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Figure 1. Language-based colorization results given four different language descriptions, compared with ML2018 [29], L-CoDe [42], and

L-CoDer [6]. Top left: For the description that has clear correspondences between color words and object words, our method correctly

colorizes all corresponding regions. Top right: For the description that assigns distinct colors for every instance corresponding to the

same object words, our model predicts the exact correspondence between the instance region and the color word. Botton left: For

the description that includes unobserved correspondences between color words and object words, our method could adaptively parse the

sentence and determine the correct semantics for colorization. Bottom right: For the description that is against the statistical correlation

between luminance and color words, our method shows the robustness and colorize description-consistent results.

Abstract

Language-based colorization produces plausible col-
ors consistent with the language description provided by
the user. Recent studies introduce additional annotation
to prevent color-object coupling and mismatch issues, but
they still have difficulty in distinguishing instances corre-
sponding to the same object words. In this paper, we pro-
pose a transformer-based framework to automatically ag-
gregate similar image patches and achieve instance aware-
ness without any additional knowledge. By applying our
presented luminance augmentation and counter-color loss
to break down the statistical correlation between luminance
and color words, our model is driven to synthesize colors
with better descriptive consistency. We further collect a
dataset to provide distinctive visual characteristics and de-
tailed language descriptions for multiple instances in the

# Equal contributions. * Corresponding author.

same image. Extensive experiments demonstrate our ad-
vantages of synthesizing visually pleasing and description-
consistent results of instance-aware colorization.

1. Introduction

Image colorization aims to predict missing chromatic

channels from a given grayscale image, which has been

widely used in black-and-white image restoration, artistic

creation, and image compression. Since there are multiple

reasonable choices for the colorization result, an increasing

amount of effort has focused on introducing user-friendly

interactions to determine a unique solution, e.g., user scrib-

ble [33, 51], and reference example [2, 16, 47]. In con-

trast to these visually-concrete conditions, the language de-

scriptions have higher information density to flexibly repre-

sent high-level semantics, which empowers the colorization

model to concrete visually-abstract user intention.

Language-based colorization aims to produce visually
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pleasing and description-consistent results guided by the

user-provided caption. In such a task, the most crucial

stage is to establish the correspondence between the col-

ors in the language description and the regions in the im-

age. Cross-modality feature fusion modules are designed

in earlier methods [8, 29, 45, 56], but they are ineffective in

generating satisfactory results on samples with fewer ob-

served color-object correspondences and insufficient color

descriptions. By introducing additionally annotated cor-

respondences between object words and color words, re-

markable improvements are observed on recently reported

results on a wide variety of images [6, 42], but these meth-

ods still face challenges in distinguishing instances corre-

sponding to the same object words (e.g., the “woman” in

Fig. 1 top/bottom right). While introducing additional ex-

ternal priors (e.g., detection boxes [35]) is an alternative ap-

proach to achieve instance-aware colorization, it may not

perform well on “out-of-distribution” scenarios [41].

In this paper, we propose Language-based Colorization

with Instance awareness (L-CoIns) to adaptively establish

the correspondence between instance regions and color de-

scriptions without additionally using external priors. L-

CoIns considers an image as a composition of a number

of groups with similar colors, hence adopting a group-

ing mechanism to automatically aggregate similar image

patches for correctly identifying corresponding regions to

be colorized (Fig. 1 top left, regions of women are cor-

rectly identified) and distinguishing instances correspond-

ing to the same object words (Fig. 1 top right, correspond-

ing colors are assigned to different instances) in an unsuper-

vised manner. Our model is able to more flexibly assign col-

ors for instances, even when correspondences never occur

during training, as opposed to learning manually annotated

multiple color-object correspondences (Fig. 1 bottom left,

the correspondence between violet and shirt is unobserved).

We propose the luminance augmentation and counter-color

loss to break down the statistical correlation between lumi-

nance and color words so that L-CoIns could produce col-

orization results that are more consistent with the given lan-

guage description (Fig. 1 bottom right, yellow and orange

successfully colorize darker and brighter regions).

Our contribution could be summarized as follows:

• Without additionally annotating correspondences or

external priors, we provide the grouping transformer to

aggregate similar image patches and learn inter-group

relations for instance-aware language colorization.

• We present the luminance augmentation and counter-

color loss that stick the model to colorize according

to the language description rather than the statistical

correlation between luminance and color words.

