
Equivalent Transformation and Dual Stream Network Construction for Mobile
Image Super-Resolution

Jiahao Chao1, Zhou Zhou1, Hongfan Gao1, Jiali Gong1, Zhengfeng Yang1*, Zhenbing Zeng2, Lydia Dehbi1
1East China Normal University;

2Chengdu Institute of Computer Applications of Chinese Academy of Sciences
{jhchao502, zhouzhou, hfgao, gongjl}@stu.ecnu.edu.cn, zfyang@sei.ecnu.edu.cn,

zbzeng@shu.edu.cn, dehbilydia@sei.ecnu.edu.cn

Abstract

In recent years, there has been an increasing demand
for real-time super-resolution networks on mobile devices.
To address this issue, many lightweight super-resolution
models have been proposed. However, these models still
contain time-consuming components that increase infer-
ence latency, limiting their real-world applications on mo-
bile devices. In this paper, we propose a novel model for
single-image super-resolution based on Equivalent Trans-
formation and Dual Stream network construction (ETDS).
ET method is proposed to transform time-consuming op-
erators into time-friendly operations, such as convolution
and ReLU, on mobile devices. Then, a dual stream net-
work is designed to alleviate redundant parameters result-
ing from the use of ET and enhance the feature extraction
ability. Taking full advantage of the advance of ET and
the dual stream network structure, we develop the efficient
SR model ETDS for mobile devices. The experimental re-
sults demonstrate that our ETDS achieves superior infer-
ence speed and reconstruction quality compared to previ-
ous lightweight SR methods on mobile devices. The code is
available at https://github.com/ECNUSR/ETDS.

1. Introduction
Image super-resolution (SR) aims to reconstruct high-

resolution images (HR) from low-resolution images (LR).
Over the years, numerous deep-learning methods have been
proposed [3, 6,17,18, 33,35, 36] with good fidelity and per-
ceptual quality. However, these methods are not efficient
and lightweight when it comes to mobile platforms where
SR application becomes increasingly ubiquitous. Thus, it is
essential to devise an approach that takes into account the
restrictions of mobile platforms.

Generally, mobile platforms have limitations such as
a restricted amount of RAM, lower memory bandwidth,

*Corresponding author.

10 15 20 25 30
Latency (ms)

32.8

33.0

33.2

33.4

33.6

33.8

PS
NR

 (d
B)

ESPCN
FSRCNN

EC
BS

R

EC
BS

R+
ET

 (O
ur

s)

ABPN
ABPN+ET (Ours)

ETDS (Ours)

Figure 1. Comparisons of PSNR performance and the inference
latency of different models. The inference latency is tested on Di-
mensity 8100 SoC, NNAPI driver, INT8 precision and upsampling
from 360× 640 to 1080× 1920. PSNR indexes are evaluated on
Set5 [2].

lower computational speed and insufficient support for
many common deep learning layers and operators. To take
the particularities into consideration, the recently proposed
SR models [27, 34] designed for mobile devices adopt a
neat topology [34] as the base model to ensure low infer-
ence latency. ABPN [8] further boosted efficiency by em-
ploying the repeat operator instead of the time-consuming
nearest neighbor interpolation. Nevertheless, in-depth in-
vestigation reveals that some time-consuming components
in current mobile SR models, such as the global residual
connection and clip operator, are indispensable for overall
reconstruction quality. Therefore, to accelerate the infer-
ence on mobile devices and achieve a competitive recon-
struction quality and inference latency, it is necessary to
seek time-friendly surrogates for these time-consuming op-
erators.

To this end, we propose Equivalent Transformation (ET),
a method that speeds up the model by substituting time-
consuming operators with time-friendly ones without im-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14102

pairing reconstruction quality. As shown in Fig. 1, the pro-
posed ET can be directly applied to existing models (e.g.,
ECBSR [34] and ABPN [8]) and reduce inference latency
without retraining. However, ET introduces some redun-
dant and unlearnable parameters. To fully utilize these pa-
rameters, we design the dual stream network that makes the
redundant parameters partially learnable, to boost the fea-
ture extraction ability. Finally, we propose a mobile image
SR model named ETDS that employs the dual stream net-
work in the training stage and transforms it into an equiva-
lent plain network by ET in the inference stage. As shown
in Fig. 1, our ETDS not only achieves high reconstruction
quality but also maintains low inference speed.

In summary, the main contributions of this paper are as
follows:

1) We propose ET, a method that can transform time-
consuming operators and speed up the inference with-
out impairing reconstruction quality. It can be applied
to existing models to accelerate the inference.

2) We design a dual stream network to alleviate the re-
dundancy yielded from ET by making redundant pa-
rameters partially learnable.

3) We propose an efficient and lightweight network
named ETDS for real-time SR on mobile devices
based on ET and dual stream networks. Experiments
demonstrate that state-of-the-art models equipped with
ET have at most 80% improvement in inference la-
tency and ETDS achieves 34% inference latency im-
provement and 0.42dB PSNR performance improve-
ment.

2. Related Work

Due to the rapid development of convolutional neural
networks (CNN), CNN-based methods [6, 18, 24, 35, 36]
have become mainstream methods for SR tasks. SRCNN
[6] pioneered the application of convolutional neural net-
works on the SR task, surpassing the performance of tra-
ditional methods. In EDSR [18], a very deep network was
utilized and the batch normalization layers in the residual
block were removed. SwinIR [17] first attempted to apply
the Swin-Transformer [20] on the SR task, showing the po-
tential of Transformer-based networks [26]. To enlarge the
receptive field, the hybrid attention block (HAB) was pro-
posed by HAT [3], which achieved state-of-the-art perfor-
mance. However, these models have high requirements for
memory and computational resources which are not easily
attainable in real-world applications.

