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Abstract

Rising concerns about privacy and anonymity preser-

vation of deep learning models have facilitated research

in data-free learning (DFL). For the first time, we iden-

tify that for data-scarce tasks like Sketch-Based Image Re-

trieval (SBIR), where the difficulty in acquiring paired pho-

tos and hand-drawn sketches limits data-dependent cross-

modal learning algorithms, DFL can prove to be a much

more practical paradigm. We thus propose Data-Free (DF)-

SBIR, where, unlike existing DFL problems, pre-trained,

single-modality classification models have to be leveraged

to learn a cross-modal metric-space for retrieval without

access to any training data. The widespread availability of

pre-trained classification models, along with the difficulty

in acquiring paired photo-sketch datasets for SBIR justify

the practicality of this setting. We present a methodology

for DF-SBIR, which can leverage knowledge from models

independently trained to perform classification on photos

and sketches. We evaluate our model on the Sketchy, TU-

Berlin, and QuickDraw benchmarks, designing a variety

of baselines based on state-of-the-art DFL literature, and

observe that our method surpasses all of them by signifi-

cant margins. Our method also achieves mAPs competitive

with data-dependent approaches, all the while requiring

no training data. Implementation is available at https:

//github.com/abhrac/data-free-sbir.

1. Introduction

Motivated by the high degree of expressiveness and flex-

ibility provided by sketches, sketch-based image retrieval

(SBIR) has emerged as a popular area of computer vision

research [3,6,7,13,15]. SBIR is generally achieved by train-

ing photo and sketch encoders to respectively map photo

and sketch inputs to a class or instance aligned common

space. Training deep neural photo-sketch encoders for this

task, however, requires datasets with matching photo-sketch

pairs [45, 58]. Unlike photos, sketches are fundamentally

difficult to acquire as drawing them involve long time peri-

ods of laborious human participation. Driven by this practi-
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Figure 1. Our proposed Data-Free setting for SBIR does not need

a real-world dataset of paired sketches and photos. Using only

independently trained, modality-specific classifiers, it can estimate

their train set distributions, as well as pair them at class-level for

training the sketch and photo encoders.

cal constraint, the problem has been studied under a variety

of data-scarce settings like semi-supervised [3], few-shot

class incremental [5], zero-shot [14], and any-shot [15].

However, all such settings assume the availability of some

amount of instance/class-aligned data for training the en-

coders. With the tremendous effort involved in acquir-

ing such labelled photo-sketch pairs [3, 13, 14], as well as

the rising concerns about privacy, security and anonymity

preservation abilities of deep learning models [8,31,46,51],

such assumptions may no longer be practical.

With this view, we propose Data-Free Sketch-Based Im-

age Retrieval (DF-SBIR), a novel setting that requires train-

ing photo and sketch encoders for retrieval, but with no

training data. Specifically, we only assume access to pre-

trained photo and sketch classification models. In contrast

to unsupervised cross-domain image retrieval [22] which

only requires access to training data, but with no in-domain

or cross-domain labels, our setting goes a step further and

assumes access to no training data at all. Since classification

does not require cross-modal pairings as in SBIR, and ow-

ing to the recent advances in domain generalization [29,52],
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such pre-trained classifiers are widely available [40, 52],

making our setting quite practical. Under this scenario, the

problem of training the encoders can be posed in the light

of data-free knowledge distillation (DFKD) [8, 30]. Classi-

cal knowledge distillation [21] aims to transfer knowledge

from a pre-trained model (teacher) to a different model (stu-

dent), by aligning the predictions of the latter with the for-

mer on train set inputs. Differently, DFKD aims to achieve

this knowledge transfer without access to any form of train-

ing data. The conventional approach to DFKD involves the

following two steps – (1) Reconstructing the train set dis-

tribution of the teacher; (2) Training the student network

to match its predictions with that of the teacher, on sam-

ples from the reconstructed distribution. However, existing

DFKD approaches so far have only been able to operate in a

single modality, performing the same kind of task as that of

the teacher. SBIR, being a cross-modal retrieval problem,

cannot be tackled in the data-free setting by directly adapt-

ing the machineries developed for DFKD, the reasons for

which we detail below.

First, the teachers (being classifiers) and the students

(being encoders) operate in metric spaces of different na-

ture, i.e., probabilistic and Euclidean respectively. This re-

strains us from measuring the agreement between teach-

ers and students in a straightforward way, thus preventing

the direct application of state-of-the-art approaches from

the DFKD literature like data-free adversarial distillation

[10, 35]. We address this by designing a unified, class-

proxy based interface via which the teachers and students

can interact. Second, the sketch and the image classifiers

that act as teachers are independently trained on modality-

specific data. Their intermediate representations are thus

modality sensitive. However, the representations learned by

the encoders to be used for DF-SBIR need to be modal-

ity invariant. To this end, we introduce the concept of a

modality guidance network, which constrains the recon-

structions to belong to specific (photo/sketch) modalities.