• We collect a multi-instance dataset that offers mis-

cellaneous cases with distinctive visual characteris-

tics and detailed language descriptions for various in-

stances within an image.

2. Related Works

Automatic colorization. Automatic colorization pursues

to generate diverse, colorful, and plausible results in a

data-driven manner without additional user-provided guid-

ance. Chen et al. [9] build the first deep-learning based

colorization model by using handcraft features. After

that, researchers focus on designing adaptive feature ex-

traction modules by introducing CNN [19, 25, 49]. Re-

cently, the colorization model architecture gradually moves

to transformer [15] by proposing novel attention modules

[20, 24, 41]. In addition to exploring advanced generative

models (e.g., VAE [11], GAN [4, 38], INN [1]) for creat-

ing vivid colorization results, researchers also pay atten-

tion to adopting external priors (e.g., pretrained generative

model [22, 43], categories [38], and semantic segmenta-

tion [52, 53]) to obtain high-level semantic understanding

of images and further improve the colorization fidelity. Es-

pecially, InstColor [35] uses a pretrained detection model to

predict bounding boxes of instances so that multiple objects

could be separately colorized. However, taking external

priors relies heavily on the performance of upstream mod-

els [41]. To take a step towards general colorization scenar-

ios, recent works introduce predefined priors (e.g., palette

histogram [39] and superpixel [44]) to guide colorization by

specifically designed supervisory signals. In this paper, we

further explore how to perform instance-aware colorization

without requiring additional external knowledge.

Language-based colorization. Given a user-provided lan-

guage description that contains objects and their respec-

tive colors, language-based colorization aims to produce

appropriate colorization results consistent with the descrip-

tion. Manjunatha et al. [29] design novel feature-wise

affine transformations to inject language condition into im-

age features and propose the first language-based coloriza-

tion method. Similar approach is adopted by Chen et al. [8],

which fuses image and language features spatially by a re-

current attentive model. Inspired by automatic coloriza-

tion methods [53], Xie et al. [45] introduce external pri-

ors to capture high-level image semantic by learning se-

mantic segmentation as a side task. Recently, UniColor

[17] designs the first unified framework to support coloriza-

tion with multi-modal interactions (e.g., language, scribble,

and exemplar). Although these methods have made great

progress in generating vivid colorization results, it is diffi-

cult to correctly inject color words into corresponding im-

age regions due to the semantic chasm between image and

language. As alternative solutions, L-CoDe [42] and L-

CoDer [6] employ additionally annotated correspondence

between object words and color words to decouple language

description into object space and color space so that they
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could assign image regions with specific color words. How-

ever, these approaches make the vocabulary and the flexibil-

ity of description limited by the annotated correspondence,

which motivates us to come up with a new solution that

adaptively learns the correspondence between instances re-

gions and color words.

Vision transformer. Transformer [37] is firstly demon-

strated effective in natural language processing with the

multi-head attention mechanism to model global token-to-

token relationships. Recently, researchers have successfully

developed vision transformer for a wide range of vision

applications, e.g., image classification [15], object detec-

tion [5, 55], and semantic segmentation [34, 54]. Great ef-

forts have also been made to adapt vision transformer mod-

els to low-level vision problems, e.g., inpainting [26, 28],

super resolution [7, 27], and colorization [20, 24, 41]. Ob-

serving that the unique feature fusion mechanism of trans-

former is naturally applicable for cross-modality tasks, e.g.,

text-to-image generation [14, 32], referring segmentation

[13, 46, 48], and visual grounding [10, 31], we also build

our language-based colorization solution based on the trans-

former architecture as the previous work [6].

3. Methodology

This section provides a brief overview of L-CoIns be-

fore going into further details that elaborate designs of the

modules.

3.1. Framework

We show the pipeline of L-CoIns in Fig. 2, which could

be divided into the following four steps: (i) Hiding illumi-
nance cues. To prevent the colorization model from assign-

ing the color to instances based on the statistical correlation

between luminance and color words rather than understand-

ing the language description, we randomly transform the

illuminance with luminance augmentation before feeding

grayscale images into the colorization model. (ii) Unify-
ing cross-modality conditions. In addition to introducing

multiple learnable vectors as group tokens, we also employ

separate transformers to encode grayscale images and lan-

guage descriptions into tokens so that they could be mapped

into the same representation to bridge the semantic chasm.

