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Abstract

We propose a novel method that renders point clouds as if
they are surfaces. The proposed method is differentiable and
requires no scene-specific optimization. This unique capabil-
ity enables, out-of-the-box, surface normal estimation, ren-
dering room-scale point clouds, inverse rendering, and ray
tracing with global illumination. Unlike existing work that
focuses on converting point clouds to other representations—
e.g., surfaces or implicit functions—our key idea is to directly
infer the intersection of a light ray with the underlying sur-
face represented by the given point cloud. Specifically, we
train a set transformer that, given a small number of local
neighbor points along a light ray, provides the intersection
point, the surface normal, and the material blending weights,
which are used to render the outcome of this light ray. Lo-
calizing the problem into small neighborhoods enables us
to train a model with only 48 meshes and apply it to un-
seen point clouds. Our model achieves higher estimation
accuracy than state-of-the-art surface reconstruction and
point-cloud rendering methods on three test sets. When ap-
plied to room-scale point clouds, without any scene-specific
optimization, the model achieves competitive quality with the
state-of-the-art novel-view rendering methods. Moreover, we
demonstrate ability to render and manipulate Lidar-scanned
point clouds such as lighting control and object insertion.

1. Introduction
Point clouds are abundant. They are samples of surfaces,

and can be captured by sensors such as Lidar, continuous-
wave time-of-flight, and stereo camera setups. Point-cloud
representation provides a straightforward connection to the
location of the surfaces in space, and thus is an intuitive
primitive to represent geometry [15].

Despite being ubiquitous, a core limitation of point clouds
is that they are non-trivial to render. Each point in the
point cloud occupies no volume—one cannot render them
into images as is. Therefore, existing methods either as-
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(a) Illustration of the proposed method

(b) Rendered results of a sphere represented by points

Figure 1. We propose pointersect, a novel method to perform cloud-
ray intersection. (a) Instead of projecting points onto the sensor,
suffering from holes, we trace rays from the sensor and estimate
the intersection point p between a ray and the underlying surface
represented by the points. We additionally estimate the surface
normal n⃗, and the convex combination weights of points near the
ray to blend material or color, wj . (b) The capability to perform
cloud-ray intersection enables us to render point clouds with the
standard ray tracing method, i.e., path tracing. The result shows the
effect of global illumination, e.g., the cast shadow and reflection.

sign each point a volume-occupying shape, e.g., an ori-
ented disk [36, 53], a sphere [28], or turn it into other
shape representations like meshes [27] or implicit func-
tions [14, 18, 22, 30, 35]. However, it is difficult to de-
termine the ideal shape, e.g., the radius of spheres or disks,
for rendering. Small shapes would cause holes, while large
shapes would cause blobby renderings, producing artifacts
in the rasterized images. While the artifacts can be alleviated
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by finetuning the rasterized images with an additional neural
rendering step, the operation often requires per-scene train-
ing [3, 9, 28]. On the other hand, transforming point clouds
into other shape representations complicates the pipeline and
prevents gradients passing back to the point cloud through
the new shape representation (in the case of inverse ren-
dering). For example, turning point clouds into a mesh or
a Signed Distance Function (SDF) [18, 30] would require
any changes on the point cloud to trigger retraining of these
representations, which would clearly be prohibitive.

Recent works [34, 51] raise new ideas to directly perform
ray-casting on point clouds. For each scene, these methods
first learn a feature embedding for each point; then they
aggregate features near each camera ray to predict colors.
However, these methods require per-scene training since the
feature embedding is scene-dependent. In our case, we aim
for a solution that does not require scene-specific optimiza-
tion and can be applied to any scene.

In this work, we propose pointersect, an alternative that
can directly ray-trace point clouds by allowing one to use
point clouds as surface primitives, as shown in Figure 1.
That is, we propose to train a neural network that provides
the surface intersection point, surface normal, and material
blending weights—the necessary information to render (or
ray trace) a surface—given a point cloud and a query ray.

Implementing this idea requires paying attention to de-
tails. A core observation is that the problem to find the
intersecting surface point is SE(3) equivariant—any rigid
transform on the input (i.e., the point cloud and the query
ray) should result in the rigid transformation of the output
(i.e., the intersection point and the surface normal). Naively
training a neural network would require the network to learn
this equivariance, which is non-trivial [5, 13, 45]. Instead,
we opt to remove the need for learning this equivariance by
canonicalizing the input according to the queried light ray.
In addition, pointersect should be invariant to the order in
which the points are provided—we thus utilize a transformer
to learn the set function.

It is important to note that finding intersection points be-
tween rays and surfaces is a highly atomic and localized
problem which can be solved only with local information.
Thus, we design our method to only consider nearby points,
where the surface would have been, and how the surface
texture and normal can be derived from these nearby points.
By constraining the input to be a small number (∼100) of
neighboring points associated to a query ray, our method can
be trained on only a handful of meshes, then be applied to
unseen point clouds. As our experiments show, while only
trained on 48 meshes, pointersect significantly improves the
Poisson surface reconstruction, a scene-specific optimiza-
tion method, on three test datasets. We also demonstrate the
generality and differentiability of pointersect on various ap-
plications: novel-view synthesis on room-scale point clouds,

inverse rendering, and ray tracing with global illumination.
Finally, we render room-scale Lidar-scanned point clouds
and showcase the capability to directly render edited scenes,
without any scene-specific optimization.