To realize lightweight SR for GPU servers, many ap-
proaches tried to reduce the number of parameters and
FLOPs. CARN [1] attempted to apply group convolutions.
IMDN [10] employed a progressive refinement module to
improve the information extraction ability and reduced the

number of layers and channels. For further improvement
in the efficiency of feature extraction, in RFDN [19], 1× 1
convolutions were utilized to replace the 3×3 convolutions
on the split channel of the IMDB [10] module. RLFN [15]
replaced the progressive refinement module with a simpler
residual module, which further improved the running speed
and achieved great performance. MemSR [30] optimized
the network in terms of memory by removing the residual
structure in the model and proposed a novel knowledge dis-
tillation method to improve the performance.

Due to the particularity of the mobile platforms, most
models for GPU servers are not directly applicable to
mobile devices whose applications require to be carried
out in a timely fashion with restricted computational re-
sources. To solve this problem, current methods mainly op-
timized the network from three aspects, i.e., neat network
topology, computation reduction and operator substitution.
ECBSR [34], which proposed an Edge-oriented Convolu-
tional Block (ECB) to achieve better performance, used
relatively neat topology for low inference latency on mo-
bile devices and introduced reparameterization techniques
to achieve computation reduction for SR task. Following
[34], RepSR [27] optimized the performance and training
efficiency of the reparameterization module in ECBSR to
achieve further computation reduction. ABPN [8] first at-
tempted to apply operator substitution and used the faster
repeat operator instead of nearest neighbor interpolation in
global residual connections. Inspired by the reparameter-
ization technique, we propose ET, which substitutes more
types of operators to achieve low inference latency. Our
proposed ETDS optimized the network from all three as-
pects, where ET optimized the network by achieving oper-
ator substitution and computation reduction while the dual
stream network adopted a neat topology.

3. Methodology
In this section, we examine the current mobile super-

resolution models in Sec. 3.1, and then propose a novel
method, Equivalent Transformation (ET), which substitutes
time-consuming operators with time-friendly ones in 3.2.
However, applying ET comes at the cost of introducing re-
dundant parameters. To address this, we carefully design
a dual stream network that alleviates redundancy and en-
hances feature extraction ability in Sec. 3.3.

3.1. Analysis of Current Mobile SR Models

In order to design more efficient super-resolution models
for mobile devices, we analyze the speed bottleneck of cur-
rent mobile SR models on two of the most popular mobile
phone SoCs1. As shown in Tab. 1, convolution and ReLU
operations have lower inference latency than most other op-

1www.counterpointresearch.com/global-smartphone-ap-market-share/

14103

Table 1. Average inference latency (ms) of common components
in mobile SR models. The average inference latency of all compo-
nents is tested on SR models with a channel size of 32, an input of
size 360 × 640 and a scale factor of 3. For operators in the same
type, the results of higher latency are marked in bold.

Type Operator
Latency (ms)

Dimensity
8100

Snapdragon
870

Snapdragon
865

Convolution

1× 1 Convolution 2.2 4 4
3× 3 Convolution 10.4 18 21

Transposed
Convolution 7.3 7 9

Activation

ReLU 0.06 0.6 0.6
PReLU 2.26 4.8 3.8

Leaky ReLU 2.26 5.6 4.2
Sigmoid 0.12 0.6 0.8

Tanh 0.3 0.8 1

Interpolation Nearest neighbor 26 24 27
Bilinear 67 65 68

Others

Add 6.5 3 4
Concatenate 22.8 6 7

Multiply 6.5 3 4
Repeat 16.3 19 14

Clip 6.9 91 94
PixelShuffle 4.2 3 4

erations, and PixelShuffle [23] is more efficient than trans-
posed convolution, which indicates PixelShuffle and ReLU
are better choices for mobile platforms. Hereafter, plain
network refers to a network that only contains time-friendly
operators (i.e., convolution, ReLU activation functions and
PixelShuffle), which has low inference latency on mobile
devices.

To transform current mobile models into plain models,
we may encounter the following challenges:

1) To avoid the rescaling problem in the INT8 quantiza-
tion models, it is necessary to add the clip operator
at the end of the model. However, the clip operator
is also time-consuming (see Tab. 1), which requires a
more efficient and equivalent alternative.

2) To compensate for the PSNR performance drop
brought by the removal of global residual connections,
it is necessary to find an equivalent way to transform
the global residual connection into an efficient opera-
tor.

To tackle these challenges, we propose ET, which sub-
stitutes some time-consuming operators with time-friendly
ones without reducing the reconstruction quality, thereby
improving the running speed.

3.2. Equivalent Transformation

Formal Definitions. A convolution operation is for-
mulated as z = W ⊗ x + b, where x ∈ Rci×h×w and
z ∈ Rco×h×w are the input and output tensors respectively,
W ∈ Rco×k×k×ci , b ∈ Rco are the kernel and the bias of
the convolution, and k is the kernel size, ci, co are the num-
bers of the input and output channels, and h,w are the input
height and width. I is the identity kernel of the convolution

operation, and O is the kernel of zero elements, satisfying

I ⊗ x = x, O ⊗ x = 0, ∀x ∈ Rci×h×w. (1)

For input features and convolution kernels, the concate-
nation operation requires all but the concatenated dimension
to be consistent. The channel dimension concatenation op-

eration of feature vectors x and y is defined as
[
x
y

]
. The

concatenation operation of the convolution kernels Wh,1

and Wh,2 in the horizontal direction (i.e., input-dimension
concatenation) is defined as

[
Wh,1,Wh,2

]
, which satisfies

[
Wh,1,Wh,2

]
⊗

[
x
y

]
= Wh,1 ⊗ x+Wh,2 ⊗ y. (2)

Likewise, the concatenation operation of the convolution
kernels Wv,1 and Wv,2 in the vertical direction, i.e., output-

dimension concatenation is defined as
[
Wv,1

Wv,2

]
, which satis-

fies [
Wv,1

Wv,2

]
⊗ x =

[
Wv,1 ⊗ x
Wv,2 ⊗ x

]
. (3)

More details will be found in Appendix.
ET for Repeat Operator. Given an input tensor x ∈

Rc×h×w, the repeat operator repeat(x, n) constructs a new
tensor z ∈ R(nc)×h×w by replicating the input n times
along the channel dimension. This operation can be ex-
pressed as a convolution layer. Precisely, Eq. (1) and (3)
yield

repeat(x, n) =

x...
x

 =

I ⊗ x
...