(iii) Learning inter-token relationship. To enable global

interaction between tokens and improve understanding of

the relationship between tokens, a grouping transformer is

proposed to inject color features into image tokens, aggre-

gate image features into group tokens, and finally correctly

colorize the corresponding instance. (iv) Optimizing col-
orization error. Beyond optimizing the chromatic error in

a regression manner, we further design a counter-color loss

as the grouping supervisory signal to reduce grouping error,

allowing group tokens to separate instances automatically.

3.2. Luminance Augmentation

In contrast to automatic colorization methods that are al-

lowed to infer the most common colors from the input lumi-

nance, languaged-based colorization methods are expected

to synthesize specific colors under the guidance of the user-

provided language description. However, the dataset ran-

domly collected from the Internet tends to have a long-

tailed distribution for correlation between luminance and

color words, e.g., the yellow is more likely to be bright,

whereas the orange is typically darker. As a result, some

language-based colorization models use luminance to infer

the corresponding color in the language description for each

instance and further produce incorrect colorization results

when descriptions are against the statistical correlation be-

tween luminance and colors, as shown in the bottom right

of Fig. 1. Therefore, we design the luminance augmentation

to randomly transform image luminance during the training

stage and drive the model to colorize by understanding the

description provided by the user.

First, we convert the original RGB image into HSV color

space, which allows the hue to be independent of satura-

tion and brightness. Considering that HSV color space is

a conical geometry with red at 0◦, green at 120◦, blue at

240◦, and again red at 360◦ as its starting point, we could

randomly rotate the hue to modify the relative luminance

across instances as:

Ir = [Frotate(Io, λ)
h, Iso, I

v
o ], (1)

where Frotate is the rotation operator, Io is the original

HSV color image, the superscripts h, s, and v mean the

corresponding channel of hue, saturation, and brightness.

λ ∈ [−180, 180] is the angle of rotation.

We then convert Ir into LAB color space, and separate

the luminance channel as a grayscale image Ig. To avoid

the statistical correlation between absolute luminance and

color words, we further adjust the global luminance with a

random gamma correction as:

Îg = AIFinv(γ)
g , (2)

where we set constant A to 1 by default, randomly uniform

sample γ in intervals [1, 5], and build Finv(x) as a proba-

bilistic reciprocal function that changes x to 1/x with the

chance of 50%.

This strategy could preserve texture details while break-

ing down the statistical correlation between luminance and

colors, which drives the model to understand language de-

scriptions to optimize the colorization error. We show the

augmented grayscale images in Fig. 3.

3.3. Tokens Embedding

After performing the luminance augmentation, grayscale

images and language descriptions are separately encoded
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Figure 2. Left: The pipeline of L-CoIns. We adopt the luminance augmentation to break down the correlation between luminance and

color words in the training stage firstly (Sec. 3.2). Next, we obtain multi-modal tokens by introducing learnable group vectors and encoding

input image and language description separately (Sec. 3.3). After that, all tokens are concatenated and fed into global-interactive grouping

transformers to extract high-level semantic features (Sec. 3.4). Finally, the upsampler (Sec. 3.5) and the grouping layer (Sec. 3.6) are

employed to optimize the chromatic error and the grouping error (Sec. 3.7), respectively. Right: The structure of grouping block in the

grouping transformer.

Original
luminance

Enlarging relative 
luminance

Reversing relative 
luminance

Increasing global
luminance

Decreasing global 
luminance

Figure 3. Examples of the luminance augmentation. In addition to

enlarging (first column) or reversing (second column) the relative

luminance between instances, the luminance augmentation could

also increase (third column) or decrease (fourth column) the global

luminance.

and multiple learnable vectors are introduced as multi-

modal tokens. All tokens share the same representation to

make global interaction in the next step and we will intro-

duce these tokens one by one.

Image tokens. We repeat the augmented grayscale image

Îg ∈ R
H×W into a pseudo-color image Ic ∈ R

H×W×3,

where H and W are the image size. It is then split into

patch sequence as Ipat = [I1pat, . . . , I
NI
pat] ∈ R

NI×P 2×3,

where P is the patch size and NI = HW/P 2. We adopt a

standard ViT [15] to encode patch sequence, which captures

the long-range dependency in the sequence and generates

image tokens Timg = [T 1
img, . . . , T

NI

img] ∈ R
NI×CT . Here

we denote CT as the channel number.