Training the encoders with such samples will ensure that

they learn to eliminate unnecessary, modality-specific in-

formation. Third, the independent training of the classifiers

also mean that their train set distributions may not have

direct class-level correspondence. To address this, we de-

sign our distribution estimation process to reconstruct class-

aligned samples, i.e., ones that have class-level correspon-

dence across the two modalities. This will guarantee the

availability of matching photo-sketch pairs for the metric

learning of the encoders. Our approach is hence able to

perform Data-Free Learning Across Modalities and Metric-

Spaces, which motivates us to abbreviate it as CrossX-DFL.

We make the following contributions – (1) Propose Data-

Free SBIR, a novel setting keeping in view the data-scarcity

constraints arising from the collection of paired photos

and sketches for SBIR, as well as concerns around pri-

vacy preservation; (2) A class-proxy based approach to per-

form data-free adversarial distillation from teachers with

probabilistic outputs to students with outputs in the Eu-

clidean space; (3) A novel technique to reconstruct class-

aligned samples across independent modalities for cross-

modal data-free knowledge distillation; (4) Introduce the

concept of a modality guidance network to constrain the re-

constructed sample distributions to specific modalities; (5)

Extensive experiments on benchmark datasets and ablation

studies that demonstrate the usefulness of our novel compo-

nents in providing competitive performance relative to the

data-dependent setting.

2. Related Work

Data-Free Learning Data-free learning (DFL) [8] aims

to solve a learning problem without accessing any form of

training data, possibly by leveraging the knowledge already

learned by a different model, but for a related task. Such

a setting provides practical benefits like data security [8],

anonymity [32], privacy preservation [30], and model in-

terpretability [33] to name a few. The standard approach

for performing DFL is based on the principle of model

inversion [33] – given a pre-trained model (teacher), the

aim is to reconstruct its train set distribution by analyzing

its activation patterns [8, 30, 35, 57]. Instead of real data,

this reconstructed distribution is then used to train a differ-

ent downstream model (student), thus making its learning

process data-free. Such reconstructions can be ensured to

have high fidelity and diversity by leveraging the teacher’s

batch normalization statistics [56] and inducing contrastive

teacher representations [17] respectively. Along these lines,

Micaelli et al. [35] and Choi et al. [10] got a step further

and introduced the idea of adversarial data-free distillation,

which showed that training the downstream task networks

(students) specifically on the worst-case inputs (for which

its predictions diverged maximally from the teacher) helped

ensure robustness to factors of variation [2]. However, by its

very design, the teacher and the student have to operate in

the exact same representation space (either probabilistic [8]

or Euclidean [32]), and its extension to cross-space distil-

lation has remained yet unexplored. In this work, for the

first time, we design a methodology that allows students to

adversarially learn from a teacher, even when they operate

in representation spaces of different nature.

Applications of Data Free Learning: Originally, DFL was

proposed with the view of performing knowledge distilla-

tion (KD) [21] in a data-free manner [8, 30]. This was mo-

tivated by the fact that traditional KD required access to

the teacher’s train set [39, 41, 48, 54], while rising concerns

about privacy and anonymity preservation in deep learning

models brought the practicality of such a requirement under

question [8, 32]. However, the potential of the underlying

idea has helped DFL expand much beyond the horizons of
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KD, with its current applications ranging all the way from

incremental person re-ID [32], image super-resolution [61]

and federated learning [60], to studying the security robust-

ness of a model via black-box adversarial attacks [51, 59]

or model stealing [46]. To address the non-IID nature of

local data distributions at the individual clients in the feder-

ated learning setting [34], principles of DFL [8] allow local

dataset reconstructions at the global level [60]. Going be-

yond such applications, Lu et al. [31] has showed that using

online gradient update based reconstructions can be used

for exposing privacy preservation gaps in federated learn-

ing systems. The latter idea of uncovering a model’s secu-

rity deficits via DFL has further been studied in the context

of black-box adversarial attacks [9] for designing a data-

free generator that maximizes information leakage from the

target model to the substitute model [59]. The same ap-

proach has also been applied in model stealing [46], or for

learning a single dynamic substitute network for multiple

target models with different downstream tasks [51]. How-

ever, none of the above works deal with cross-modal re-

trieval tasks (like SBIR), where generating paired instances

across modalities is a challenging and time-intensive pro-

cess. We address this issue through our novel construction

of semantically-aligned, modality-specific estimators.