I ⊗ x

 =

I...
I

⊗ x

= repeat(I, n)⊗ x,

(4)

where repeat(I, n) is a constant. Thus, the repeat operator
is equivalently transformed into a convolution layer, whose
kernel and bias are repeat(I, n) and a zero vector, respec-
tively.

ET for Add Operator. The add operator refers to the
element-wise add operation of two feature vectors and is an
indispensable part of residual connections, i.e., z = x + y.
From Eq. (1) and (2), we have:

x+ y = I ⊗ x+ I ⊗ y =
[
I, I

]
⊗

[
x
y

]
. (5)

Thus, the add operator is equivalently transformed into a
convolution layer with a concatenate operator, whose kernel
and bias are

[
I, I

]
and a zero vector, respectively. Notably,

this proposed convolution layer can be eliminated later by
reparameterization techniques.

ET for Concatenate Operator. In our model, the con-
catenate operator always follows the convolution layers.

14104

We integrate the convolution-concatenate structure, i.e., the
concatenate operator and its preceding convolution layer,
which can be simplified with Eq. (2) and (3) as follows:

z =

[
W1 ⊗ x+ b1
W2 ⊗ y + b2

]
=

[
W1 O
O W2

]
⊗
[
x
y

]
+

[
b1
b2

]
. (6)

Following Eq. (6), the convolution-concatenate structure is
transformed into a concatenate-convolution structure, with
the kernel and bias as follows:[

W1 O
O W2

]
and

[
b1
b2

]
. (7)

In particular, when the residual branch does not have a
convolution layer, it can be expressed as:

z =

[
W ⊗ x+ b

y

]
=

[
W O
O I

]
⊗
[
x
y

]
+

[
b
0

]
. (8)

When x = y, Eq. (8) can be further rewritten as:

z =

[
W ⊗ x+ b

x

]
=

[
W
I

]
⊗ x+

[
b
0

]
, (9)

where the kernel is
[
W
I

]
and thus the concatenate operator

is eliminated.
ET for Clip Operator. The clip operator is expressed

as:

clip(x) =

 0, x ≤ 0,
x, 0 < x ≤ 255,
255, x > 255,

(10)

which avoids the loss of precision and subsequent additional
inverse scaling operations caused by mismatched normal-
ization of the INT8 quantization model [12]. Nevertheless,
as shown in Tab. 1, the clip operator is extremely time-
consuming on many mobile SoCs, so it is of great necessity
to find a time-friendly substitution for the clip operator.

To equivalently transform the clip operator with ReLU ,
we reformulate clip operator as:

clip(x) = ReLU(−ReLU(−x+ 255) + 255). (11)

To speed up this process, we further rewrite it as:{
y = ReLU(−I ⊗ x+ 255),

clip(x) = ReLU(−I ⊗ y + 255).
(12)

Using Eq. (12), the clip operator is transformed into two
convolutions with ReLU, whose kernels are −I and bias is
a vector with all elements equal to 255. Remark that the
first convolution layer in Eq. (12) is eliminated by reparam-
eterization techniques [5].

ET for Equivalent Plain Model Conversion. As de-
picted in Fig. 2, the model is converted into an equivalent
plain model by ET as following:

Conv

Conv Conv Conv Add Clip

Conv Conv Conv Add Clip

Conv

Conv Conv Conv ClipConv

Conv Conv ClipConvConvConv

Conv Conv ClipConvConv

Conv ClipConvConvConvConv

ClipConvConvConvConvConvConv

ConvConvConvConvConvConv Conv

Step 1
Eq. (4)

Step 2
Eq. (5)

Step 3
Eq. (6)

Step 4
Rep

Step 5
Eq. (8)

Step 6
Eq. (9)

Step 7
Eq. (12)

Repeat

Concat

Concat

Concat

Concat

Figure 2. Illustration of converting the general model into the
equivalent plain model using ET. The beige convolution indicates
that the convolution kernel is assigned a specific value. Rep refers
to the reparameterization technique.

• The repeat operator and the add operator are converted
into a single convolution and a concatenate operator
respectively (see Step 1 and Step 2).

• The concatenate operator with the preceding convolu-
tions from two branches is converted into a convolu-
tion. Notably, the global residual connection does not
contain negative values, so the ReLU function is omit-
ted (see Step 3).

• The two convolutions introduced by previous steps are
converted into a convolution using reparameterization
techniques (see Step 4).

• The convolution-concatenate structure is converted
into a concatenate-convolution one, thus the concate-
nate operator is converted and moves forward till it
reaches the skip connection starting point, that is, x
equals y. In this situation, the concatenate operator is
further eliminated (see Step 5 and Step 6).

• The clip operator is converted into the convolution (see
Step 7).

Remark 1 Although ET speeds up inference by transform-
ing time-consuming operators into time-friendly ones, it in-
troduces some redundant parameters. For instance, in the
transformed convolution kernel diag(W, I) derived from
Eq. (8). All learnable parameters appear in W . If the
redundant parameters are effectively utilized, better recon-
struction performance can be achieved.

