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Abstract

Visual localization is the task of estimating the camera
pose from which a given image was taken and is central
to several 3D computer vision applications. With the rapid
growth in the popularity of AR/VR/MR devices and cloud-
based applications, privacy issues are becoming a very im-
portant aspect of the localization process. Existing work on
privacy-preserving localization aims to defend against an
attacker who has access to a cloud-based service. In this
paper, we show that an attacker can learn about details of a
scene without any access by simply querying a localization
service. The attack is based on the observation that modern
visual localization algorithms are robust to variations in ap-
pearance and geometry. While this is in general a desired
property, it also leads to algorithms localizing objects that
are similar enough to those present in a scene. An attacker
can thus query a server with a large enough set of images of
objects, e.g., obtained from the Internet, and some of them
will be localized. The attacker can thus learn about object
placements from the camera poses returned by the service
(which is the minimal information returned by such a ser-
vice). In this paper, we develop a proof-of-concept version
of this attack and demonstrate its practical feasibility. The
attack does not place any requirements on the localization
algorithm used, and thus also applies to privacy-preserving
representations. Current work on privacy-preserving repre-
sentations alone is thus insufficient.

1. Introduction

Visual localisation refers to the problem of estimating
the camera pose of a given image in a known scene. It is
a core problem in several 3D computer vision applications,
including self-driving cars [17, 18] and other autonomous
robots [50], and Augmented Reality [5, 23, 25].

A popular approach for Augmented/Mixed/Virtual Re-

ality (XR) applications is to use a client-server mechanism
for localization: the user device (client) sends image data
to a cloud-based system (server) that computes and returns
the camera pose [23, 25, 46]. Examples of such services in-
clude Google’s Visual Positioning System [29], Microsoft’s
Azure Spatial Anchors [24], and Niantic’s Lightship [39].
Cloud-based localization services are popular for multiple
reasons - first, performing localization on the server reduces
storage requirements and the computational load, and thus
energy consumption, which is important for client devices
such as mobile phones and headsets; second, it enables us-
ing robust mapping and localization algorithms that are too
expensive for mobile devices; third, in the context of col-
laborative mapping, e.g., for the AR cloud or autonomous
driving, maintaining a single scene representation in a cen-
tralized place is far easier than keeping multiple copies on
various mobile devices up-to-date.

Naturally, sending user data to a server, e.g., in the
form of images to be localized or 3D maps recorded by
users that will be used for localization, raises privacy con-
cerns [9, 41, 42]. Work on privacy-preserving localization
aims to resolve these concerns by ensuring that private de-
tails cannot be recovered from the data sent [14, 26, 42] to
or stored on the server [11, 11, 15, 28, 36, 41, 52].

Existing work focuses on scenarios where an attacker
gains access to the localization service or can eavesdrop on
the communication between client and server. In this work,
we demonstrate that it is possible for an attacker to learn
about the content of a scene stored on a localization server
without direct access to the server. We show that a localiza-
tion service will reveal scene-related information through
estimated camera poses, i.e., through its normal operation
process. The attack is based on two recent developments:
(1) modern visual localization algorithms are designed to
be robust against changes such as illumination and seasonal
variations [44]. This is an essential property for cloud-based
localization services in order to operate robustly and reli-
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Figure 1. In the context of privacy-preserving localization, we show that it is possible to learn about the content of a scene using camera
poses returned by a localization service, without any direct access to the scene representation. (1st column) Examples of images from the
scene, used to build the scene representation. The images are shown for illustrative purposes and are not available to an attacker trying to
learn about the scene. (2nd column) The attacker queries the service with images of objects, e.g., downloaded from the Internet. (3rd &
4th column) Using the camera poses for the query image returned by the localization service, the attacker is able to identify the types of
objects present in the scene and to accurately place them in the scene. We show the estimated object poses overlaid over the ground truth
structure of the scene (which is not accessible to the attacker). The attacker is able to faithfully recover the placement of objects. Overall,
our results demonstrate that simple feedback such as camera poses is already sufficient to potentially reveal private details.

ably. However, since these algorithms are robust to (slight)
variations in appearance and geometry, they will also local-
ize images showing objects that are similar (but not neces-
sarily identical) to those objects present in the scene. (2)
massive amounts of images depicting objects in different
variations are readily available on the Internet. Taken to-
gether, both developments allow an attacker to repeatedly
query the server with images and to recover the positions of
the objects in the scene based on the camera poses returned
by the server (cf . Fig. 1). In this paper, we demonstrate the
feasibility of this attack by developing a proof-of-concept
implementation of the attack.