Sketch-Based Image Retrieval: SBIR methods relying

on hand-crafted features focused on matching geometri-

cally similar substructures via gradient field HOG [23], de-

formable parts model [27], histogram of edge local orien-

tations [42], learned key shapes [43]. To address the sen-

sitivity of such methods to the large sketch-photo modal-

ity gap, deep SBIR models employing a deep triplet net-

work to learn a common embedding space were proposed

in [45, 58], which was extended in [47] by the introduction

of spatial attention, and in [4, 38] via self-supervised pre-

text tasks. Generative models have also shown promising

results in SBIR, employing ideas like disentangling style

and semantic contents [37, 44], cross-domain image syn-

thesis [37], and reinforcement learning based sketch gen-

eration [3]. All the above methods rely on expensive con-

tinuous valued distance computation, hampering scalabil-

ity, which [28] addressed by learning binary hash codes for

sketches. Explainability [1] and robustness [6,18] have also

become recent areas of focus in SBIR research. The data

scarcity issue in SBIR stemming from the difficulty in ac-

quiring hand-drawn sketches has been addressed by study-

ing the problem in semi-supervised [3] and zero-shot set-

tings [13, 14, 26]. However, performing SBIR in a sce-

nario where one has access to absolutely no training data,

has never been explored before. With the widespread avail-

ability of pre-trained classification models on benchmark

datasets [40, 52], and the costs and constraints involved in

acquiring datasets with paired photo-sketch instances, data-

free SBIR emerges as a promising research direction.

3. CrossX-DFL

Notations: Let tp and ts be photo and sketch classifiers

(teachers) already trained over input distributions X p and

X s respectively. Let gpθ and gsθ respectively be photo and

sketch estimator networks that learn to map random Gaus-

sian noise vectors ξ ∈ [0, 1]n to elements in the training

domains of the photo and sketch classifiers. We denote by

fpψ and fsψ , the photo and sketch encoders (students) that

are trained to compute metric space embeddings for pho-

tos and sketches respectively, and can thus be used for the

task of SBIR. For brevity, we will omit the parameters and

the modality superscripts while referring to the networks in

generic scenarios (e.g., fpψ will be denoted as f ).

Overview: We approach the task of data-free SBIR by

designing a bespoke process for performing data-free

knowledge distillation from the classifiers to the encoders.

The process consists of estimating the train set distribution

of the classifiers followed by leveraging that estimation to

train downstream photo and sketch encoders for retrieval.

The steps are summarized below:

Step 1: Estimating the Input Distribution – We train

the estimator networks g to produce approximations of

the train set distributions of the classifiers t. Based on

feedbacks from the classifiers t and the encoders f , the

estimators generate distributions X̃ such that they are as

close to the true sample distributions X as possible. Since

the classifiers act as teacher networks, their weights are

kept frozen throughout the process.

Step 2: Training the Encoders – The encoders f are

then trained to produce metric space embeddings for the

approximated training distributions X̃ such that matching

photo-sketch pairs (x̃p, x̃s) ∈ (X̃ p, X̃ s) are mapped close

to each other in the representation space, and non-matching

pairs are mapped farther apart.

Step 3: Retrieval – Given the trained sketch encoder fsψ
and photo encoder fpψ , a gallery of photos {xg1,x

g
2, ...,x

g
k}

and a query sketch x
s, we return a ranking over the gallery

such that x
g
i is ranked above x

g
j iff :

fs(xs) · fp(xgi ) ≥ f
s(xs) · fp(xgj )

Step 3 is generic across all SBIR methods and is common

to both data-free and data-driven settings. We further elab-

orate on Steps-1 and 2, which are specific to the data-free

setting, below in Sections 3.1 and 3.2 respectively.

3.1. Estimating the Input Distribution

The primary constraint that the reconstructed samples of

the estimated distributions need to satisfy is that their class

and modality memberships must be unambiguous. Since

the downstream encoders need positively paired photos and

sketches for contrastive learning, there needs to be a con-

straint enforcing the semantic alignment of the two distribu-
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Figure 2. Our CrossX-DFL training pipeline for Data-Free SBIR – The photo and sketch estimators reconstruct the train set distributions

of their corresponding classifiers. The estimation process is ensured to have semantic consistency and class-level, instance-wise corre-

spondence via Lsem and Lalign, while Lmodal constrains the estimated distributions to belong to specific modalities. Ladv incentivises the

estimators to produce boundary samples that are the hardest for the encoders to correctly encode. Optimizing the performance of the

encoders on such samples ensures its robustness to semantic variations. The reconstructed samples from the estimated photo and sketch

distributions, i.e., X̃ p and X̃ s respectively, are used for training the encoders in a data-free manner by minimizing Lmetric.

tions. One could also ensure the robustness of the encoders

by presenting it only with the samples that are the hardest

for it to correctly represent. Based on these requirements,

we formulate the input distribution estimation of the two

classifiers as follows.