In short, our contributions are:
• We propose pointersect, a neural network performing the

cloud-ray intersection operation. Pointersect is easy to
train, and once learned, can be applied to unseen point
clouds—we evaluate the same model on three test datasets.

• We demonstrate various applications with pointersect, in-
cluding room-scale point cloud rendering, relighting, in-
verse rendering, and ray tracing.

• We apply pointersect on Lidar-scanned point clouds and
demonstrate novel-view synthesis and scene editing.
We encourage the readers to examine results and videos

of novel-view rendering, relighting, and scene editing in the
supplemental material and website (https://machinelearning.
apple.com/research/pointersect).

2. Related work
This section briefly summarizes strategies to render point

clouds. Please see Table 4 in the supplementary for a detailed
overview on the capabilities/limitations of each method.

Rasterizing point clouds. Rasterization is a common
method to render point clouds. The idea is to project each
point onto the sensor while making sure closer points oc-
clude farther points. Filling holes between points is the key
problem in point-cloud rasterization. Classical methods like
visibility splatting [36, 53] cover holes by replacing points
with oriented disks. However, since the size and shape of
the holes between projected points depend on the distribu-
tion of the points in space, the method cannot fill in all
gaps. Recently, Zhang et al. [54] achieve high-quality re-
sults via alpha-blending surface splatting [59], coarse-to-fine
optimization, and point insertion. However, their method
requires per-scene optimization on the point cloud.

Recent works propose to combine rasterization with neu-
ral networks. Given a point cloud and RGB images of a
scene, Aliev et al. [3] and Rückert et al. [42] learn an em-
bedding for each point by rasterizing feature maps and mini-
mizing the difference between the rendered images and the
given ones. The hole is handled by downsampling then up-
sampling the rasterized feature map. Similarly, Dai et al. [9]
aggregate points into multi-plane images, combined with a
3D-convolutional network. Huang et al. [19] use a U-Net
refinement network to fill in the holes. Recently, Rakhimov
et al. [39] show that point embedding can be directly ex-
tracted from input images, which enables their method to
render unseen point clouds without per-scene optimization.

It is difficult to render global illumination with these meth-
ods, since rasterization does not support such an operation.
Moreover, we show empirically in Section 4 that our method
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renders higher quality images than recent methods while
directly working on xyz and rgb, without a feature extractor.

Converting into other representations. An alternative way
to render a point cloud is converting it to other primitives,
such as an indicator function [22, 35], a SDF [30], or a
mesh [18]. Poisson surface reconstruction [22, 23] fits an
indicator function (i.e., 1 inside the object and 0 otherwise)
to the input point cloud by solving a Poisson optimization
problem. Meshes can then be extracted from the learned
function, allowing ray tracing to be performed. However,
Possion surface reconstruction requires vertex normal, which
can be difficult to estimate even when the points only con-
tain a small amount of noise, and it is difficult to support
non-watertight objects. Peng et al. [35] learn the indicator
function with a differentiable solver and incorporate Poisson
optimization in a neural network.

Ma et al. [30] learn a SDF represented as a neural field,
and Hanocka et al. [18] fit a deformable mesh to an objects
with a self-prior. These methods require per-scene opti-
mization, and to the best of our knowledge, have not been
extended to render surface colors.

Alternatively, Feng et al. [14] propose a new primitive,
Neural Point, or a collection of local neural surfaces ex-
tracted from the point cloud. The method supports new
scenes and estimates surface normal; however, dense sam-
pling or cube marching is needed to render novel views, and
the method does not render color.

Ray-casting. Instead of rasterization, point clouds can also
be rendered by ray-casting. Early work [1, 2, 4, 16, 26, 48]
develop iterative algorithms or formulate optimization pro-
grams to intersect a ray with the approximated local plane
constructed by nearby points. These methods rely on neigh-
borhood kernels, which is non-trivial to determine [15, 25].
Recently, Xu et al. [51] and Ost et al. [34] learn feature
embedding at each point and aggregate the features along
a query ray. Xu et al. [51] march camera rays through the
point cloud, average neighbor features, predict density and
color by a Multi-Layer Perceptron (MLP), and render the
final color via volumetric rendering [32]. Ost et al. [34] uti-
lize a transformer to aggregate point features into a feature
associated with the query ray and predict color by an MLP.
Both methods do not estimate surface intersection points or
normal, and they need per-scene training [34] or per-scene
fine-tuning [51] to achieve high-quality results. As we show
later, our method can be applied to completely novel classes
of scenes without any retraining.