3.3. Dual Stream Network

To alleviate the side effects of the redundant parame-
ters of ET, we design a dual stream network where the two
branches learn the low-frequency and high-frequency con-
tents of the image separately and utilize the parameters to

14105

···

LR

HF

LF HR

backbone branch

LR
HR

residual branch

···

 ETDS at training phase

 ETDS at inference phase

Pixel
Shuffle

ReLU

𝐾𝑏 𝐾r 𝐾𝑟2b 1 1𝐶𝑜𝑛𝑣

AddClip

×

Figure 3. Network architecture of ETDS during training and inference stages. The residual branch for extracting low-frequency contents
only contains a few parameters, and most of the parameters are used to extract high-frequency contents.

the fullest. The transformed convolution kernel in Eq. (8)

is
[
Kb Kr2b

Kb2r Kr

]
, where Kb and Kr denote the modules

that constitute the backbone branch and residual branch, re-
spectively. Kr2b is the module that transfers information
from the residual branch to the backbone branch, and Kb2r

transfers information reversely. The residual branch con-
sisting of Kr and the backbone branch consisting of Kb

extract low-frequency and high-frequency information re-
spectively.

Initially, Kr,Kr2b and Kb2r are not learnable. Further-
more, we have analyzed the the possible impacts of mak-
ing them learnable on the reconstruction quality and found
that when Kr and Kr2b are learnable, they can extract low-
frequency information more effectively and transfer more
residual information to the backbone branch, respectively.
However, when Kb2r is learnable, the backbone branch may
take less important low-frequency information into consid-
eration, which reduces the number of parameters for ex-
tracting high-frequency components, and potentially com-
promising the performance.

As shown in Fig. 3, Kr and Kr2b in our dual stream
network contain learnable parameters, while parameters in
Kb2r remain fixed. In the training phase, we encourage the
residual branch to learn as many low-frequency contents as
possible, that is, to minimize the L1 distance between the
output of the residual branch (ILF) and the ground truth
(IGT):

LLF = ∥IGT − ILF ∥1. (13)

The backbone branch learns high-frequency contents,
and its output (IHF) compensates for the gap between IGT

and ILF :

LHF = ∥IGT − ILF − IHF ∥1. (14)

To train the dual stream network, we use the overall loss
function:

LDS = LHF + α× LLF , (15)

which drives more parameters to extract high-frequency
contents to improve the overall performance. In the infer-
ence stage, as shown in Fig. 3, the dual stream network can
be equivalently transformed into a plain network, which en-
sures low inference latency.

4. Experiments
4.1. Datasets and Metrics

Our model ETDS is trained on DIV2K dataset [25] with
800 training images. The performance is evaluated on 5
benchmark datasets (i.e., Set5 [2], Set14 [32], BSDS100
[21], Urban100 [9] and DIV2K100 [25]). PSNR and SSIM
[29] are used to evaluate the reconstruction quality and cal-
culated on the Y channel in the YCbCr space.

4.2. Implementation Details

ETDS is implemented on PyTorch-based [22] BasicSR
[28] framework and trained on an NVIDIA 2080Ti GPU.
In the training phase, 32 patches of 64 × 64 LR image are
used as input. Random rotation, horizontal flipping, and
channel shuffle are applied for data augmentation. We train
our model by the ADAM [14] optimizer with β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. We set LDS as the loss func-
tion with α = 0.5. In accordance with previous works, our
model is trained for 1600k iterations with a learning rate of
5e−4. For the first 100k iterations, Kr and Kr2b are initial-
ized by setting Kr = I and Kr2b = O. In the testing phase,
we test the inference latency on three SoCs (i.e., Dimensity
8100, Snapdragon 888, and Snapdragon 8 Gen 1) with the

14106

(a) (b) (c)

4 8 12 16 20 24

Number of channels

50

100

150

200

L
at

en
cy

 (
m

s)

4 8 12 16 20 24

Number of channels

50

100

150

200

L
at

en
cy

 (
m

s)

4 8 12 16 20 24

Number of channels

50

100

150

200

L
at

en
cy

 (
m

s)

4 16 28 40 52 64

Number of channels

50

100

150

200

L
at

en
cy

 (
m

s)

4 16 28 40 52 64

Number of channels

50

100

150

200

L
at

en
cy

 (
m

s)

4 16 28 40 52 64

Number of channels

50

100

150

200

L
at

en
cy

 (
m

s)

2 4 6 8 10

Number of layers

50

60

70

80

90

100

110

L
at

en
cy

 (
m

s)

2 4 6 8 10

Number of layers

50

60

70

80

90

100

110

L
at

en
cy

 (
m

s)

2 4 6 8 10

Number of layers

50

60

70

80

90

100

110

L
at

en
cy

 (
m

s)

Figure 4. The effect of the numbers of channels and layers on inference latency of the plain model. (a) shows the inference latency with
the number of channels between 4 and 24. (b) shows the inference latency with the number of channels between 4 and 64, divisible by 4.
(c) shows the inference latency with the number of layers between 1 and 10.

AI Benchmark application [11, 13]. All inference latencies
and multiply-accumulate operations (MACs) are tested with
inputs of 360× 640.

4.3. Hardware-Friendly Number of Channels

As shown in Fig. 4, the numbers of channels and layers
have a significant impact on the model’s efficiency. Ob-
serving Fig. 4 (a)(b), we can see that the models have lower
inference latency on mobile devices when the number of
channels is a multiple of 4, due to the processing unit align-
ment [31], the memory alignment, and other hardware opti-
mizations [4]. Fig. 4 (c) supports that the inference latency
is proportional to the number of layers.

As a result, for a lower inference latency, ETDS is de-
signed with 16, 32, and 48 channels and the number of
layers in the model is designed for balancing the perfor-
mance and inference latency. Also, for the equivalently
transformed models (e.g., ECBSR+ET and ABPN+ET), ex-
tra channels are added to ensure that the number of channels
is a multiple of 4.

4.4. Comparisons to Previous Works

We compare our ETDS with representative real-time SR
models on mobile devices, including Bicubic, ESPCN [23],
FSRCNN [7], ABPN [8], and ECBSR [34]. Since ESPCN,
FSRCNN, and ECBSR only process on a single channel
of the input image, some preprocessing and postprocess-
ing, such as color space conversion and upsampling of the
other two channels are omitted. For a fair comparison, these
models are retrained in the RGB color space.

