(X), TP (X)} to diversify the
training domain. Our first objective is to force the distribu-
tions of new source domains to be dissimilar as possible to
the original distribution of synthetic data. Then we should
maximize the following cross-domain visual discrepancy as

maxLdisc(X) =
1

3

∑
J

d(TJ(X),X) (7)

where J ∈ {G,L, P}, and d(·) is a domain discrepancy
measure. In this work, we introduce a specific feature ex-
traction network φ(·) for domain discriminating. Then we

implement Eq. (7) by minimizing the domain similarity as

minLsim(X) =
1

3

∑
J

Cos (φ(TJ(X)), φ(X)) , (8)

where Cos(·, ·) denotes the cosine similarity function. φ(X)
denotes the pooled feature vector from the domain discrimi-
nating network φ(·). Besides, to further improve the domain
discrepancy, we also minimize the following cross-entropy
loss for domain classification:

minLce(X) = CE ({φ(TJ(X)), φ(X)} ,Yd) , (9)

where CE(·, ·) denotes the standard cross-entropy loss and
Yd denotes the domain labels of four source domains.

Minimizing Cross-Domain Feature Inconsistency: To
enhance the model’s generalization ability, we need to learn
domain-invariant representation of stereo images. We ex-
pect that our visual transformation T (·) doesn’t change the
core features (e.g., semantic and structural features) of im-
ages for stereo matching. Therefore, our second objective is
to force the feature representation of transformed stereo im-
ages to be consistent with that of original synthetic images.
Then we minimize the following pairwise distance term:

minLdist(X) =
1

3

∑
J

‖f (TJ(X))− f (X)‖2 , (10)

which facilitates the learning of shortcut-robust and domain
invariant features for domain-generalized stereo matching.
In summary, our model is trained by minimizing the linear
combination of the above-mentioned learning objectives:

minL =Lsm-`1(Ŷ,Ygt)+

1

2
(λ1Ldist(X)+λ2Lsim(X)+λ3Lce(X)) ,

(11)

The full loss L is computed as the average over a training
batch. The smooth-`1 loss Lsm-`1 is computed based on not
only the original synthetic image pairs {Xl,Xr} but also
the transformed image pairs {TJ(Xl), TJ(Xr)}. λ1, λ2,
and λ3 are three trade-off hyper-parameters.

4. Experiments
In this section, we quantitatively and qualitatively con-

duct extensive experiments to answer the following research
questions: R1: Can the HVT effectively improve the gen-
eralization performance of existing SM networks? Can our
performance reach the SOTA level? R2: Do the three trans-
formations in the HVT effectively complement to each oth-
er? R3: Can our approach learn the domain-invariant fea-
tures? R4: How is the robustness of our approach when
tested in complex realistic scenarios?

4.1. Dataset and Experimental Setting

Datasets. We use the SceneFlow [19] dataset for train-
ing and four realistic SM datasets (KITTI 2012 [8], KIT-
TI 2015 [20], Middlebury [23] and ETH3D [24]) for e-
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KITTI 2015 KITTI 2012 Middlebury(H) ETH3DBaselines Methods EPE D1(3px) EPE D1(3px) EPE D1(2px) EPE D1(1px) References

GANet [42] 2.31 11.7 1.93 10.1 5.41 20.3 1.33 14.1 CVPR 2019
CasStereo [9] 2.42 11.9 2.12 11.8 3.71 17.2 0.87 7.8 CVPR 2020-
DSMNet [43] 1.46 6.5 1.26 6.2 2.62 13.8 0.69 6.2 ECCV 2020
PSMNet [3] 3.17 16.3 2.69 15.1 7.65 34.2 2.33 23.8 CVPR 2018
MS-PSMNet [2] 1.64* 7.8 2.33* 14.0 4.72* 19.8 1.42* 16.8 3DV 2020
FC-PSMNet [46] 1.58* 7.5 1.42* 7.0 4.14* 18.3 1.25* 12.8 CVPR 2022
ITSA-PSMNet [5] 1.39* 5.8 1.09* 5.2 3.25* 12.7 0.94* 9.8 CVPR 2022
Graft-PSMNet [17] 1.32 5.3 1.09 5.0 2.34 10.9 1.16 10.7 CVPR 2022