In summary, we make the following contributions: (1)
we identify a new line of attack in the context of privacy-
preserving visual localization based on the camera poses
returned by a cloud-based server. (2) we show the feasibil-
ity of the attack through a proof-of-concept implementation
of the attack. Through experiments, we explore the per-
formance of our implementation as well as the trade-off be-
tween localization robustness and potential defenses against
the attack. (3) the attack is agnostic to the underlying local-
ization algorithm and thus applicable even if the localiza-
tion system is otherwise perfectly privacy-preserving. This
paper thus proposes a new research direction for privacy-
preserving localization, where the aim for the localization
service is to correctly identify whether a query image was
taken in the concerned scene or not, in order to prevent leak-
ing information through camera poses.

2. Related Work

Visual localization. Most state-of-the-art visual local-
ization algorithms are based on establishing 2D-3D matches
between a query image and a 3D model of the scene.
These correspondences are then used for camera pose es-
timation. The 3D model can either be stored explic-
itly [19–21, 27, 31–33, 43], e.g., in the form of a Structure-
from-Motion (SfM) point cloud, or implicitly in the form
of the weights of a machine learning model [1–3, 6, 38, 45].
In the former case, local feature descriptors are associated
with 3D points of the model. It has been shown that this in-
formation is sufficient to recover detailed images from the
3D map [28, 40], although sparsifying these models [4, 51]
might effectively make them privacy-preserving [7]. Ap-
proaches based on implicit representations map image pix-
els or patches to 3D points by training scene coordinate re-
gression models [3, 38]. Recently, it was claimed that such
approaches are inherently privacy-preserving [11]. How-
ever, feature-based methods currently scale better to large
scenes and are able to better handle condition changes [44],
such as illumination or seasonal changes, between the query
image and the database images used to build the the scene
representation. The resulting robustness is highly impor-
tant in many applications of visual localization, including
AR and robotics. The robustness is a direct consequence
of recent advances in local features [10, 13, 30] and effec-
tive feature matchers [32,43,48,53]. In this paper, we show
that robustness to changing conditions enables an attacker to
learn about the content of the scene: robustness to changing
conditions not only bridges the gap between (small) varia-
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tions in scene appearance and geometry observed in images
depicting the same place, but also leads to correspondences
between images depicting similar but not identical objects,
e.g., different chairs. In turn, these correspondences can be
used to localize the object in the scene, which is the basis
for the attack described in this work. Note that the proper-
ties we exploit are inherent to robust localization algorithms
and are not restricted to feature-based methods. Ultimately,
any robust localization system needs to handle variations in
shape and appearance.

Privacy-preserving visual localization. Existing work on
privacy-preserving localization focuses on two points of at-
tack: (1) ensuring that data sent to a localization service
does not reveal private information. (2) ensuring that data
stored on a localization service does not reveal private in-
formation. For the former case, it has been shown that
images can be recovered from local features [9, 12, 49].
Work on privacy-preserving queries to a localization server
thus mostly aims at developing features that prevent im-
age recovery [14, 26] or on obfuscating the feature ge-
ometry [16, 42]. Similarly, work on privacy-preserving
scene representation aims to obfuscate the geometry [37,41]
(although scene geometry can be recovered under certain
conditions [7]), splitting the maps over multiple server
for increased data security [15], using implicit representa-
tions [11], or storing raw geometry without any feature de-
scriptors [52].

This paper presents a new line of attack that comple-
ments existing work. Previous work considers a scenario
where the attacker gains access to the service. In contrast,
we show that it is possible to recover scene content from
the very basic information provided by any localization ser-
vice, namely the camera poses estimated for query images.
As such, the attack is still feasible even if the data send to
and stored on the server is completely privacy-preserving.
Our work thus shows that existing privacy-preserving local-
ization approaches are not sufficient to ensure user privacy.

3. Recovering Scenes from Camera Poses

Any localization system returns the camera poses of lo-
calized query images. At the same time, modern localiza-
tion algorithms aim to be robust to shape and appearance
variations in order to be robust to changes in viewing con-
ditions. This feature, however, opens up the possibility that
not only genuine queries, but also images of objects that are
similar to the ones present in the scene can be localized.
The camera poses of the localized images can then in turn
be used to infer the positions of certain objects in the scene,
potentially revealing more information about the scene than
the cloud-based service / a user would like to disclose.

Naturally, an attacker does not know which objects are
present in the scene and thus which images to use for their

queries. The Internet is a source of a theoretically unlim-
ited number of images, videos, and 3D models of objects of
different types and appearances. This naturally leads to an
idea of a potential attack, where an attacker just downloads
such images and videos, bombards the server with localiza-
tion requests, and uses poses of localized images to reveal
detailed scene structure.

In the following sections, we investigate this new type
of attack, and we try to answer several questions: Can an
attacker with access to images and videos of objects similar
to those present in the scene easily learn about the pres-
ence/absence of different objects and their placement in the
scene just from the poses returned by a localization service?
What are the challenges of such an attack, and are these
challenges easily solvable? Can cloud-based services easily
prevent such attacks? To this end, we present a proof-of-
concept implementation of the attack.1 Later, Sec. 6 dis-
cusses an approach to potentially mitigate the attack and
why its effectiveness is limited.