Semantic Consistency: To keep the reconstructed elements

of the estimated distribution semantically consistent, we

constrain the estimation process to minimize the entropy

of the classifier’s output distribution, while maximizing the

activation values of the representation layer. For a recon-

structed input x̃ = g(ξ) and its corresponding predicted

probability distribution Ŷ = t(x̃) = [ŷ1, ŷ2, ..., ŷC ] ob-

tained from the classifier t over a set of C classes, we mini-

mize the following:

Lsem =

C∑

i=1

yi log ŷi − |tn−1(x̃)|,

where yi = 1 if max Ŷ = ŷi, or 0 otherwise, and tn−1(x̃)
is the output of the teacher’s representation layer. Minimiz-

ing the classification entropy helps to ensure that the recon-

structions x̃ come from distinct classes1 that the classifier

can recognize, while maximizing the magnitude of the clas-

sifiers’ representation layer activations incentivizes the esti-

mators to introduce meaningful contents in the reconstruc-

tions, as observed in [8].

Class Alignment: Even though Lsem incentivizes meaning-

ful class memberships, it does not guarantee that the cor-

1We ensure that set of estimated samples are class-balanced via the

information entropy criterion as in [8].

responding samples between the two distributions would

belong to the same class. Also, pairing samples solely on

the basis of discrete class labels does not guarantee ex-

act correspondence. This is because the degree/distribution

of class information between the two samples may sig-

nificantly differ, even if the class label happens to be the

same. Hence, we direct the estimation process in a man-

ner such that the corresponding samples across the recon-

structed distributions are semantically-aligned. This en-

sures more fine-grained correspondence between the recon-

structed sketch-photo pairs. For a given noise vector ξ, we

enforce the photo and the sketch estimators to map it to

their corresponding modality specific reconstructions, but

in a way such that they represent elements of the same class.

We achieve this by minimizing the symmetrized Kullback-

Leibler (KL)-divergence between the output distributions of

the photo and the sketch classifiers as follows:

Lalign =
1

2

C∑

i=1

ypi log
ypi
ysi

+ ysi log
ysi
ypi
,

where ypi and ysi respectively stand for the probabilistic

scores predicted by the photo and sketch classifiers for the

i-th class.

Modality Guidance: We ensure that the estimators pro-

duce samples that are specific to their corresponding modal-

ities by incorporating feedback from a modality guidance

network. This guarantees that the reconstructions have suf-

ficient modality-specific information, which the encoder

needs to be able to eliminate in order to learn robust rep-

resentations for retrieval. The modality guidance network
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d is a classifier parameterized by ϕ that discriminates be-

tween photos and sketches. The modality guidance loss is

formulated as follows:

Lmodal = −m log d(x̃)− (1−m) log(1− d(x̃)),

where m = 1 if x̃ comes from the photo estimator, and 0 if

it comes from the sketch estimator. We independently op-

timize the weights of the estimators and the modality guid-

ance network to minimize Lmodal. The convergence of this

criterion will imply that the estimators are able to incorpo-

rate modality-specific information into the reconstructions

x̃, since it is the only premise on which dφ can distinguish

the two modalities (as they are already semantically-aligned

as ensured by minimizing Lsem and Lalign).

Metric-Agnostic Adversarial Estimation: Inspired by ro-

bust optimization [2], existing literature on data-free knowl-

edge distillation [10,35] has shown that the efficiency of the

distillation process can be significantly improved by iden-

tifying the samples which are the hardest for the student

to classify. Concretely, this objective translates to tasking

the estimators to produce boundary samples, i.e., the ones

that maximize the disagreement between the teachers (clas-

sifiers) and the students (encoders). However, in data free

SBIR, the teacher being a classifier outputs probability dis-

tributions in [0, 1]C , while the student being an encoder pro-

duces representation vectors in R
n, which restrains us from

directly measuring the disagreement between the teachers

and the students in a straightforward way. To address this

issue, we treat the final layer neurons of the teacher (clas-

sifier) networks as class-proxies [36] against which we per-

form metric learning with the students’ representations. We

thus adapt the proxies to provide an interface between the

metric spaces of the teachers and the students, allowing out-

puts from both networks to be compared with each other.