PSMNet [3]

HVT-PSMNet 1.14±0.02 4.9±0.12 0.93±0.02 4.3±0.06 1.46±0.13 10.2±0.16 0.47±0.03 6.9±0.23 Ours
GwcNet [10] 3.43 22.7 2.77 20.2 7.23 37.9 2.78 54.2 CVPR 2019
FC-GwcNet [46] 1.72* 8.0 1.45* 7.4 5.14* 21.1 1.13* 11.7 CVPR 2022
ITSA-GwcNet [5] 1.33* 5.4 1.02* 4.9 2.73* 11.4 0.62* 7.1 CVPR 2022GwcNet [10]

HVT-GwcNet 1.15±0.02 5.0±0.11 0.88±0.02 3.9±0.13 1.29±0.13 10.3±0.21 0.46±0.08 5.9±0.26 Ours
CFNet [25] 1.71 6.0 1.04 5.2 3.24 15.4 0.48 5.72 CVPR 2021

CFNet [25] ITSA-CFNet [5] 1.09 4.7 0.87 4.2 1.87 10.4 0.45 5.1 CVPR 2022
HVT-CFNet 1.10±0.04 4.9±0.16 0.85±0.02 4.0±0.14 1.79±0.22 10.2±0.16 0.39±0.02 4.5±0.24 Ours
RAFT [16] 1.26 5.7 1.01 5.1 1.92 12.6 0.36 3.3 3DV 2021RAFT [16] HVT-RAFT 1.12±0.02 5.2±0.09 0.87±0.02 3.7±0.08 1.37±0.11 10.4±0.14 0.29±0.01 3.0±0.09 Ours

Table 1. Performance comparison with SOTA domain generalized SM networks. The * denotes our reproduced EPE results since the
authors only use the D1 metric. As we didn’t have a validation set for model selection, we report the average result over last 5 epochs.

valuation. SceneFlow [19] is a large-scale synthetic SM
dataset containing 35,454 training stereo image pairs and
4,370 testing image pairs with a resolution of 960×540. All
the synthetic image pairs have dense annotations of ground-
truth disparities. KITTI 2012 [8] and KITTI 2015 [20] con-
sists of 194 and 200 training stereo image pairs collected
in outdoor driving scenes with sparse annotations of dis-
parities, respectively. Middlebury [23] includes 15 high-
resolution stereo image pairs in indoor scenes. In our exper-
iments, we use the half-resolution version (Middlebury(H))
for evaluation. ETH3D [24] has 27 grayscale stereo image
pairs collected from both indoor and outdoor scenes.
Metrics. Following the setting of [17], we use both EPE
rate (End-Point Error) and D1 error rate (%) with different
pixel threshold ρ as the metrics to get a more comprehen-
sive evaluation. The EPE measures the average disparity
error over all pixels, which reflects the average disparity es-
timate. The D1 error rate computes the percentage of error
pixels with absolute error larger than a specific threshold ρ.
The pixel threshold is set as ρ=3px for KITTI 2012 [8] and
KITTI 2015 [20], ρ=2px for Middlebury [23] and ρ=1px for
ETH3D [24], respectively, following recent works [17, 46].
Baselines. We select four SM networks as baselines,
including two well-studied and commonly-used methods
(PSMNet [3] and GwcNet [10]) and two SOTA methods
(CFNet [25] and RAFT [16]), in our experiments. We will
integrate our HVT networks with these baseline networks to
validate the effectiveness of HVT on domain generalization.
Implementation Details. Following [43], we use the do-
main normalization technique in the feature extraction mod-
ule for all baselines. Except the RAFT [16], all the baselines
are implemented by PyTorch [21] with Adam (β1 = 0.9, β2