3.1. Formalization

We assume a localization server L that is responsible for
localizing images in a scene S. L tries to align each query
image it receives with the scene representation as best as
possible. If an image can be localized, the server returns a
6-dof camera pose [R|t]. We assume that the scale of the
translation component t is in known.

An adversary A is querying L with many images of dif-
ferent objects, where each image contains only one domi-
nant object to avoid confusion about which object from the
image was localized in the scene. A, using the poses re-
turned by L, wants to learn about the presence/absence of
objects in the scene S, and wants to infer their (approxi-
mate) positions. As such, A tries to construct an (approxi-
mate) ”copy” of the scene S or at least its layout.

In this setting A needs to deal with two challenges:

1. A queries L with images of objects that, in general,
differ geometrically from the actual objects in the
scene. In the best case, the pose returned by the server
provides the best-possible approximate alignment be-
tween the query and actual object. In general, the re-
turned poses will be noisy and can be quite inaccurate
if only a part of the object, e.g., a chair’s leg, is aligned.
Creating an accurate ”copy” of the scene from such
poses is a challenging problem.

2. A has, in general, no a-priori information about the
type of the scene and which objects are visible in it.
Since L can also return poses for objects that are not
in the scene, A needs to have a mechanism for decid-
ing the presence/absence of an object based on the re-

1We only aim to show feasibility. We believe that better attack algo-
rithms are certainly possible.
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Algorithm 1 Best single camera based alignment between
sets of poses

Input Po = {[Ri|ti]},P̂o = {[R̂i |̂ti]}, δr ,δt
Output Rbest, tbest, ϵ

1: procedure GET-BEST-ALIGNMENT

2: N← |Po|
3: Inliers best← ϕ
4: for i = 1 to N do
5: Rest ← R̂⊤

i Ri

6: test ← R̂⊤
i (ti − t̂i)

7: Inliers← ϕ
8: for j = 1 to N do
9: ∆r ← ∠(RjR

⊤
estR̂

⊤
j )

10: ∆t ← ||R̂⊤
j t̂j −RestR

⊤
j tj + test)||

11: if ∆r < δr and ∆t < δt then
12: Inliers← Inliers ∪ {j}
13: if |Inliers| > |Inliers best| then
14: Inliers best← Inliers
15: ϵ← |Inliers best|/N
16: Rbest, tbest ← Average(Inliers best)

turned poses. Naturally, having to deal with noisy and
inaccurate poses makes the decision process harder.

In general, it is not possible to overcome these challenges by
using a single image of each object. A single camera pose
returned by L, without additional information, does not pro-
vide enough data for deciding about the presence/absence of
the object in the scene and the quality of the pose.

However, given the large amount of images available on
the Internet, and in particular the availability of videos, A
can use several images of the same object taken from dif-
ferent viewpoints. Jointly reasoning about all of the corre-
sponding poses obtained for these images can then be used
to decide the presence and position of the object.

3.2. 3D Object Placement

Assuming that the attacker knows that an object is
present, they still need to predict its position and orienta-
tion in the scene based on the pose estimates provided by
the server. To this end, the attacker can use that multiple
images of the same object taken from different viewpoints
are available. These images can be used by A to build a lo-
cal 3D model M, e.g., using SfM [34] and MVS [35], and
to compute the poses Po of these images w.r.t. this model.
In turn, L provides a set P̂o of poses for (a subset of) these
images in the coordinate system of the scene model S. The
problem of placing the object in the copy of the scene S
thus reduces to the problem of aligning both sets of poses
(cf . Fig. 2). The camera poses P̂o provided by L can be
very noisy and can contain outliers. Thus, the alignment
process needs to be robust.

As mentioned above, for simplicity we assume that the

scale of the 3D model stored by L is known.2 Similarly, the
scale of the local model M can be (approximately) recov-
ered using the known size of the object. In this case, the
two poses, in the coordinate systems of M and S, for a sin-
gle image already provide an alignment hypothesis, i.e., the
relative pose between them. As outlined in Alg. 1, we eval-
uate all hypotheses. The input to Alg. 1 are the two sets of
poses, Po and P̂o, and two error thresholds - δr for rotation
and δt for translation. For each pair of corresponding cam-
era poses - local and server-provided, a relative transforma-
tion is computed (line 5-6). One set of poses is transformed
using this estimated transformation, and errors for rotation
and translation between corresponding pairs are computed
(Lines 9-10). Using the two thresholds, we determine which
other pose pairs are inliers to the pose hypothesis (Lines 11-
12). The transformation with the largest number of inliers is
selected (Lines 13-14) and refined by averaging the relative
poses of all inliers.