LetKp = [kp1,k
p
2, ...,k

p
C ] andKs = [ks1,k

s
2, ...,k

s
C ] be the

sets of class-proxies for the photo and the sketch modali-

ties respectively (generically denoted as K). We align the

metric spaces of the classifiers and the encoders by map-

ping representations obtained from the encoders f(x̃) to the

corresponding class proxy vectors k ∈ K, minimizing the

following Proxy Anchor loss [25]:

Lmetric =
1

|K+|

∑

k∈K+

log(1 +
∑

x̃∈X̃
+

k

e−α(s(f(x̃),k)−δ))+

1

|K|

∑

k∈K

log(1 +
∑

x̃∈X̃
−

k

eα(s(f(x̃),k)+δ))

where α and δ respectively denote the margin and scaling

factors, K+ denote the set of positive proxies correspond-

ing to the the samples in a minibatch, X̃+
k

and X̃−

k
respec-

tively denote the matching and non-matching samples for

the proxy k, fp(x̃) = 0⃗ if x̃ is obtained from the sketch

estimator, and fs(x̃) = 0⃗ if x̃ is obtained from the photo

estimator.

The estimators g and encoders f then adversarially opti-

mize the following objective:

Ladv = min
f

max
g
{DKL(softmax(f(g(ξ)) ·K), Ŷ )},

where DKL stands for KL divergence. The maxima of the

DKL between the output distributions of the classifier and

encoder corresponds to the samples that are the hardest for

the encoders to correctly encode. By aiming for this max-

imum, the estimators learn to generate those hard samples,

while the encoders aim to optimize their performance on

such samples by getting closer to the classifiers’ predictions.

3.2. Training the Encoders

As ensured by minimizing Lalign, the reconstructed dis-

tributions X̃ p and X̃ s are class-aligned, i.e., for each index

i, x̃p = X̃ p(i) and x̃
s = X̃ s(i) belong to the same class.

With such positive pairs available out of the box, we train

the photo and the sketch encoders to minimize the following

queue-based version of the InfoNCE loss [49]:

Lenc = − log
exp (fs(x̃s) · fp(x̃p)/τ)∑

zp∈Q

exp (fs(x̃s) · zp/τ)
,

where Q is a gradient-free queue of photo sample repre-

sentations from previous mini-batches and τ is a hyperpa-

rameter controlling the spread of the embedding distribu-

tion [19, 53].

Learning objective: We optimize the estimators g, en-

coders f , and the modality discriminator d parameterized

by θ, ψ, and ϕ respectively via the following gradient up-

dates:

θ ←− θ − η∇θ(Lsem + Lalign + Lmodal + Ladv),

ψ ←− ψ − η∇ψ(Lmetric + Ladv + Lenc),

ϕ←− ϕ− η∇φ Lmodal,

where η is the learning rate. Upon convergence, we only

retain the encoders fψ for performing retrieval.

4. Experiments

Datasets: We evaluate our model on the three most com-

mon large scale SBIR datasets, namely Sketchy [28, 45],

TU-Berlin [16,28] and QuickDraw-Extended [13]. We pro-

vide details on their statistics, as well as train-test splits

in the supplementary. For Sketchy, the sketches and pho-

tos have instance-level correspondences. However, TU-

Berlin [16] and QuickDraw [24] were originally sketch-

only datasets, which were extended for SBIR in [28] and
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Method
Sketchy TU-Berlin QuickDraw

mAP@all Prec@200 mAP@all Prec@200 mAP@all Prec@200

Classifier Only [20] 0.530 0.542 0.330 0.338 0.160 0.180

Uni-Modal Distillation [8] 0.529 0.537 0.291 0.295 0.130 0.140

Gaussian Prior [8] 0.365 0.391 0.110 0.126 0.080 0.110

Averaging Weights [52] 0.625 0.630 0.450 0.473 0.300 0.320

Meta-Data [30] 0.573 0.576 0.380 0.395 0.200 0.221

Alternative Data [12, 50] 0.656 0.680 0.510 0.530 0.290 0330

Ours (CrossX-DFL) 0.827 0.831 0.680 0.693 0.400 0.410

Table 1. Quantitative comparison of CrossX-DFL with baselines.

[13] by adding photos from ImageNet [12] and Flickr re-

spectively, which only provide class-level, but no instance-

level correspondence. Therefore, experiments on these two

classes of datasets pose very different challenges for our

proposed model to handle. We use mean average preci-

sion (mAP@all) and precision at 200 (Prec@200) as evalu-

ation metrics in accordance with the convention in existing

works [18, 28]. In the supplementary, we additionally pro-

vide details on the pre-trained classifiers (teachers), hyper-

parameter choices, and our experimentation platform.

4.1. Comparison with Baseline Approaches

In Table 1, we compare our method with various baseline

approaches derived from existing state-of-the-art DFL liter-

ature. Below, we discuss our observations, with additional

implementation details and analyses in the supplementary.

Classifier Representations: The pre-trained ResNet50

[20] classifiers are made to act as encoders. We remove the

final classification layer and use the output from the rep-

resentation layer of the classifiers to perform SBIR. Since

their representations spaces have not been aligned by a con-

trastive objective like Lenc, directly using the classifiers as

encoders result in sub-par retrieval performance.