Language tokens. The language description is naturally

a sequence, therefore the typical Transformer (i.e., BERT

[12]) could be applied to generate language tokens Tlag =

[T 1
lag, . . . , T

NL

lag ] ∈ R
NL×CT , where NL is the sequence

length. Thanks to the pretrained dictionary of BERT that

includes more than 20K tokens, we could handle the iso-

lated words that never appear in the training set.

Group tokens. We introduce NG learnable vectors as

group tokens to aggregate similar image patches and adap-

tively present distinct instances, which are denoted as

Tgrp = [T 1
grp, . . . , T

NG
grp ] ∈ R

NG×CT .

After obtaining multi-modal tokens, we separately

use modal-type embedding vectors [23] to distinguish

modalities of image, language, and group, denoted as

T ′
img, T

′
lag, T

′
grp. Then, these modal-type embedding vec-

tors are added to corresponding tokens as:

T̂i = Ti + T ′
i . i ∈ {img, lag, grp} (3)

3.4. Grouping Transformer

To learn inter-token relationships and extract high-level

semantic information, we propose the grouping transformer

equipped with the grouping attention, which uses group to-

kens as a medium to achieve bidirectional interaction be-

tween image and language tokens. In this way, different

instances are gradually distinguished by group tokens, im-

age tokens are progressively colorized, and language tokens

evolve in a coarse-to-fine representation manner as the net-

work grows deeper.

We propose the grouping transformer to learn the inter-

group relationship between tokens, which is a stack of L
grouping blocks. The grouping block is built based on the

standard transformer block, where the multi-head attention

is replaced with the novel grouping attention (GA). Given

[Zl] = [Zl
img;Z

l
lag;Z

l
grp] ∈ R

(NI+NL+NG)×Cl
Z as the input

of l-th grouping block and Cl
Z as the corresponding channel

number, we formulate the process of the grouping block as:

[Ẑl] = GA (LN([Zl])) + [Zl], l ∈ {1, . . . , L} (4)

[Zl+1] = MLP(LN([Ẑl])) + [Ẑl], l ∈ {1, . . . , L} (5)

where LN is the LayerNorm layer and [T̂img; T̂lag; T̂grp] is

used as the initial [Z1].
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After projecting [Zl] into query, key, and value feature

space separately by fully connected layers, we organize the

grouping attention as the two-type loops: (i) Inner loop:

This loop aims at obtaining a deeper understanding of the

given image and language feature as well as the acquisi-

tion of deeper semantic features. (ii) Outer loop: This

loop considers group tokens as the medium to flow the se-

mantic information between image and language features

bidirectionally. As group tokens are the only means of

interacting between images and language features in the

grouping transformer, they are pushed to understand both

semantics for optimizing the colorization error. Denoting

i ∈ {img, lag} as the modality of tokens, h ∈ {1, . . . , NH}
as the index of attention heads, and 1√

dk
as the scaling fac-

tor, the inner loop could be achieved as self-attention:

Z in
i,h = Fsoftmax(

Zqry
i,h (Zkey

i,h )�√
dk

)Zval
i,h , (6)

and the outer loop is represented as cross-attention:

Zout
grp,h =Fsoftmax(

Zqry
grp,h(Z

key
i,h )�√

dk
)Zval

i,h , (7)

Zout
i,h =Fsoftmax(

Zqry
i,h (Zkey

grp,h)
�

√
dk

)Zval
grp,h. (8)

We finally concatenate tokens of the same modality and

project them into deeper feature space:

[Ẑ∗] = Fconcat([Z
in
∗,1 Z

out
∗,1 . . . Z in

∗,NH
Zout
∗,NH

])W proj, (9)

where ∗ represents the label from {img, lag, grp} and

W proj is a learnable parameter matrix. We omit superscript

l from Eq. (6) to Eq. (9) for simplicity.

3.5. Upsampler

The upsampler is used to convert the colorized image

tokens ZL+1
img generated by the grouping transformer into

chrominance channels in preparation for optimizing the

chromatic error. To be more specific, we first reshape

the image token sequence into the spatial resolution of√
NI ×

√
NI, and then feed them into a stack of trans-

posed convolutions to upsample and output the predicted

chromatic channels:

Îab = Fup(Frsp(Z
L+1
img )), (10)

where Fup means convolutional layers and Frsp is the re-

shape operator.