= 0.999) optimizer. We train the model for 45 epochs with
the batch size of 8. Besides, we introduce an incremen-

tal training scheme to stably optimize the network in this
work. Specifically, we train the model with TG(·) only for
15 epochs at Stage I, then we further train the model with
{TG(·), TL(·)} for another 15 epochs at Stage II, and finally
we continually train the model with {TG(·), TL(·), TP (·)}
for the remaining 15 epochs at Stage III. The learning rate
is set to 0.001 and decreased by half after epoch 10, 20, 30
and 40. For the RAFT [16] baseline, we train the model for
total 30K steps and train each stage 10K steps. The opti-
mizer and learning rate follow its original setting. Besides,
the asymmetric chromatic augmentation is not used in any
models to avoid unfair experimental comparison. We select
ResNet18 [11] as the domain discriminating network φ(·)
for its simplicity. For different hyper-parameters, the µ and
β in Eq. (3) and (6) are set as 0.1 and 0.15 respectively. The
λ1, λ2 and λ3 in Eq. (11) are set as 1, 0.5 and 0.5 respec-
tively. The N ′ = 4 in TL(·). Note that all the SM networks
are only trained on the synthetic dataset, SceneFlow. The
target data is strictly inaccessible during training.

4.2. Overall Performance Comparison

R1: Comparison with Baselines and SOTAs. In Tab. 1,
we report the comparison of generalization performance be-
tween the baselines (PSMNet, GwcNet, CFNet, and RAFT)
and our HVT-integrated methods, as well as the comparison
between ours and the reported SOTA results, across the four
realistic datasets. We have the following observations:
• The synthetic-to-realistic generalization performances of

all the baselines are consistently improved by our HVT in
all settings. Specifically, compared with the widely-used
PSMNet [3], the performance improvements w.r.t. the D1
metric are 11.4%, 10.8%, 24%, and 16.9%, respectively
on the four datasets. Similar improvement can also be
observed on GwcNet [10]: 17.7%, 16.3%, 27.6%, and
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KITTI 2015 Middlebury ETH3D
Baselines Global Local Pixel

EPE 3px EPE 2px EPE 1px
X % % 1.31 6.07 2.04 13.7 0.48 9.4
% X % 1.28 6.03 1.69 12.5 0.59 10.7
% % X 1.27 6.29 2.39 14.6 0.57 9.9
X X % 1.23 5.47 1.57 11.1 0.53 9.1
X % X 1.19 5.57 1.44 11.2 0.51 7.7
% X X 1.27 5.72 1.58 10.9 0.62 7.9

PSMNet [3]

X X X 1.14 4.93 1.46 10.2 0.47 6.9

X % % 1.28 5.89 1.88 12.6 0.74 8.2
% X % 1.26 5.88 1.64 11.9 0.68 8.5
% % X 1.29 6.18 1.83 12.4 0.71 8.3
X X % 1.23 5.38 1.58 10.4 0.58 7.8
X % X 1.19 5.52 1.49 10.7 0.55 7.1
% X X 1.18 5.47 1.57 10.6 0.52 6.9

GwcNet [10]

X X X 1.15 5.02 1.29 10.3 0.46 5.9

Table 2. Ablation studies on the effect of three visual transforma-
tions (Global, Local, and Pixel) on three datasets using the two
well-studied baselines, PSMNet [3] and GwcNet [10].

48.3% w.r.t. the D1 metric. Even compared with the SO-
TA CFNet [25] and RAFT [16], the D1 error rates are still
substantially decreased: 1.1%, 1.2%, 5.2%, and 1.2% for
CFNet, and 0.5%, 1.4%, 2.2%, and 0.3% for RAFT. The
quantitative comparison clearly shows the effectiveness
of HVT on enhancing the robustness of SM models. The
improvement can be mainly attributed to the fact that our
HVT significantly diversify the visual distribution of o-
riginal synthetic images, thus preventing the model from
building the spurious relationship between the pairwise
input and the target disparity. The model will not easily
find the matching correspondences across the stereo im-
ages by just leveraging the shortcut cues, e.g., local RGB
color statistics and chromaticity features.