Uni-Modal Knowledge Distillation: Since all state-of-the-

art data-free knowledge distillation approaches operate on

uni-modal data [8, 10, 17, 30], we adapt them to train the

photo and sketch students, but without any cross-modal in-

teraction. Thus, during the distillation phase, the photo

and the sketch students learn to match their outputs with

those of their modality-specific teachers for classification,

but do not interact with each other via class-alignment or

contrastive losses for optimizing retrieval performance. We

then directly use the representations obtained from such

uni-modal networks for SBIR. Although promising, the per-

formance of this approach has to be upper-bounded by what

is achieved using the teachers directly. This phenomenon

is also supported by our experimental results. Related lit-

erature suggests that it is possible to train students to sur-

pass the performance of their teacher by making the former

larger in size than the latter [54]. However, we used same-

sized backbones for both to ensure fair comparison.

Sampling from a Gaussian Prior: Instead of estimating

the train set distributions by inverting the classifiers, in-

spired by related approaches in data-free learning [8], we

assume a Gaussian prior for their distributions. Considering

the pixels of the photos and sketches as independently and

Objective Data-Dependent Data-Free ∆
Siamese [11] 0.715 0.679 0.036

Triplet [45] 0.772 0.750 0.022

MIB [18] 0.871 0.815 0.056

Ours (CrossX-DFL) [53] 0.862 0.827 0.035

Table 2. Data-Dependent vs. Data-Free settings on Sketchy.

identically distributed Gaussians turns out to be too general

an assumption. Identifying the semantic structures in such

a manifold would require dense sampling of these distribu-

tions, which is computationally intractable. Hence, with a

similar training time-scale as CrossX-DFL, this approach

performs significantly worse.

Averaging Weights: Averaging the weights of all the net-

works in an ensemble has recently been shown to outper-

form even the best model in the ensemble, providing bet-

ter robustness and domain generalization [52]. In similar

vein, we can pose SBIR as a domain generalization problem

for the aggregated model. We average the weights of the

photo and sketch classifiers, remove the classification layer,

and obtain a single network for encoding both photos and

sketches. This achieves around a 9% improvement over the

individual classifier. However, the performance gap with

our CrossX-DFL still remains significant.

Meta-Data Based Reconstruction: We follow [30] by

using statistical metadata for obtaining photo/sketch re-

constructions. This provides better performance than the

classifier-only setting. However, the reconstructions are

not very efficient due to the lack of semantic consistency,

modality specificity, sample hardness, etc.

Training with Alternative Datasets: Due to the limited

availability of bespoke datasets for training SBIR models,

we leverage more easily available datasets for related tasks

like classification, domain generalization, robustness, etc.

We use the photos from ImageNet [12] and their corre-

sponding sketches from ImageNet-Sketch [50] to train the

photo and sketch encoders respectively. We use the class-

level correspondence information from the two datasets to

generate positive photo-sketch pairs for contrastive learn-

ing. This setting gives the highest accuracy among all base-

lines. However, it still remains much lower than what is

achieved by our CrossX-DFL. We speculate that although

training on related datasets may help in learning task-

specific (here retrieval) representations, the large error rate

stems from the distribution shifts across different datasets.

Our CrossX-DFL, by the virtue of the semantic consistency,

class-alignment, modality guidance and metric-agnostic ad-

versarial estimation criteria, is able to reconstruct a much

more faithful approximation of the train set distribution,

thereby providing significantly superior performance.

4.2. Comparison with the Data­Dependent Setting

The upper-bound for the performance of our model is

given by the mAP@all obtained using encoders directly
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Figure 3. Data-free photo and sketch reconstructions of the Sketchy and TU-Berlin datasets produced by our estimator networks.

trained on the original datasets. We empirically measure

these upper-bounds for various commonly used, state-of-

the-art contrastive learning objective functions, and ana-

lyze how close our algorithm gets to each of them. To

this end, we train our encoders using both the original train

set photos and sketches from Sketchy (data-dependent), as

well the estimated distributions obtained by our method

(data-free). We summarize our findings in Table 2. For

all objectives, we are able to get quite close to the data-

dependent setting, while using no training data at all. For

instance, with the Triplet loss, our method achieves a dif-

ference (∆) of only 0.022 with the data-dependent setting.

However, with Queued-InfoNCE, our method achieves the

highest mAP@all of 0.827, with a ∆ of 0.035 with the data-

dependent setting, which is also quite competitive.

4.3. Qualitative Results

Figure 3 shows sample photo and sketch reconstructions

produced by our estimator networks. We would like to em-

phasise that our end-goal is not to generate realistic train

set reconstructions of the classifiers, but rather to produce

sample estimations that faithfully represent their manifold.