We train four different sizes of our model, denoted
as ETDS-T, ETDS-S, ETDS-M and ETDS-L for differ-
ent computational use cases, with channels 16, 32, 32 and
48, and layers 5, 4, 6, and 7, respectively. The perfor-
mance comparison is summarized in Tab. 2. In addition to
PSNR/SSIM indexes, we also list the number of parameters
and MACs for a more comprehensive comparison.

Quantitative Results. The quantitative comparison is

presented in Tab. 2. From Tab. 2, our model achieves not
only lower inference latency than other models in most
cases but also higher PSNR/SSIM indexes. For instance, as
shown in Tab. 2 (latency column i), our ETDS-S runs 1.2ms
faster than ECBSR-M4C16 on the ×3 task, and its PSNR
index on the Urban100 dataset is 0.29dB higher. ETDS-
L’s inference latency on the ×3 task is 3.5ms faster than
the ABPN-M6C40’s, and PSNR on Set5. Notably, although
our model consists of slightly more parameters and MACs,
it is still faster than the state-of-the-art models. This phe-
nomenon occurs due to two-fold aspects. 1). Under differ-
ent contexts, the same operations may have different infer-
ence latency. 2). Some operations are not measured in pa-
rameters and MACs metrics. For instance, ReLU does not
influence parameters and concatenation does not influence
MACs.

Qualitative Results. The qualitative comparison results
are depicted in Fig. 5. We can see that the texture of the
wall in thimagese images generated by ESPCN [23] and
FSRCNN [7] is blurred, and images generated by ECBSR-
M6C40 [34] and ABPN-M6C40 [8] are slightly distorted.
Obviously, our ETDS-T produces the least distorted and
blurred images with the best PSNR/SSIM results.

4.5. Ablation Studies

In this section, we propose a series of ablation studies
on the design of the proposed ETDS. All the ablation ex-
periments are conducted on the ×4 task. We report PSNR
values on the Y channel in the YCbCr space.

Ablation Studies for Equivalent Transformation. We
validate the effectiveness of ET through a series of abla-
tion studies. Additionally, we apply ET to both ECBSR and
ABPN to further demonstrate its effectiveness. Note that
ETDS does not have a repeat operator and we do not apply
ET for the concatenate operator for ECBSR and ABPN be-
cause the improvment on the NNAPI driver is insignificant.
Our results in Tab. Tab. 3 show that applying ET to these
operators results in reduced latency.

14107

Table 2. Performance comparison of different SR models on five benchmark datasets. PSNR/SSIM on the Y channel is reported on each
dataset. Inference latency i, ii, iii and iv denotes the inference latency of the models using NNAPI driver on Dimensity 8100 SoC, MediaTek
Neuron driver on Dimensity 8100 SoC, Qualcomm QNN GPU driver on Snapdragon 888 SoC, and NNAPI on Snapdragon 8 Gen 1 SoC
respectively.

Scale Model Params (K) MACs (G) Latency (ms) Set5 Set14 B100 Urban100 DIV2K100
i ii iii iv PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Bicubic * * * * * * 33.95/0.9334 30.54/0.8751 29.74/0.8503 27.07/0.8456 32.67/0.9078
ESPCN 26.80 6.15 6.30 4.83 91 - 36.87/0.9559 32.62/0.9086 31.40/0.8898 29.61/0.8973 34.78/0.9347

ETDS-T (Ours) 13.94 3.19 4.85 3.81 125 - 37.18/0.9578 32.76/0.9103 31.62/0.8930 30.10/0.9058 35.09/0.9375
FSRCNN 24.68 15.05 10.4 5.89 414 562 37.00/0.9568 32.68/0.9094 31.51/0.8913 29.92/0.9022 34.97/0.9363

ECBSR-M4C16 11.55 2.64 6.15 4.57 189 31.6 37.18/0.9577 32.79/0.9105 31.61/0.8928 30.18/0.9064 35.10/0.9375
ETDS-S (Ours) 41.51 9.52 8.06 5.77 169 - 37.38/0.9587 32.96/0.9124 31.77/0.8951 30.62/0.9121 35.36/0.9396
ECBSR-M4C32 41.52 9.53 9.70 6.64 372 31.4 37.39/0.9587 33.03/0.9126 31.79/0.8953 30.69/0.9128 35.39/0.9398
ABPN-M4C28 33.46 7.67 10.0 6.66 207 28.5 37.36/0.9585 32.96/0.9121 31.75/0.8949 30.55/0.9111 35.31/0.9392

ETDS-M (Ours) 60.01 13.77 10.2 6.73 288 - 37.54/0.9593 33.09/0.9133 31.86/0.8963 30.87/0.9149 35.50/0.9406
ECBSR-M6C40 92.37 21.22 18.1 10.9 653 46.2 37.61/0.9596 33.18/0.9139 31.94/0.8972 31.09/0.9174 35.61/0.9415
ABPN-M6C40 93.40 21.45 18.7 11.2 435 31.9 37.58/0.9594 33.16/0.914 31.92/0.8971 31.04/0.9169 35.59/0.9414
ETDS-L (Ours) 152.18 34.97 20.6 12.1 469 - 37.64/0.9597 33.24/0.9145 31.98/0.8977 31.22/0.9188 35.69/0.9421

×3

Bicubic * * * * * * 30.61/0.8719 27.79/0.7811 27.31/0.7453 24.58/0.7396 29.80/0.8341
ESPCN 31.13 7.14 9.79 8.38 110 44 32.85/0.9115 29.41/0.8236 28.40/0.7876 26.22/0.8002 31.24/0.8670

ETDS-T (Ours) 16.92 3.86 8.64 5.36 140 49.2 33.14/0.9160 29.53/0.8274 28.54/0.7920 26.48/0.8111 31.43/0.8713
FSRCNN 24.68 30.73 13.7 7.32 456 1350 33.01/0.9145 29.52/0.8264 28.50/0.7903 26.40/0.8074 31.38/0.8699