• The improvements of generalization performance
brought by HVT on the Middlebury and ETH3D datasets
seem to be much larger that those on the KITTI 2012
and 2015 datasets. The reason is that Middlebury has
higher resolution images in realistic scenarios than those
in KITTI 2012 and 2015, and the images in ETH3D are
all grayscale which are very different from the colorful
synthetic training images. It reflects that our HVT can
perform well in diverse realistic scenarios that differ
from training domain in resolution and color distribution.

• Our HVT-enhanced methods almost outperform all the
SOTA methods except ITSA-CFNet on KITTI 2015. It
shows the strong potential of our HVT in improving the
cross-domain generalization. Note that the three transfor-
mations devised in this work are all simple and straight-
forward. The performance can be further improved if we
introduce more delicate transformations into our HVT.
Besides, the performance of ITSA-CFNet on KITTI 2015
is already very high w.r.t. the EPE and D1 metrics, 1.09
and 4.7%. Our HVT-CFNet’s performance is on a par

KITTI 2015 Middlebury ETH3DBaselines Obj-1 Obj-2 EPE 3px EPE 2px EPE 2px
% % 1.67 7.74 2.88 15.1 0.89 13.2

PSMNet [3] % X 1.31 6.23 2.04 11.7 0.63 10.1
X X 1.14 4.93 1.46 10.2 0.47 6.9
% % 1.64 7.58 2.65 14.6 0.86 12.4

GwcNet [10] % X 1.28 6.07 1.93 11.3 0.57 9.2
X X 1.15 5.02 1.29 10.3 0.46 5.9

Table 3. Ablation studies of our two main optimization objectives:
Obj-1 (i.e., Eq. (8) and Eq. (9)) and Obj-2 (i.e., Eq. (10)).

Figure 4. Visualization of RGB color histograms (see (b)) and vi-
sual feature histograms (see (c)) of original image and transformed
images (see (a)) based on the HVT-PSMNet method. The original
image is randomly selected from the realistic Middlebury dataset.

with that of the ITSA-CFNet.
• Benefiting from using HVT, the performances of weak

baselines, i.e., PSMNet and GwcNet, have been in-
creased to the SOTA level, especially on the top-three
datasets. It reflects that the critical step for the domain-
generalized SM task is to learn domain-invariant repre-
sentation from diverse training domain instead of devis-
ing different complex network modules for cost volume
generation or aggregation. It further validates the ratio-
nale of our HVT.

4.3. Ablation Studies

R2: The Complementation of HVTs. As shown in Tab.
2, we investigate the effect of the HVT module by grad-
ually adding the visual transformations in two baselines,
PSMNet [3] and GwcNet [10]. We observe that the three
visual transformations can complement well to each other.
Specifically, only using one of the three transformations can
also facilitate the performance improvement of baselines.
When using more visual transformations, we observe con-
sistent performance gains across the three realistic datasets.
For example, the D1 error rates of TG(·)-enhanced PSM-
Net have been decreased from 6.07%, 13.7%, and 9.4% to
5.57%, 11.2%, and 7.7%, respectively, when jointly using
TG(·) and TP (·). The best performances are observed when
all the three transformations are jointly used. Similar per-
formance improvements can also be observed when Gwc-
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Methods Sunny Cloudy Rainy Foggy Avg.
PSMNet [3] 62.5 60.1 60.5 68.6 63.9
FT-PSMNet [5] 4.0 2.9 11.5 6.5 6.3
FC-PSMNet [46] 4.9 4.3 7.2 6.2 5.7
ITSA-PSMNet [5] 4.8 3.2 9.4 6.3 5.9
HVT-PSMNet 4.2 3.1 8.7 5.6 5.4
GwcNet [10] 18.1 24.7 28.2 28.3 24.8
FT-GwcNet [5] 3.1 2.5 12.3 6.0 6.0
ITSA-GwcNet [5] 4.4 3.3 9.8 5.9 5.9
HVT-GwcNet 3.4 3.5 8.6 5.6 5.3

Table 4. Robustness comparison of different methods on the Driv-
ingStereo [32] dataset collected from complex realistic scenarios:
Sunny, Cloudy, Rainy, and Foggy. The D1 (3px) metric is used.