Neural rendering from 2D images. Recently, Neural Radi-
ance Field (NeRF) and similar methods [11, 12, 28, 29, 32,
40, 44, 49, 52, 56] have demonstrated high-quality novel-
view synthesis results. Due to the lack of immediately avail-
able 3D information, most of these methods require a per-
scene optimization or surface reconstruction. In this work,

we focus on rendering a point cloud, where 3D information
is available, without additional per-scene training.

3. Method
We aim to directly perform ray casting with point clouds.

We thus first introduce the generic surface-ray intersection.
We then introduce how we enable cloud-ray intersection and
discuss how it can be used for actual rendering.

3.1. Problem formulation

Surface-ray intersection. Surface-ray intersection is a
building-block operator in physics-based rendering [37]. At
a high level, it identifies the contacting point between a query
ray and the scene geometry so that key information like ma-
terial properties, surface normal, and incoming light at the
point can be retrieved and computed [37]. Most graphics
primitives allow the intersecting point to be easily found.
For example, with triangular meshes we simply intersect
the query ray with individual triangles (while using acceler-
ated structures to reduce the number of triangles of interest).
However, for point clouds, finding the intersection point
becomes a challenging problem.

Cloud-ray intersection. We formulate the cloud-ray inter-
section as follows. We are given the following information:
• a set of points P = {p1, . . . , pn} that are samples on a

surface S, where pi ∈ R3 is i-th point’s coordinate;
• optionally, the material (e.g., RGB color or Cook-Torrance

coefficients [8]) associated with each point, ci ∈ Rd;
• a querying ray r = (ro, r⃗d), where ro ∈ R3 is the ray

origin and r⃗d ∈ S2 is the ray direction.

Our goal is to estimate the following quantities:
• the probability, h ∈ [0, 1], that r intersects with the under-

lying surfaces of P;
• the intersection point p ∈ R3 between r and S;
• the surface normal n⃗ at p;
• and optionally the blending weights w = [w1, . . . , wn],

where wi ∈ [0, 1] and
∑n

i=1 wi =1, to estimate the mate-
rial property at p: c(p) =

∑n
i=1 wi ci.

Note that this problem is under-determined—there can be in-
finitely many surfaces passing through points in P . Thereby,
hand-crafting constraints such as surface smoothness are
typically utilized to solve the problem [25]. In this work, we
learn surface priors from a dataset of common objects using
a neural network, so manual design is not needed.

3.2. Pointersect

Pointersect is a neural network, fθ(r,P) 7→ (h, p, n⃗,w),
that estimates the intersection point and surface normal be-
tween r and the underlying surface of P . We learn the net-
work by formulating a regression problem, using a dataset
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of meshes. We generate training data by randomly sampling
rays and point clouds on the meshes, i.e., our inputs, and
running a mesh-ray intersection algorithm [37] to acquire
the ground-truth outputs.

Despite the simplicity of the framework, we note, how-
ever, care must be taken when designing fθ. Specifically,
we incorporate the following geometric properties into the
design of fθ to ease training and allow generalization:

First, we utilize the fact that the intersection point is along
the query ray and design f to estimate the distance t from
the ray origin, i.e., p = ro + t r⃗d.

Second, we utilize the SE(3) equivariance—rotating and
translating the ray and the points together should move the
intersection point in the same way. Mathematically, for all
rotation matrix R ∈ SO(3) and translation b ∈ R3, we have

fθ(r,P) 7→ (h, t, n⃗,w)⇒fθ(T (r), T (P)) 7→ (h, t, Rn⃗,w),

where T (P)={Rpi+b}i=1...n and T (r)=(T (ro), R r⃗d).
Additionally, this holds for any point along the ray, thus

fθ(r,P) 7→(h, t, n⃗,w)⇒fθ((ro+t′r⃗d, r⃗d),P)7→(h, t−t′, n⃗,w),

for all 0 ≤ t′ ≤ t. Thereby, to eliminate this ambiguity,
given a query ray r = (ro, r⃗d), we rotate and translate both
the ray and the scene such that R r⃗d = (0, 0, 1) and the
closest point in the half space defined by r has z = 0.

Third, the intersection point can be estimated by using
the local neighborhood of the ray. Given r and P , we form a
new set of points, Pr, by keeping only the closest k points
(in terms of their orthogonal distances to r) within a cylinder
of radius δ surrounding the ray.

Last, since P is a set, i.e., the order of the points in P is
irrelevant, we use a set transformer [47] as our architecture
of choice. See Figure 2 for an overview and Appendix C for
detailed descriptions.

We train fθ by optimizing the following problem:

min
θ

E
r,P

ĥ
(
λ∥t− t̂∥22 + ∥n⃗× ˆ⃗n∥22 + ∥c− ĉ∥1

)
+ĥ log h+ (1− ĥ) log(1− h), (1)

where t̂, ˆ⃗n, ĉ, and ĥ ∈ {0, 1} are the ground-truth ray travel-
ing distance, surface normal, color, and ray hit, respectively,
and c =

∑
wi ci is the output color. The expectation is

over the query rays and the point clouds, which we sample
randomly every iteration from a dataset of meshes. We omit
the dependency on P and r in the notations for simplicity.