ECBSR-M4C16 13.72 3.14 16.2 11.0 216 69.4 33.07/0.9149 29.53/0.8269 28.57/0.7921 26.61/0.8136 31.44/0.8712
ETDS-S (Ours) 46.79 10.73 12.2 7.73 185 49.2 33.49/0.9194 29.76 0.8314 28.71/0.7961 26.90/0.8221 31.69/0.8756
ECBSR-M4C32 45.85 10.52 19.7 13.1 354 69.2 33.56/0.9205 29.78/0.8319 28.73/0.7965 26.98/0.8239 31.73/0.8761
ABPN-M4C28 42.54 9.76 20.5 13.8 275 62.8 33.53/0.9200 29.78/0.8317 28.72/0.7966 26.94/0.8232 31.71/0.8758

ETDS-M (Ours) 65.29 14.98 14.4 8.76 260 49 33.65/0.9214 29.86/0.8333 28.78/0.7981 27.12/0.8278 31.81/0.8776
ECBSR-M6C40 97.79 22.46 28.1 17.4 713 75.3 33.67/0.9211 29.92/0.8339 28.85/0.7994 27.36/0.8333 31.88/0.8784
ABPN-M6C40 104.10 23.91 29.2 18.2 480 66 33.71/0.9213 29.92/0.8339 28.85/0.7994 27.37/0.8336 31.89/0.8786
ETDS-L (Ours) 159.77 36.71 25.4 14.2 444 51.8 33.88/0.9235 30.00/0.8359 28.90/0.8010 27.45/0.8359 32.00/0.8807

×4

Bicubic * * * * * * 28.60/0.8140 26.21/0.7088 26.04/0.6733 23.23/0.6613 28.23/0.7775
ESPCN 37.20 8.54 11.8 8.14 120 79.8 30.66/0.8688 27.66/0.7581 26.94/0.7152 24.56/0.7263 29.46/0.8133

ETDS-T (Ours) 21.36 4.88 10.9 6.94 163 77.4 30.87/0.8738 27.75/0.7618 27.04/0.7194 24.71/0.7350 29.59/0.8172
FSRCNN 24.68 52.68 - - - - 30.76/0.8721 27.74/0.7609 27.01/0.7181 24.66/0.7330 29.56/0.8163

ECBSR-M4C16 16.77 3.83 23.9 13.7 278 191 30.87/0.8741 27.80/0.7626 27.06/0.7195 24.75/0.7364 29.61/0.8176
ETDS-S (Ours) 54.11 12.41 14.6 9.02 203 77.4 31.19/0.8806 28.01/0.7678 27.18/0.7240 25.03/0.7479 29.80/0.8224
ECBSR-M4C32 51.92 11.91 28.0 16.3 399 191 31.24/0.8815 28.04/0.7686 27.21/0.7248 25.07/0.7494 29.84/0.8231
ABPN-M4C28 62.05 14.24 30.3 17.4 335 187 31.32/0.8833 28.10/0.7697 27.23/0.7254 25.12/0.7511 29.86/0.8237

ETDS-M (Ours) 72.61 16.66 16.6 9.98 267 78.9 31.41/0.8843 28.13/0.7705 27.27/0.7265 25.20/0.7544 29.92/0.8250
ECBSR-M6C40 105.37 24.20 36.8 20.7 749 195 31.41/0.8831 28.20/0.7716 27.33/0.7280 25.37/0.7601 29.97/0.8259
ABPN-M6C40 125.87 28.91 39.1 22.4 538 191 31.62/0.8876 28.27/0.7737 27.35/0.7293 25.41/0.7616 30.04/0.8277
ETDS-L (Ours) 169.97 39.05 27.6 15.3 447 85.3 31.69/0.8889 28.31/0.7751 27.37/0.7302 25.47/0.7643 30.09/0.8289

Table 3. Ablation operation for each operator. All indicators are
tested using NNAPI driver on Dimensity 8100 SoC.

Model Size Improvement
add concatenate clip

ETDS

T 21.03% 28.92% 0.26%
S 16.74% 26.61% 0.86%
M 8.33% 34.47% 0.76%
L 7.29% 27.64% 0.50%

repeat add clip

ECBSR
M4C16 47.95% 7.38% 1.23%
M4C32 39.01% 11.35% -0.35%
M6C40 29.92% 10.24% 0.54%

ABPN M4C28 37.46% 10.75% 1.30%
M6C40 27.30% 10.20% 0.77%

Ablation Studies for Global Residual Connection.
Here we investigate the effect of the global residual con-
nection. Tab. 4 shows the results of the experiments. The
PSNR value is improved by 0.04dB on Set5, when adding
a global residual connection composed of nearest neighbor
interpolation to Plain-M6C32.

Table 4. PSNR/SSIM results for different variants of ETDS-M.

Variant Modifications Set5 Urban100
PSNR/SSIM PSNR/SSIM

I Plain-M6C32 31.32/0.8830 25.10/0.7505
II Plain-M6C32 w/ interpolation 31.36/0.8833 25.13/0.7519
III ETDS-M w/o Kr2b module 31.36/0.8835 25.16/0.7526
IV ETDS-M 31.41/0.8843 25.20/0.7544
V ETDS-M w/ Kb2r module 31.38/0.8837 25.17/0.7530
VI ETDS-M w/o LDS 31.35/0.8837 25.14/0.7521

Ablation Studies for Kr, Kr2b and Kb2r. We train Kr,
Kr2b, and Kb2r one after another in an incremental way.
The variants are recorded as Variant III, Variant IV, and
Variant V in Tab. 4. Variant IV refers to our ETDS-M. From
Tab. 4, the performance of Variant II, III and IV increases
sequentially, indicating that the learnability of Kr and Kr2b

is beneficial to improve the performance. However, Vari-
ant V’s performance is worse than Variant IV’s, which may
indicate that introducing a learnable Kb2r could lead to a
degradation in performance. The Kb2r module connects
the low-frequency constraints to the backbone branch dur-
ing backpropagation which causes the backbone branch to