3.6. Grouping Layer

As a preparation for optimizing grouping error, we ex-

plicitly map image tokens into their corresponding group

tokens in a hard assignment manner [46]. Specifically, we

calculate the similarity matrix Ā ∈ R
NG×NI between all

image tokens and group tokens at the finest grain (denoted

as ZL+1
img and ZL+1

grp ), and then only retain the most similar

group token for each image token:

Â = Fargmax(Ā) + Ā− Fsg(Ā), (11)

where Fargmax is the function to set non-maximum ele-

ments to 0 for each column and Fsg is the stop gradient op-

erator to perform straight-through trick [36] and make the

gradient differentiable. We further merge image tokens cor-

responding to the same group in a weighted sum manner to

concrete the instance representation:

Z̄L+1
grp,i = ZL+1

grp,i +

∑NI

j=1 Âi,jWvZ
L+1
img,j∑NI

j=1 Âi,j

, (12)

where Wv is a learnable matrix, the subscript i, j means i-th
group token and j-th image token.

3.7. Loss Function

Following previous methods [6, 42], a regression ap-

proach could be used to optimize the chromatic error.

Therefore, we use a smooth-�1 loss with δ = 1 to super-

vise predicted chromatic channels as:

Lδ =
1

Np

∑ 1

2
(Îab − Iab)

21{|Îab−Iab|<δ}+

1

Np

∑
δ(|Îab − Iab| − 1

2
δ)1{|Îab−Iab|≥δ}, (13)

where Np is the pixel number, Iab is the ground truth of

chromatic channels, and 1 means the tensor of one.

As there is no ground truth for instance separation,

we further propose the counter-color loss to optimize the

grouping error. We use two linear layers to map the lat-

est language tokens ZL+1
lag and group tokens Z̄L+1

grp into the

shared feature space as Rlag and Rgrp, respectively. We

then randomly replace the color words in the language de-

scription with another one to generate pseudo language to-

kens and group tokens, denoted as R′
lag and R′

grp. To mea-

sure the relevance between multi-modal tokens, we define

the similarity function between language tokens and group

tokens as:

Fsim(x, y) = σ
( 1

NL

1

NG

NL∑
i=1

NG∑
j=1

(
Fcos(xi, yj)

))
, (14)

where σ is the sigmoid function, x ∈ [Rlag, R
′
lag], y ∈

[Rgrp, R
′
grp], xi and yi represent the i-th language token

and j-th group token, and Fcos is the function to calculate

the cosine similarity. After that, the final counter-color loss

could be written as:

Lctr=log
(
Fsim(Rlag, Rgrp)

(
1−Fsim(R

′
lag, Rgrp)

))
+

log
(
Fsim(R

′
lag, R

′
grp)

(
1−Fsim(Rlag, R

′
grp)

))
. (15)
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Table 1. Quantitative experiment results of comparison and abla-

tion. ↑ (↓) means higher (lower) is better. Best performances are

highlighted in bold.

Comparison with state-of-the-art methods

Method
Extended COCO-Stuff Multi-instance

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
LBIE [8] 22.092 0.85197 0.265 21.928 0.85910 0.260

ML2018 [29] 21.055 0.85333 0.282 20.538 0.84954 0.294

Xie2018 [45] 21.407 0.84016 0.298 19.920 0.81712 0.321

L-CoDe [42] 24.965 0.91657 0.169 23.955 0.91283 0.180

L-CoDer [6] 25.504 0.91963 0.159 24.257 0.91302 0.175

Ours 25.511 0.92104 0.157 24.823 0.91717 0.162
Ablation study

W/o GE 25.249 0.91832 0.163 24.230 0.90734 0.173

W/o GA 25.373 0.91913 0.160 24.576 0.91261 0.164

W/o LA 25.475 0.91965 0.161 24.382 0.91435 0.167

W/o CL 25.361 0.91866 0.158 24.475 0.91401 0.163

As a result of the counter-color loss, the group tokens

are required to retrieve the corresponding language tokens,

which forces the group tokens to focus more on the in-

stance regions corresponding to the modified color words,

thus requiring group tokens to separate the instances ap-

propriately. Since the group tokens are generated with the

same luminance and random color description, this further

breaks down the statistical correlation between luminance

and color words.