3.3. Rendering point clouds with pointersect

Our ability to perform cloud-ray intersection allows two
main techniques to render a point cloud.

Image-based rendering. Given a point cloud P =
{(pi, ci)}i=1...n, where each point has both position pi ∈ R3

Figure 2. The pointersect model f is composed of a pre-processing
step and a transformer. (a) The pre-processing step rotates and
translates the world coordinate such that the ray lies on the zr-axis.
The new coordinate origin is selected such that the closest point to
the ray origin lies on the zr = 0 plane. (b) The transformer takes as
inputs the points in the new coordinate, i.e., (pri , ci). The output of
a learned token is used to estimate t, the traveling distance between
the ray origin and the intersection point, n⃗r , the surface normal in
the new coordinate, and h, the output of a sigmoid function on a
logit (not drawn) to predict the probability that the ray hits a surface.
It is also used as the query in the softmax attention to calculate the
weight w. Finally, we transform n⃗r back to the world coordinate
and make sure it point to the opposite direction of the ray. The
transformer has 4 layers (L = 4) and a feature dimension of 64.

and RGB color ci ∈ R3, and the target camera intrinsic and
extrinsic matrices, we can simply cast camera rays toward P .
The final color of a camera ray, c(r) can be computed by

c(r) =

n∑
i=1

wi(r,P) ci, (2)

where wi(r,P) is the blending weight of pi estimated by fθ,
and wi(r,P) = 0 if pi is not a neighbor point of r.

Rendering with ray tracing. A unique capability of point-
ersect is ray tracing. Ray tracing allows occlusion and global
illumination effects like cast shadow and specular reflection
to be faithfully rendered. Suppose we are given a point
cloud P = {(pi, ci)}i=1...n, where each point has both posi-
tion pi ∈ R3 and material information ci ∈ Rd like albedo,
Cook-Torrance [8], or emission coefficients, and we have
the environment map and the target camera intrinsic and ex-
trinsic matrices. We can use standard ray tracing techniques
like path tracing [20] to render the image. At a high level,
we trace a ray through multiple intersections with the point
cloud until reaching the environment map or background. At
each intersection point, we calculate the material property by
interpolating the material of neighboring points (using the
blending equation (2)), shade the intersection point based on
the reflection equation [20], and determine the direction to
continue tracing [43].

When we end the ray tracing with a single bounce, i.e.,
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Figure 3. Training meshes (left) and example camera poses (right).

using pointersect to determine the first intersection point with
the scene, and directly shade the intersection point with the
environment, we get an equivalent algorithm of rasterization
with deferred shading for meshes [10].

4. Experiments
We evaluate the proposed method’s capability to estimate

intersection points and surface normal. We then showcase
the use of pointersect in various applications, including ren-
dering point clouds with image-based rendering and ray-
tracing, and inverse rendering. Note that the same model is
used for all experiments—no per-scene optimization is used.

4.1. Model training

The model is trained on 48 training meshes in the sketch-
fab dataset [38].We show 10 training meshes in Figure 3 and
all 48 training meshes and their download links and credits
in Figure 17 in Appendix J. The meshes are centered and
scaled such that the longest side of their bounding box is 2
units. For each training iteration, we randomly select one
mesh and construct 30 input cameras and 1 target camera,
which capture RGBD images using the mesh-ray intersection
method in Open3D [58] without anti-aliasing filtering. We
design the input and target camera poses to be those likely to
appear in novel-view synthesis. Specifically, we uniformly
sample camera position within a spherical shell of radius 0.5
to 3, looking at a random position in the unit-length cube
containing the object, as shown in Figure 3. During testing,
the camera poses are non-overlapping with the training poses
— the poses used in Table 1, shown in Figure 4, have a spiral
trajectory with radius changing periodically between 3 to 4
and those used in room scenes (Figure 6 and 7) are chosen
to follow the room layouts.

The input RGBD images create the input point cloud,
where each point carries only point-wise information, in-
cluding xyz, rgb, and the direction from input camera to
the particular point. To support point clouds without these
information, we randomly drop rgb and other features in-
dependently 50 % of the time—during inference, we use
only xyz and rgb for all experiments. We also use a random
k ∈ [12, 200] at every iteration. To help learning blending
weights, at every iteration we select a random image patch
from ImageNet dataset as the texture map for the mesh. We
train the model for 350,000 iterations, and it takes 10 days
on 8 A100 GPUs. Please see more details in Appendix E.