14108

img_088 from Urban100

Ground Truth
PSNR/SSIM

Bicubic
19.17/0.4514

ESPCN
20.41/0.5572

FSRCNN
20.53/0.5825

Plain-M6C32
21.08/0.6193

ECBSR-M6C40
21.03/0.6680

ABPN-M6C40
21.12/0.6593

ETDS-L
21.77/0.7050

Figure 5. Qualitative comparison of real-time SR models on Set5
for ×4 upscaling task.

masked channel index

Feature Map Feature Map

Figure 6. Channel masking experiments with Plain-M6C32
model, ETDS and Variant V. In order to understand the meaning
of each channel, the visualization images of some channels are
shown in this figure.

pay extra attention to low-frequency information, thereby
reducing the model’s ability to extract high-frequency in-
formation.

Ablation Studies for Dual Stream Constraint LDS.
For ETDS-M, the PSNR value is 0.06dB higher than the
one without LDS (Tab. 4 Variant VI), which supports the

benefit of the dual stream constraint LDS.
Analysis of Dual Stream Network. We conduct the

channel mask experiments [16] on ETDS-M, Plain-M6C32
and Variant V models, and then analyze how each chan-
nel contributes to the performance. From Fig. 6, the low-
frequency information of ETDS-M is mainly concentrated
in the last three channels (i.e., the residual branch), while
the high-frequency information is distributed in the remain-
ing channels (i.e., the backbone branch) corresponding to
our design in Sec. 3.3. In addition, the extraction of the low-
frequency channel of ETDS-M is more effective than the
Plain-M6C32 model. This may be the reason why ETDS-
M has better performance than the Plain-M6C32 model.
On top of that, Variant V does better in extracting low-
frequency information than ETDS-M, but worse in PSNR
performance, which confirms that the learnability of Kb2r

compromises the ability to extract high-frequency informa-
tion.

4.6. Limitations

While our method achieves a better trade-off between
performance and latency on mobile devices, it also has
its limitations. Firstly, ET is only appropriate for rela-
tively simple network architectures. More complex struc-
tures would require a more complicated ET process, which
could potentially introduce an excessive number of redun-
dant parameters. Secondly, due to its simplified structure,
very deep networks still pose a challenge for ETDS, and its
performance may not reach the level of its EDSR counter-
part.

5. Conclusion
This paper has presented ETDS for mobile image super-

resolution via Equivalent Transformation and dual stream
network construction. ET method is applied to substi-
tute time-consuming operators, including add, repeat, clip
and concatenate, with time-friendly ones (convolution and
ReLU), which can alleviate the inference latency. We have
developed a dual stream network, which successfully elim-
inated most of the redundant parameters brought by the im-
plementation of ET. Our approach represents an innovative
integration of the ET method with a dual-stream network for
mobile devices. Extensive experiments have demonstrated
that ETDS can outperform the state-of-the-art lightweight
SR models in terms of inference latency and reconstruction
quality.

Acknowledgements. This work was supported in part
by “Digital Silk Road” Shanghai International Joint
Lab of Trustworthy Intelligent Software (Grant No.
22510750100), and Shanghai Trusted Industry Internet
Software Collaborative Innovation Center.

14109

References
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

accurate, and lightweight super-resolution with cascading
residual network. In Vittorio Ferrari, Martial Hebert, Cris-
tian Sminchisescu, and Yair Weiss, editors, Computer Vision
- ECCV 2018 - 15th European Conference, Munich, Ger-
many, September 8-14, 2018, Proceedings, Part X, volume
11214 of Lecture Notes in Computer Science, pages 256–
272. Springer, 2018. 2

[2] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie-Line Alberi-Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
In Richard Bowden, John P. Collomosse, and Krystian Miko-
lajczyk, editors, British Machine Vision Conference, BMVC
2012, Surrey, UK, September 3-7, 2012, pages 1–10. BMVA
Press, 2012. 1, 5

[3] Xiangyu Chen, Xintao Wang, Jiantao Zhou, and Chao
Dong. Activating more pixels in image super-resolution
transformer. CoRR, abs/2205.04437, 2022. 1, 2

[4] John Cheng, Max Grossman, and Ty McKercher. Profes-
sional CUDA c programming. John Wiley & Sons, 2014.
6

[5] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, virtual, June 19-
25, 2021, pages 13733–13742. Computer Vision Foundation
/ IEEE, 2021. 4

[6] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. CoRR, abs/1501.00092, 2015. 1, 2

[7] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-
ating the super-resolution convolutional neural network. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, ed-
itors, Computer Vision - ECCV 2016 - 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II, volume 9906 of Lecture Notes in Com-
puter Science, pages 391–407. Springer, 2016. 6

[8] Zongcai Du, Jie Liu, Jie Tang, and Gangshan Wu. Anchor-
based plain net for mobile image super-resolution. In
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, CVPR Workshops 2021, virtual, June 19-
25, 2021, pages 2494–2502. Computer Vision Foundation /
IEEE, 2021. 1, 2, 6

[9] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages
5197–5206. IEEE Computer Society, 2015. 5

[10] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang.
Lightweight image super-resolution with information multi-
distillation network. In Laurent Amsaleg, Benoit Huet,
Martha A. Larson, Guillaume Gravier, Hayley Hung, Chong-
Wah Ngo, and Wei Tsang Ooi, editors, Proceedings of the
27th ACM International Conference on Multimedia, MM
2019, Nice, France, October 21-25, 2019, pages 2024–2032.
ACM, 2019. 2

[11] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,
Max Wu, Tim Hartley, and Luc Van Gool. AI benchmark:
Running deep neural networks on android smartphones. In
Laura Leal-Taixé and Stefan Roth, editors, Computer Vision
- ECCV 2018 Workshops - Munich, Germany, September
8-14, 2018, Proceedings, Part V, volume 11133 of Lecture
Notes in Computer Science, pages 288–314. Springer, 2018.
6