However, we observe that for the sketch modality, all the

estimations are quite realistic and akin to what a human

amateur sketcher might draw. This is also true for a sig-

nificant number of reconstructed photos, however for a few

(like the Frog), some structural details are missing. This

shows that our photo estimators can sometimes be more bi-

ased towards replicating textural details over structures, if

the former plays a dominant role in the train set of the photo

classifier. Also, our estimated photos can be seen to gener-

ate distinct objects, but not much background context. We

conjecture that this happens because to produce robust pre-

dictions, the classifiers themselves learn to be invariant to

background information, thereby being unable to provide

much feedback about the same.

4.4. Ablation Studies

We present the results of ablating the key components of

our model in Table 3. We group them into two categories.

Rows 1 to 4 show the effect of incremental addition of the

three novel, domain-specific components of our methodol-

ID Semantic Class Modality Adversarial Encoding Sketchy TU-Berlin

Consistency Alignment Guidance Estimation Loss (mAP@all) (mAP@all)

1. ✓ 0.600 0.416

2. ✓ ✓ 0.660 0.535

3. ✓ ✓ ✓ 0.705 0.577

4. ✓ ✓ ✓ ✓ 0.740 0.630

5. ✓ ✓ ✓ ✓ 0.551 0.360

6. ✓ ✓ ✓ ✓ 0.690 0.526

7. ✓ ✓ ✓ ✓ 0.773 0.665

8. ✓ ✓ ✓ ✓ 0.758 0.641

9. ✓ ✓ ✓ ✓ ✓ 0.827 0.680

Table 3. Ablation Studies.

ogy (from Section 3.1), namely Class-Alignment, Modality

Guidance, and Metric-Agnostic Adversarial Estimation.

Rows 5 to 8 demonstrate how individually removing

each of these key components affects the overall perfor-

mance of the complete model. Row 9 shows the perfor-

mance of our model with all the components included. We

present more details on the individual observations below.

Semantic Consistency: The semantic consistency loss

(Lsem) is the most fundamental component of a data-free

SBIR pipeline [8, 10, 17], which ensures that the recon-

structed train set distributions represent meaningful classes.

Row-1 represents a baseline model trained only using the

semantic consistency loss. The relative contributions of

each of our novel components can be evaluated on top of

this baseline. Row-5 shows the performance of our model

if the semantic consistency criterion is removed. The results

show a significant drop in accuracy, as the reconstructed in-

puts no longer have any meaningful class information and

is equivalent to random noise with some modality specific

information (coming from the modality guidance network).

Class-Alignment: The class-alignment loss (Lalign) en-

sures that the corresponding photos and sketches in the es-

timated distributions belong to the same class. Without

this, the degree/distribution of class information between a

photo-sketch pair may diverge arbitrarily, even if their hard-

labels (as predicted by the teacher) happen to be the same.

Lalign ensures more fine-grained correspondence between

the pairs by minimizing the symmetrized KL-divergence

between the classifiers’ outputs. Rows 2 and 6 show that

this leads to a significant improvement in retrieval accuracy.

Modality Guidance: The Modality Guidance Network

restricts the estimated distributions to belong to specific

modalities, i.e., photos and sketches (Lmodal). This is im-

portant for training the encoders, as they need to learn to
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Figure 4. DF-SBIR performance of our model when the classifiers

(teachers) are trained on only partially overlapping sets of classes.

eliminate irrelevant, modality-specific information, and em-

bed their inputs based on semantic content. The results in

Rows 3 and 7 demonstrate the contribution of the modal-

ity guidance network to the process of learning cross-modal

invariants in the encoding process.

Adversarial Estimation: Our proposed technique for

Metric-Agnostic Adversarial Estimation of train set distri-

butions directs the estimators towards producing samples

that are the hardest for the encoder to correctly encode

by communicating feedback across representation spaces

through Ladv. As previously observed in the data-free

knowledge distillation literature [10, 35], training the en-

coder on such samples ensures its robustness to semantic

variations. Rows 4 and 8 illustrate the significant improve-

ment in the encoders’ ability to deal with semantic varia-

tions when trained with such samples.

Encoding Loss: Based on the observations in the Row

groups 1-4 and 5-8, as well as the difference between Rows

4 and 9, we found that the queue-based version of the Info-

NCE loss (Lenc) works best for training the encoders with

the estimated distributions. The Triplet loss as an ablative

alternative to Lenc resulted in degraded performance.