4.2. Evaluating pointersect

We use three datasets to evaluate the estimated intersec-
tion points, surface normal, and blending weights.
• 7 meshes provided by Zhou et al. [57], including the Stan-

ford Bunny, Buddha, etc.
• 30 meshes in ShapeNet Core dataset [7] containing sharp

edges, including chairs, rifles, and airplanes.
• 13 test meshes in the sketchfab dataset [38].
For each mesh, 6 RGBD images taken from front, back,
left, right, top, and bottom are used to create the input point
cloud; 144 output RGBD images at novel viewpoints are
estimated and compared with the ground-truth rendering
from Open3D. See Figure 4 for an illustration of the camera
poses. All cameras are 200× 200 resolution and has a field-
of-view of 30 degrees. The input RGBD images are used
only to construct the input point cloud, i.e., we do not extract
any image-patch features from the RGB images (except for
NPBG++, see below).

We compare with four baselines:
• Visibility splatting is the default point-cloud visualization

method in Open3D. We set the point size to 1 pixel. We
use Open3D to estimate vertex normal at input points. The
main purpose of including the baseline is to illustrate the
input point cloud from the target viewpoint.

• Screened Poisson surface reconstruction [23] fits a scene-
specific indicator function (1 inside the object and 0 out-
side) to reconstruct a surface from the point cloud. It is
the workhorse for point-based graphics. We use the imple-
mentation in Open3D with the default parameters, and we
provide ground-truth vertex normal from the mesh.

• NPBG++ [39] uses rasterization and downsampling to
fill in holes on the image plane. It supports unseen point
clouds but requires input RGB images to extract features.
We use the implementation and pretrained model from the
authors. We do not perform scene-specific finetuning.

• Neural Points [14] fits local implicit functions on the point
clouds. Once the functions are fit, they can be used to
increase the sampling rate and estimates surface normals.
We use the original implementation and pretrained model
from the authors. For visualization, we use the method to
upsample the point clouds by 96 times.

• Oracle directly rasterizes the mesh.
For pointersect, we use k = 40, δ = 0.1, and image-based
rendering for all experiments unless otherwise noted. We
provide only point-wise xyz and rgb to pointersect; no other
feature is used. For all methods, we compute the Root Mean
Square Error (RMSE) of the intersection point estimation,
the average angle between the ground-truth and the estimated
normal, the accuracy on whether a camera ray hit the surface,
the Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index Measure (SSIM) [50], and LPIPS [55] between
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Table 1. Test results on unseen meshes in three datasets.
Method Metrics tex-models ShapeNet Sketchfab

Visibility
splatting

depth (RMSE) ↓ 0.25± 0.20 0.08± 0.08 0.20± 0.12
normal (angle (◦)) ↓ 12.57± 4.60 11.78± 5.40 14.04± 4.73
hit (accuracy (%)) ↑ 98.0± 1.5 98.5± 1.7 98.0± 2.0
color (PSNR (dB)) ↑ 19.2± 2.2 22.5± 4.1 19.6± 2.9
color (SSIM) ↑ 0.8± 0.2 0.9± 0.1 0.7± 0.2
color (LPIPS) ↓ 0.19± 0.13 0.10± 0.10 0.21± 0.13

Poisson
surface
recon.

depth (RMSE) ↓ 0.02± 0.04 0.03± 0.05 0.06± 0.08
normal (angle (◦)) ↓ 8.48± 3.97 16.89± 7.96 14.58± 6.29
hit (accuracy (%)) ↑ 99.8± 0.1 98.8± 1.8 99.5± 0.5
color (PSNR (dB)) ↑ 25.7± 2.4 - 25.0± 3.1
color (SSIM) ↑ 0.9± 0.0 0.9± 0.1 0.9± 0.1
color (LPIPS) ↓ 0.08± 0.04 0.06± 0.05 0.10± 0.04

Neural
points
[14]

depth (RMSE) ↓ 0.07± 0.10 0.04± 0.03 0.06± 0.05
normal (angle (◦)) ↓ 11.28± 3.30 17.14± 6.01 14.28± 3.44
hit (accuracy (%)) ↑ 98.9± 0.4 98.9± 0.7 99.1± 0.2
color (PSNR (dB)) ↑ not supp. not supp. not supp.
color (SSIM) ↑ not supp. not supp. not supp.
color (LPIPS) ↓ not supp. not supp. not supp.

NPBG++
[39]

depth (RMSE) ↓ not supp. not supp. not supp.
normal (angle (◦)) ↓ not supp. not supp. not supp.
hit (accuracy (%)) ↑ not supp. not supp. not supp.
color (PSNR (dB)) ↑ 16.5± 2.1 19.3± 4.0 18.0± 1.6
color (SSIM) ↑ 0.7± 0.1 0.8± 0.1 0.7± 0.1
color (LPIPS) ↓ 0.27± 0.07 0.18± 0.08 0.24± 0.08

Proposed

depth (RMSE) ↓ 0.05± 0.09 0.03± 0.03 0.05± 0.04
normal (angle (◦)) ↓ 6.77± 2.71 11.29± 5.08 8.53± 2.79
hit (accuracy (%)) ↑ 99.8± 0.2 99.6± 0.6 99.8± 0.1
color (PSNR (dB)) ↑ 28.2± 1.9 28.0± 6.4 28.1± 2.7
color (SSIM) ↑ 1.0± 0.0 1.0± 0.0 0.9± 0.0
color (LPIPS) ↓ 0.04± 0.03 0.04± 0.04 0.06± 0.04

Table 2. Test results on the Hypersim dataset. The test is conducted
on 10 new images not used to create the point cloud.