Finally, we jointly optimize Lδ and Lctr as:

Ltotal = αLδ + βLctr, (16)

where we set α = 1 and β = −0.0001.

4. Datasets

To make a fair comparison, we conduct experiments on

the extended COCO-Stuff dataset following previous works

[6, 42]. Additionally, we collect the multi-instance dataset

to facilitate the evaluation of instance-aware colorization.

Extended COCO-Stuff dataset. L-CoDe [42] discards the

samples from the COCO-Stuff [3] dataset that does not pro-

vide any color description in their captions, leaving 59K

training photos and 2.4K validation images. Furthermore, it

manually annotates correspondences between color words

and object words.

Multi-instance dataset. To provide a large number of sam-

ples with distinctive visual characteristics and detailed lan-

guage descriptions for multiple instances in images, we

collect the multi-instance dataset from the related tasks

[21, 30]. Our multi-instance dataset includes 65K training

images and 7K validation images and each one has a cor-

responding language description. No correspondence be-

tween color words and object words is provided.

5. Experiments
Quantitative evaluation metrics. We separately present

Peak Signal-to-Noise Ratio (PSNR) [18], Structural Simi-

larity Index Measure (SSIM) [40], and Learned Perceptual

Image Patch Similarity (LPIPS) [50] to evaluate the col-

orization quality. Moreover, we conduct user studies to de-

termine whether or not human observers consider our re-

sults to be favorable.

Training details. We train L-CoIns 80 epochs with batch-

size 64 for about 40 hours. We use AdamW optimizer to

minimize our losses with learning rate as 1 × 10−5, mo-

mentum parameters β1 = 0.99 and β2 = 0.999. All ex-

periments are conducted on 8 NVIDIA GeForce RTX 3090

graphic cards.

5.1. Comparison with State-of-the-Art Methods

We make comparisons with a set of language-based col-

orization algorithms, including LBIE [8], ML2018 [29],

Xie2018 [45], L-CoDe [42] and L-CoDer [6]. We re-

train and analyze LBIE [8], ML2018 [29] on two separate

datasets. Note that we can only train Xie2018 [45], L-

Code [42], and L-CoDer [6] on the extended COCO-Stuff

dataset and then evaluate them on both datasets for the rea-

son that they require additional parsing mask or additional

correspondence between color words and object words as

the training guidance.

Qualitative comparisons. We first show visual quality

comparisons with the methods above in Fig. 4 with four

samples corresponding to different language descriptions,

including the description with clear correspondences be-

tween color words and object words, the description that

assigns colors to instances corresponding to the same ob-

ject words one by one, the description with unobserved cor-

respondence between color words and object words, and

the description against statistical correlation between lumi-

nance and color words from top to bottom (a detailed ex-

planation has been provided in Fig. 1). Among these re-

sults, our method provides an overall improvement in syn-

thesizing visually pleasing and description-consistent col-

orization results.

Quantitative comparisons. We present the results of the

quantitative comparison in Tab. 1. On the extended COCO-

Stuff dataset, our method scores slightly higher than the

second place without using additional correspondence an-

notations, which allows users to describe their intentions

more flexibly. On the multi-instance dataset, our method

achieves a improvement in achieving instance-aware col-

orization, demonstrating its superior performance.

5.2. User Study

To evaluate whether our approach could synthesize more

appealing colorization results, we conduct two user stud-

ies. (i) Reality experiment (Reality expt): After being
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Grayscale Ground Truth LBIE [8] ML2018 [29] XIE2018 [45] L-CoDe [42] L-CoDer [6] L-CoIns

Here are two glasses of green drinks on the table.

The man on the left is wearing a gold shirt and the right one is in red.

Two women on the left are wearing coral colored skirts.

There are two purple toys on the black floor.

Figure 4. Qualitative comparison with state-of-the-art methods. First row: Our method correctly colorizes all corresponding regions (two

glasses). Second row: Our method assigns the distinct color to each corresponding instance (left and right men). Third row: Our method

exactly understands the unobserved correspondence (coral skirts). Fourth row: Our method shows robustness for the luminance (purple

colorizes the left brighter toy).

Table 2. User study results. Ours (L-CoIns) clearly produces a

higher score than previous approaches on both datasets.