Net is used as the SM baseline.

R3: Learning Domain-Invariant features. The core of
our approach is to learn shortcut-robust features that can
generalize well to unseen domains. As illustrated in Fig. 4
(b), we observe that the hierarchical visual transformation-
s significantly alter the RGB color histograms of original
stereo image in the levels of Global, Local, and Pixel. Bene-
fiting from the minimization of cross-domain feature incon-
sistency in Eq. (10), the image representation f(X) seems
to be invariant across different domains as shown in Fig. 4
(c). Tab. 3 quantitatively investigate the effect of learning
objective in Eq. (10). We can observe a clear performance
improvement by just minimizing the cross-domain feature
inconsistency (Obj-2 in Tab. 3). Obviously, by jointly opti-
mizing the two objectives, we obtain the best generalization
performance. The quantitative and qualitative results clear-
ly reflects the importance and efficacy of the two learning
objectives in Sec. 3.2.2.

R4: Robustness to Complex Realistic Scenarios. In
this section, we evaluate the generalization of our HVT-
enhanced methods on the DrivingStereo [32] dataset which
is collected from complex realistic scenarios: Sunny,
Cloudy, Rainy, and Foggy, as shown in Fig. 5. We conduc-
t experiments using the PSMNet [3] and GwcNet [10] as
the baseline frameworks. The results of officially released
fine-tuned (FT) networks of PSMNet and GwcNet on the
realistic KITTI 2015 dataset are included for comparison.
Besides, we also include the results of SOTA domain gen-
eralized SM methods [5, 46] in the Tab. 4. We have the
following observations from Tab. 4 and Fig. 5:

• Our methods (HVT-PSMNet and HVT-GwcNet) obtain
the best overall performance (5.4% and 5.3%) w.r.t. the
average D1 error rate over the four groups of weather
conditions, which demonstrates the efficacy of HVT and
the strong robustness of HVT-based methods.

• HVT-PSMNet and HVT-GwcNet not only outperform
the baselines PSMNet and GwcNet, respectively, by a
large margin, but also decrease the error rates of the FT-
PSMNet and FT-GwcNet on the Rainy and Foggy groups.

HVT-PSMNetFT-PSMNetPSMNet

cl
ou

dy
su

nn
y

4.35 1.03 1.06

7.15 1.11 1.15

29.83 2.94

24.61 3.15 1.75

fo
gg

y
ra

in
y

1.44

Input (Left)

Figure 5. Qualitative results on the DrivingStereo [32] dataset. For
each group, top row shows the left image and the EPE error map-
s of PSMNet, fine-tuned (FT) PSMNet, and our HVT-PSMNet,
respectively. Bottom row shows the GT disparity map and the pre-
dicted disparity maps of different methods. The EPE values are
marked in the upper right corner of error maps.

On another two groups, both fine-tuned (FT) models per-
form slightly better than our HVT, since images in the
two groups are similar to the KITTI training data. The
results reflect that our HVT can effectively deal with the
domain shift between the synthetic data and realistic data.

• Fig. 5 shows the qualitative robustness comparison in dif-
ferent weather conditions. The observation from Fig. 5 is
consistent with that from Tab. 4, which further validates
the potential of HVT in enhancing the model robustness.

5. Conclusion
In this work, we have devised an effective HVT mod-

ule for the problem of domain generalized SM. To prevent
the network from exploiting the shortcut features for dis-
parity estimation, we propose to 1) first diversify the train-
ing domain by leveraging the three complementary visual
transformations, where the cross-domain visual discrepan-
cy is maximized, and 2) minimize the cross-domain fea-
ture inconsistency to effectively capture domain-invariant
features. Our proposed method is simple and can be flex-
ibly integrated with most existing SM networks. Exten-
sive experimental results show that our HVT consistently
advances the learning of shortcut-robust features and sub-
stantially improves the generalization performance of SM
networks in unseen realistic scenarios. In the future, we
will attempt to design more delicate visual transformations
to enhance HVT and extend HVT for addressing other 3D
vision tasks.
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