Metric Vis. splatting Poisson recon. NPBG++ NGP [33] Proposed

PSNR (dB) ↑ 11.7± 1.1 26.3± 3.1 27.9± 3.7 28.5± 5.8 29.8± 5.1
SSIM ↑ 0.12± 0.05 0.85± 0.06 0.89± 0.04 0.90± 0.06 0.91± 0.04
LPIPS ↓ 0.79± 0.04 0.37± 0.04 0.33± 0.03 0.31± 0.08 0.25± 0.04

ground-truth and estimated color images. To ensure fair
comparisons between all methods, we compute the errors of
surface normal and depth map only for camera rays that both
ground-truth and the testing method agree to hit a surface.

The results are shown in Table 1, and we provide exam-
ples in Figure 4. Optimizing each input point cloud directly,
Poisson surface reconstruction achieves high PSNR and low
normal errors, outperforming the scene-agnostic baselines
like NPBG++ and Neural Points. Pointersect outperforms
all prior methods even though it is scene-agnostic. Trained
on the sketchfab dataset, it performs best on the sketchfab
dataset. Nevertheless, it still outperforms the scene-specific
Poisson reconstruction on unseen meshes in the ShapeNet
dataset and performs comparably on the tex-models dataset.
Moreover, pointersect is the only method supporting estimat-
ing intersection points, surface normal, and blending weights
of any query ray without scene-specific optimization.

4.3. Room-scale rendering with RGBD images

Next, we evaluate pointersect on a room-scale scene,
whose geometry is very different from the training meshes.

We randomly select a room scene in the Hypersim
dataset [41] which contains 100 RGBD images captured
in the room. We randomly select 90 of them to construct the
input point cloud and use the rest for evaluation. We down-
sample the images by 2 (from 1024×768 to 512×384), and
we use uniform voxel downsampling to reduce the number
of points (the room size is 4 units and the voxel size is 0.01
units). We provide the ground-truth vertex normal from the
dataset to Poisson reconstruction. We also train a state-of-
the-art NeRF method, NGP [33, 46], using the same 90 input
images, for 1000 epochs, taking 2 hours on 1 A100 GPU.
Note that NGP and pointersect are not directly comparable—
NGP utilizes scene-specific optimization whereas pointersect
utilizes depth. We provide it as a reference baseline.

Figure 5, Figure 6, and Table 2 show the results on the
10 test RGBD images. As can be seen, while pointersect is
trained on small meshes, it generalizes to room-scale scenes
and outperforms prior state-of-the-art baselines.

4.4. Ray tracing with point clouds

As mentioned before in Section 3, pointersect provides a
unique capability of ray-tracing with global illumination that
is difficult to achieve with methods like NeRFs. We build
a simple path tracer in PyTorch, following [43]. We also
implement the Cook-Torrance microfacet specular shading
model (with the split sum approximation), following [21].
We construct a scene composed of a Lambertian floor (albedo
= 0.2), a vertical mirror (kbase = 0.5, roughness = 0, metallic
= 1, specular = 0.5), a sphere (kbase = 0.7, roughness = 0.7,
metallic = 0.5, specular = 0), and an all-white environment
map. The floor and the mirror are represented analytically,
and the sphere is represented with 5000 points. We trace 4
bounces and 2000 rays per pixel.

As shown in Figure 1b, the result clearly shows the effect
of global illumination, e.g., the reflection of the sphere in the
mirror and the cast shadow on the floor.

4.5. Inverse rendering

Another unique capability of pointersect is its differentia-
bility. As a neural net, pointersect allows gradient calculation
of color (blending weights) and surface normal with respect
to the point cloud (e.g., xyz and rgb). We optimize a noisy
point cloud’s xyz and rgb given 100 clean input RGB im-
ages, camera poses, and binary foreground segmentation
maps. The results (Figure 12 and Table 3 in the supple-
mentary) show that the optimization effectively denoises the
point cloud. Please refer to Appendix F for details.

4.6. Real Lidar-scanned point clouds

Finally, we test pointersect on real Lidar-scanned point
clouds. The goal is to evaluate how it handles a small amount
of noise in scanned point clouds, even though it is trained on
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Figure 4. Example results of pointersect and baselines. Please see supplementary material for novel-view rendering videos.

101 102 103

time (second) 

10

15

20

25

30

PS
N

R
 (d

B
) 

ours
NGP
poisson recon.
NPBG++
vis. splatting

Figure 5. PSNR vs. time of Figure 6. The x axis is the time to
render 10 validation images of resolution 512× 384. We train the
NGP [33, 46] from 1 to 1000 epochs, and the time includes both
training on the 90 input images and the rendering.