[12] Andrey Ignatov, Radu Timofte, Maurizio Denna, and Ab-
del Younes. Real-time quantized image super-resolution
on mobile npus, mobile AI 2021 challenge: Report. In
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, CVPR Workshops 2021, virtual, June 19-
25, 2021, pages 2525–2534. Computer Vision Foundation /
IEEE, 2021. 4

[13] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo
Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and
Luc Van Gool. AI benchmark: All about deep learning on
smartphones in 2019. In 2019 IEEE/CVF International Con-
ference on Computer Vision Workshops, ICCV Workshops
2019, Seoul, Korea (South), October 27-28, 2019, pages
3617–3635. IEEE, 2019. 6

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 5

[15] Fangyuan Kong, Mingxi Li, Songwei Liu, Ding Liu, Jing-
wen He, Yang Bai, Fangmin Chen, and Lean Fu. Resid-
ual local feature network for efficient super-resolution. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2022, New Or-
leans, LA, USA, June 19-20, 2022, pages 765–775. IEEE,
2022. 2

[16] Xiangtao Kong, Xina Liu, Jinjin Gu, Yu Qiao, and Chao
Dong. Reflash dropout in image super-resolution. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-
24, 2022, pages 5992–6002. IEEE, 2022. 8

[17] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,
Luc Van Gool, and Radu Timofte. Swinir: Image restoration
using swin transformer. In IEEE/CVF International Confer-
ence on Computer Vision Workshops, ICCVW 2021, Mon-
treal, BC, Canada, October 11-17, 2021, pages 1833–1844.
IEEE, 2021. 1, 2

[18] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for sin-
gle image super-resolution. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR
Workshops 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 1132–1140. IEEE Computer Society, 2017. 1, 2

[19] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature dis-
tillation network for lightweight image super-resolution. In
Adrien Bartoli and Andrea Fusiello, editors, Computer Vi-
sion - ECCV 2020 Workshops - Glasgow, UK, August 23-28,
2020, Proceedings, Part III, volume 12537 of Lecture Notes
in Computer Science, pages 41–55. Springer, 2020. 2

14110

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
2021 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2021, Montreal, QC, Canada, October 10-17,
2021, pages 9992–10002. IEEE, 2021. 2

[21] David R. Martin, Charless C. Fowlkes, Doron Tal, and Jiten-
dra Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and
measuring ecological statistics. In Proceedings of the Eighth
International Conference On Computer Vision (ICCV-01),
Vancouver, British Columbia, Canada, July 7-14, 2001 - Vol-
ume 2, pages 416–425. IEEE Computer Society, 2001. 5

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, pages 8024–8035, 2019. 5

[23] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 1874–1883. IEEE Computer Society, 2016. 3, 6

[24] Wuzhen Shi, Feng Jiang, and Debin Zhao. Single im-
age super-resolution with dilated convolution based multi-
scale information learning inception module. CoRR,
abs/1707.07128, 2017. 2

[25] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-
Hsuan Yang, and Lei Zhang. NTIRE 2017 challenge on sin-
gle image super-resolution: Methods and results. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, CVPR Workshops 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 1110–1121. IEEE Computer Soci-
ety, 2017. 5

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008, 2017. 2

[27] Xintao Wang, Chao Dong, and Ying Shan. Repsr: Train-
ing efficient vgg-style super-resolution networks with struc-
tural re-parameterization and batch normalization. CoRR,
abs/2205.05671, 2022. 1, 2

[28] Xintao Wang, Liangbin Xie, Ke Yu, Kelvin C.K. Chan,
Chen Change Loy, and Chao Dong. BasicSR: Open source
image and video restoration toolbox. https://github.
com/XPixelGroup/BasicSR, 2022. 5

[29] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004. 5

[30] Kailu Wu, Chung-Kuei Lee, and Kaisheng Ma. Memsr:
Training memory-efficient lightweight model for image
super-resolution. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, ed-
itors, International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pages
24076–24092. PMLR, 2022. 2

[31] Jiahui Yu and Thomas S. Huang. Universally slimmable net-
works and improved training techniques. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, pages
1803–1811. IEEE, 2019. 6

[32] Roman Zeyde, Michael Elad, and Matan Protter. On sin-
gle image scale-up using sparse-representations. In Jean-
Daniel Boissonnat, Patrick Chenin, Albert Cohen, Christian
Gout, Tom Lyche, Marie-Laurence Mazure, and Larry L.
Schumaker, editors, Curves and Surfaces - 7th International
Conference, Avignon, France, June 24-30, 2010, Revised Se-
lected Papers, volume 6920 of Lecture Notes in Computer
Science, pages 711–730. Springer, 2010. 5

[33] Dafeng Zhang, Feiyu Huang, Shizhuo Liu, Xiaobing Wang,
and Zhezhu Jin. Swinfir: Revisiting the swinir with fast
fourier convolution and improved training for image super-
resolution. CoRR, abs/2208.11247, 2022. 1

[34] Xindong Zhang, Hui Zeng, and Lei Zhang. Edge-oriented
convolution block for real-time super resolution on mobile
devices. In Heng Tao Shen, Yueting Zhuang, John R. Smith,
Yang Yang, Pablo Cesar, Florian Metze, and Balakrishnan
Prabhakaran, editors, MM ’21: ACM Multimedia Confer-
ence, Virtual Event, China, October 20 - 24, 2021, pages
4034–4043. ACM, 2021. 1, 2, 6

[35] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Vittorio Ferrari, Mar-
tial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part
VII, volume 11211 of Lecture Notes in Computer Science,
pages 294–310. Springer, 2018. 1, 2

[36] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 2472–2481. Computer Vision Foundation /
IEEE Computer Society, 2018. 1, 2

14111