Comparison with state-of-the-art methods

Method
Extended COCO-Stuff Multi-instance

Reality expt Corresp expt Reality expt Corresp expt

LBIE [8] 2.92% 6.88% 3.24% 3.44%

ML2018 [29] 4.20% 5.04% 6.24% 6.48%

Xie2018 [45] 5.24% 9.72% 4.28% 9.96%

L-CoDe [42] 12.88% 18.36% 9.32% 15.04%

L-CoDer [6] 21.32% 28.08% 19.08% 28.56%

Ours 25.40% 31.92% 27.64% 36.52%
Ground truth 28.04% N/A 30.20% N/A

given a caption that describes the color image, participants

are asked to select the image that they believe to be the

most visually realistic between the real image and images

generated by the six language-based colorization methods.

(ii) Corresponding experiment (Corresp expt): We apply

language-based colorization methods with the specific color

description whose color description is replaced randomly to

colorize images. Participants were instructed to select the

image that closely matches the modified caption.

For each experiment, 100 images from the testing set of

our multi-instance dataset are randomly selected. Experi-

ments are separately performed by 25 volunteers and pub-

lished on Amazon Mechanical Turk (AMT). Our approach

achieves highest scores in both studies, as shown in Tab. 2.

5.3. Ablation Study

We disable various modules to create four baselines to

study the impact of our proposed modules. The evaluation

scores and colorization results of the ablation study are sep-

arately shown in Tab. 1 and Fig. 5.

W/o GE (group embedding). We remove the group to-

ken along with all related designs, leaving only the counter-

color loss calculated between image tokens and language

tokens. Without group tokens to aggregate similar image

patches, the obvious mismatch between color and instance

occurs (first rows in Fig. 5, underside of the car).

W/o GA (grouping attention). We adopt the transformer

block in ViT [15] to replace the grouping block. This weak-

ens the ability of the group token to integrate cross-modal

information, resulting in an insufficient language under-

standing and inaccurate colorization results (second row in

Fig. 5, yellow cup on the left).
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The flowers on both sides of the bouquet are purple.

The cup on the top right is pale yellow and the other two are red.

We can see a green old-fashioned car parked indoors.

Grayscale W/o GE W/o GA W/o LA W/o CLGround Truth L-CoIns

Figure 5. Ablation study with different variants of the proposed method. The colorization results become inconsistent with the language

description when some parts of our proposed modules are disabled.

1909.  "Central 
station."

A house with a brick
red roof under the 

blue sky surrounded 
by green grasses.

A red car stopped on 
the dirt road with 

green trees around it.

1923. " Jewett touring 
car on mountain 

road ."

1940.  "Three boys 
from Los Angeles who 
are looking for work in 
an airplane factory."

The man in the 
middle wears a gold

coat.

The boy in the middle 
wears a yellow coat, 
and the men on both 
sides wear blue coats.

The two boys on the 
left wear green

coats.

Figure 6. Applying our method to colorize legacy photos.

W/o LA (luminance augmentation). We disable the lu-

minance augmentation in this ablation variant, which al-

lows the model to infer corresponding color words for in-

stance regions based on the statistical correlation between

luminance and color words. As a result, it is difficult for

the model to colorize special colors for the description is

against statistical correlation (second row in Fig. 5, ignor-

ing the word “red” ).

W/o CL (counter-color loss). We remove the counter-color

loss, which reduces the robustness of luminance and elimi-

nates the optimization for the group error. In this way, over-

all colorization quality downgrades (third row in Fig. 5, in-

correctly colorized flowers).

5.4. Application

The application for colorizing legacy black-and-white

photos (all are in-the-wild images unseen during training)

with distinct language descriptions provided by the user

demonstrates our generalization capability in Fig. 6.

6. Conclusion
In this paper, we propose Language-based Colorization

with Instance awareness (L-CoIns). Our model does not re-

quire additional external knowledge and has strong robust-

ness for luminance so that the colorization results are more

description-consistent. Compared with the state-of-the-art

methods, our method achieves the highest PSNR, SSIM,

and LPIPS scores on both the existing COCO-Stuff dataset

and our collected multi-instance dataset.

Limitation. In the absence of additional annotations (e.g.,

fine-grained bounding boxes or parsing mask), it remains

difficult for our model to capture regions of small objects

corresponding to color words in a long caption with detailed

descriptions. With the development of unsupervised object

detection, this situation could be improved.
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