Table 3. Optimize a noisy point cloud with pointersect.
100 input views 144 novel views

before opt. after opt. before opt. after opt.

PSNR (dB) ↑ 10.1± 0.5 24.6± 0.5 13.9± 0.8 25.7± 1.2
normal (angle (◦)) ↓ 54.0± 0.9 17.8± 2.1 55.3± 0.4 18.3± 2.7
depth (rmse) ↓ 0.46± 0.08 0.09± 0.06 0.33± 0.08 0.10± 0.07

clean ones. We take two Lidar point clouds from the ARK-
itScenes dataset [6], perform uniform voxel downsampling
to reduce the number of points (the voxel size is 0.01 and
the scene size is around 14 units), and rendered with Poisson
reconstruction and pointersect (with k = 100 and δ = 0.2
since the scene is larger and not unit-length normalized).
As can be seen in Figure 7, our model successfully renders
the real point clouds, whereas the output quality of Poisson
reconstruction degrades significantly.

Scene editing. One advantage of utilizing point clouds as the
scene representation instead of an implicit representation like
NeRF is that we can easily edit the scene (by directly moving,
adding, removing points). In Figure 7, we present results of
scene relighting which utilizes the estimated surface normal
and scene editing where we insert new and change the size
and location of point-cloud objects in the scene.
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Figure 6. Room-scale point cloud rendering results. Please see supplementary material for novel-view rendering videos.

Figure 7. We test our model on a Lidar-scanned point cloud. Due to the small amount of noise, the quality of Poisson reconstruction degrades
significantly. In comparison, pointersect is less affected. With the estimated surface normal, we re-render the scene with directional-dominant
light using the colors as albedo. Using point cloud as the scene representation enables easy scene editing. We edit the input point clouds
and render the new scene using pointersect. Can you spot the differences? Please see supplementary material for novel-view rendering,
relighting, and scene-editing videos. c clock: Gush [17].

5. Discussions

Rendering speed. Pointersect requires one transformer eval-
uation per query ray. In contrast, NeRF and SDF methods
require multiple evaluations per ray (in addition to per-scene
training). Figure 5 shows the time to render 10 test images in
Section 4.3. With a resolution of 512× 384 and 700k points,
the current rendering speed of pointersect is ∼ 1 frame per
second (fps) with unoptimized Python code. The speed can
be greatly improved with streamlined implementation and
accelerated attention [24, 31]. See Appendix D for detailed
complexity and runtime analysis.

Known artifacts. Currently, our pointersect model produces
two types of artifacts. First, pointersect may generate floating
points when a query ray is near an edge where the occluded
background is far away or at the middle of two parallel edges.
Second, we currently pass a fixed number of neighboring
points to the pointersect model. Thus when there are multiple
layers of surfaces, the actual (i.e., first) surface may receive
only a small number of points, reducing the output quality.

Connection to directed distance fields. Aumentado-
Armstrong et al. [5] and Feng et al. [13] propose to represent

a mesh with a Directed Distance Field (DDF). Similar to
a SDF, a DDF, D(r), is learned specifically for each mesh,
and it records the traveling distance of ray r to the nearest
surface. The proposed pointersect, f(r,P), can be thought
of as an estimator of DDFs. Aumentado-Armstrong et al.
[5] derive several geometric properties of DDFs, which also
apply to pointersect.

6. Conclusion
We have introduced pointersect, a novel method to render

point clouds as if they are surfaces. Compared to other scene
representations like implicit functions and prior point-cloud
rendering methods, pointersect provides a unique combina-
tion of capabilities, including direct rendering of input point
clouds without per-scene optimization, direct surface normal
estimation, differentiability, ray tracing with global illumi-
nation, and intuitive scene editing. With the ubiquitousness
of point clouds in 3D capture and reconstruction, we believe
that pointersect will spur innovations in computer vision as
well as virtual and augmented reality technology.

Acknowledgment. We thank Yi Hua for all the interesting
general discussions about geometry.
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[16] Gaël Guennebaud and Markus Gross. Algebraic point set
surfaces. In ACM SIGGRAPH 2007 Papers, SIGGRAPH
’07, page 23–es, New York, NY, USA, 2007. Association for
Computing Machinery. 3

[17] Joseph Gush. Antique wall clock. https :
/ / sketchfab . com / 3d - models / antique - wall - clock -
1542879be00b4c1d8d4330aac9669927. 8

[18] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-
Or. Point2mesh: a self-prior for deformable meshes. ACM
Transactions on Graphics (TOG), 39(4):126–1, 2020. 1, 2, 3

[19] Xiaoyang Huang, Yi Zhang, Bingbing Ni, Teng Li, Kai Chen,
and Wenjun Zhang. Boosting point clouds rendering via
radiance mapping. In Proceedings of the AAAI conference on
artificial intelligence, 2023. 2

[20] James T. Kajiya. The rendering equation. SIGGRAPH,
20(4):143–150, aug 1986. 4