4.5. Further Constraints on Classifiers

Teachers with Partial Class Overlap: We propose a

highly challenging novel setting for the evaluation of cross-

modal DFL models. Here, the classifiers (teachers) from

the two modalities (photo and sketch) are being trained on

partially overlapping sets of classes. In other words, not

all classes between the photo and the sketch classifiers are

common. However, the retrieval has to be performed on

the union of the training classes of both the classifiers. For-

mally, if the photo classifier has been trained on the set of

classes Cp and the sketch classifier on Cs, where Cp and Cs
are partially overlapping, the retrieval test set will constitute

of instances from classes Cp
⋃
Cs.

We make minor modifications to the training process of

our model for evaluation under this scenario, the details of

which are provided in the supplementary. Figure 4 shows

its performance as we vary the degree of class overlap be-

tween the two classifiers. Even when the encoders of a par-

ticular modality do not get direct information about 20%

of the classes (80% overlap setting), by virtue of our novel

class-aligned estimation procedure, our model is able to

leverage complementary information across modalities to

achieve strong performance in this challenging scenario.

Cross-Dataset Teachers: To test the ability of our model to

deal with the independence in the classifiers’ training, we

evaluate it using photo and sketch classifiers that are each

trained on different datasets, but with overlapping classes.

With the photo classifier from TU-Berlin and sketch classi-

fier from Sketchy, our model provides an mAP@all of 0.607

on TU-Berlin. With the photo-classifier from Sketchy and

sketch classifier from TU-Berlin, we get an mAP@all of

0.759 on Sketchy. This shows that our model is truly ag-

nostic to the independence in the classifiers’ training while

learning a cross-modal metric space in a data-free manner.

5. Limitations

Figure 3 shows that our estimators are unable to incor-

porate much background information in the reconstructions

due to lack of feedback from the classifiers, as the classifiers

themselves had learned to become invariant to background

information for robust prediction performance. However,

this is necessary as the downstream encoders also need to

develop this invariance in order to tackle real-world scenar-

ios. We address this by instantiating the encoders with the

weights of the classifiers. However, as learning progresses,

this knowledge may not be retained given the distribution

shift in the estimations. We believe that this limitation can

be overcome by leveraging the recent advances in general-

ized source-free domain adaptation [55].

6. Conclusion

Motivated by the practical constraints of privacy and

anonymity preservation, as well as the difficulty involved

in obtaining pairs of photos and hand-drawn sketches, for

the first time, we studied the problem of SBIR in the data-

free setting. We designed an approach for performing data-

free learning across modalities and metric spaces (CrossX-

DFL), that allows distilling knowledge from independently

trained photo and sketch classifiers, into encoders that learn

a unified photo-sketch metric space in a completely data-

free manner. We illustrate the efficacy of our model by

comparison against an extensive set of baselines, as well

as exhaustive ablation studies and imposing constraints that

challenge its ability to learn complementary cross-modal in-

formation. We hope that our practically motivated problem

formulation, along with the methodological design choices

that come with it, will propel further research on both DF-

SBIR as well as general cross-modal data-free learning.
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[49] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv,

2018. 5

[50] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P

Xing. Learning robust global representations by penalizing

local predictive power. In NeurIPS, 2019. 6

[51] Wenxuan Wang, Xuelin Qian, Yanwei Fu, and Xiangyang

Xue. Dst: Dynamic substitute training for data-free black-

box attack. In CVPR, 2022. 1, 3

[52] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Re-

becca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,

Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon

Kornblith, and Ludwig Schmidt. Model soups: averaging

weights of multiple fine-tuned models improves accuracy

without increasing inference time. In ICML, 2022. 1, 2,

3, 6

[53] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In CVPR, 2018. 5, 6

[54] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V.

Le. Self-training with noisy student improves imagenet clas-

sification. In CVPR, 2020. 2, 6

[55] Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz,

and Shangling Jui. Generalized source-free domain adapta-

tion. In ICCV, 2021. 8

[56] Hongxu Yin, Pavlo Molchanov, Jose M. Alvarez, Zhizhong

Li, Arun Mallya, Derek Hoiem, Niraj K. Jha, and Jan Kautz.

Dreaming to distill: Data-free knowledge transfer via deep-

inversion. In CVPR, 2020. 2

[57] Jaemin Yoo, Minyong Cho, Taebum Kim, and U Kang.

Knowledge extraction with no observable data. In NeurIPS,

2019. 2

[58] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M.

Hospedales, and Chen Change Loy. Sketch me that shoe. In

CVPR, 2016. 1, 3

[59] Jie Zhang, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding,

Lei Zhang, and Chao Wu. Towards efficient data free black-

box adversarial attack. In CVPR, 2022. 3

[60] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-

Yu Duan. Fine-tuning global model via data-free knowledge

distillation for non-iid federated learning. In CVPR, 2022. 3

[61] Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng,

Chunjing Xu, and Yunhe Wang. Data-free knowledge distil-

lation for image super-resolution. In CVPR, 2021. 3

12093