[21] Brian Karis and Epic Games. Real shading in unreal engine
4. Proc. Physically Based Shading Theory Practice, 4(3):1,
2013. 6

[22] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Pois-
son surface reconstruction. In Proceedings of the fourth Eu-
rographics symposium on Geometry processing, volume 7,
2006. 1, 3

[23] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (TOG),
32(3):1–13, 2013. 3, 5

[24] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In International Confer-
ence on Learning Representations (ICLR), 2020. 8

[25] Leif Kobbelt and Mario Botsch. A survey of point-based
techniques in computer graphics. Computers & Graphics,
28(6):801–814, 2004. 3

[26] Ravikrishna Kolluri. Provably good moving least squares.
ACM Transactions on Algorithms (TALG), 4(2):1–25, 2008. 3

[27] Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven.
Efficient multi-view reconstruction of large-scale scenes using
interest points, delaunay triangulation and graph cuts. In IEEE
International Conference on Computer Vision (ICCV), pages
1–8, 2007. 1

[28] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient
sphere-based neural rendering. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1440–
1449, 2021. 1, 2, 3

[29] Linjie Lyu, Ayush Tewari, Thomas Leimkühler, Marc Haber-
mann, and Christian Theobalt. Neural radiance transfer fields
for relightable novel-view synthesis with global illumination.
In European Conference on Computer Vision (ECCV), pages
153–169. Springer, 2022. 3

[30] Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Neural-pull: Learning signed distance function from
point clouds by learning to pull space onto surface. In In-
ternational Conference on Machine Learning (ICML), pages
7246–7257. PMLR, 2021. 1, 2, 3

[31] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish

8367



Prabhu, Mohammad Rastegari, and Oncel Tuzel. Token pool-
ing in vision transformers. arXiv preprint arXiv:2110.03860,
2021. 8

[32] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[33] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. ACM Transactions on Graphics (TOG),
41(4):102:1–102:15, July 2022. 6, 7

[34] Julian Ost, Issam Laradji, Alejandro Newell, Yuval Bahat,
and Felix Heide. Neural point light fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18419–18429, 2022. 2, 3

[35] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A
differentiable poisson solver. Advances in Neural Information
Processing Systems (NeurIPS), 34:13032–13044, 2021. 1, 3

[36] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 335–342,
2000. 1, 2

[37] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
based rendering: From theory to implementation. Morgan
Kaufmann, 2016. 3, 4

[38] Yue Qian, Junhui Hou, Sam Kwong, and Ying He. Pugeo-net:
A geometry-centric network for 3d point cloud upsampling.
In European Conference on Computer Vision (ECCV), pages
752–769. Springer, 2020. 5

[39] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lempit-
sky, and Evgeny Burnaev. NPBG++: Accelerating neural
point-based graphics. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 15969–15979,
2022. 2, 5, 6

[40] Gernot Riegler and Vladlen Koltun. Stable view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12216–12225, 2021. 3

[41] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M Susskind. Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In IEEE
International Conference on Computer Vision (ICCV), pages
10912–10922, 2021. 6

[42] Darius Rückert, Linus Franke, and Marc Stamminger. ADOP:
Approximate differentiable one-pixel point rendering. ACM
Transactions on Graphics (TOG), 41(4):1–14, 2022. 2

[43] Peter Shirley. Ray tracing in one weekend. Amazon Digital
Services LLC, 1, 2018. 4, 6

[44] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neural
scene representations with single-evaluation rendering. Ad-
vances in Neural Information Processing Systems, 34:19313–
19325, 2021. 3

[45] Weiwei Sun, Andrea Tagliasacchi, Boyang Deng, Sara Sabour,
Soroosh Yazdani, Geoffrey E Hinton, and Kwang Moo Yi.
Canonical capsules: Self-supervised capsules in canonical

pose. Advances in Neural Information Processing Systems
(NeurIPS), 34:24993–25005, 2021. 2

[46] Towaki Takikawa, Or Perel, Clement Fuji Tsang, Charles
Loop, Joey Litalien, Jonathan Tremblay, Sanja Fidler, and
Maria Shugrina. Kaolin wisp: A pytorch library and
engine for neural fields research. https : / /github.com/
NVIDIAGameWorks/kaolin-wisp, 2022. 6, 7

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems (NeurIPS), 30:5998–6008,
2017. 4

[48] Ingo Wald and Hans-Peter Seidel. Interactive ray tracing
of point-based models. In Proceedings of the Second Euro-
graphics / IEEE VGTC Conference on Point-Based Graphics,
SPBG’05, page 9–16, Goslar, DEU, 2005. Eurographics As-
sociation. 3

[49] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srini-
vasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4690–4699, 2021. 3

[50] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 5

[51] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5438–5448, 2022. 2, 3

[52] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural
surface reconstruction by disentangling geometry and appear-
ance. Advances in Neural Information Processing Systems,
33:2492–2502, 2020. 3

[53] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and
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