Obviously, not knowing the scale of the scene model S
is insufficient to prevent the attacker from placing the object
in the scene as the scale and relative transformation can be
recovered from two pairs of poses. Additionally, there are
ways to further robustify the alignment process. E.g., if im-
ages of multiple very similar instance of an object and the
corresponding 3D models are available, it seems reasonable
to assume that images of different instances taken from sim-
ilar viewpoints will also result in similar pose estimates by
L. These estimates can then be used to average out noise in
the poses. Similarly, the relation between different objects,
e.g., a monitor standing on a desk, can be used to stabilize
the process of placing objects in the scene. However, we do
not investigate such advanced strategies in this paper.

3.3. Deciding the Presence/Absence of an Object

We assume that L is running a localization algorithm
that is robust to shape and appearance variations and that
is aligning query images to the scene as best as it can. At
the same time, L can also return poses for objects that are
not in the scene, as well poses for objects that are not even
from the same categories or similar to objects present in the
scene. Deciding if an object is present or not in a scene
based on the poses returned for its images by the localiza-
tion server is therefore a challenging problem.

For an attacker A trying to recover scene information via
camera poses, it is impossible to determine which type of
objects are present using just a single camera pose returned
for one query image of each of the objects.

To overcome this challenge, A can employ several possi-
ble techniques; e.g., they can use statistics about object co-
occurrence to select the set of queries and associated camera

2In the context of user-generated maps, captured by devices with IMUs
such as mobile phones or dedicated XR headsets, it seems realistic to as-
sume that the scale of the maps is provided in meters.
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Figure 2. Object alignment example: 1. A 3D modelM of an object and corresponding camera poses Po in the attacker’s local coordinate
system, built from a sequence of object images. 2. The server scene with a similar object. 3. The noisy poses returned by the server for the
queried object images. 4. Sequences of local and server-provided poses aligned to approximately place the object in the scene.

Database Images Query Images

Figure 3. Example images from IKEA-Scenes (left) and one of the objects of corresponding scenes in IKEA-Objects (right).

poses having a high probability of their spatial distribution.
Another simple solution is to use multiple images of the
same object taken from different viewpoints or to cluster
query images into groups depicting similar objects that are
assumed to be matched with the same object in the scene S.
A can then use different images from these groups to query
L and decide on the presence/absence of the object based on
the consistency of returned poses. Even though the returned
poses can be noisy and can contain outlier poses, in gen-
eral, it is expected that a reasonably large subset of images
depicting the same object from different viewpoints or de-
picting objects from the same group will show consistency
of returned poses if a similar object is present in S. On the
other hand, poses obtained for images of an object that is
absent can be expected to exhibit a much higher variance.

In this paper, we discuss and evaluate another strategy
for presence/absence decision that allows us to show the
completeness of the attack and present its proof-of-concept
implementation. We assume that the attacker A learns cer-
tain statistics for each object or category from a curated
training data that comprises of scenes with known pres-
ence/absence of these objects or object categories. This
can be done for different types of localization schemes over
huge amounts of 3D data. The attacker can then use these
learned statistics to infer the presence/absence of objects
when attacking an unknown scene S.

For experimental results in the later sections, we use the
inlier-ratio ϵ obtained from the object positioning step (Line
15 in Alg. 1) as this statistic. We can assume that for each
object (or a class of objects) o, A has inlier-ratios ϵ+o and ϵ−o
that are trained on scenes with known presence or absence
of o. E.g., ϵ+o and ϵ−o can be computed as the medians of

ϵo over all ”present(+)/absent(-)” scenes. Based on these
statistics, the presence or absence of o in the unknown scene
S can be decided by comparing the distances of ϵSo to ϵ+o and
ϵ−o . We provide concreteness to this idea when assessing its
effectiveness over a real world dataset in Section 5.2.

4. Datasets

We use multiple datasets for our experiments:
IKEA-Scenes and IKEA-Objects - We captured image se-
quences of seven different inspiration-rooms at an IKEA
furniture store (cf . Fig.3). 1,000-2,500 images were cap-
tured for each room, depending on its size. 4-10 objects
from each room were selected, and a separate sequence of
images was captured for each of them in the inventory sec-
tion of the store, where the surrounding environment was
different from that of the inspiration rooms. Note that the
two instances of each object have the same model, but in
many cases differ in color and size. Presence/absence of
additional objects such as cushions on a sofa, or a computer
on a desk can additionally change the overall appearance of
the two instances. In total, the dataset comprises 38 object
instances covered by 100-200 images each. While capturing
the dataset, we tried to only have a single object occupying
a large part of each image. However, this was not always
possible and no post processing has been applied to mask
out objects. We call the inspiration-room data IKEA-Scenes
and the data from the inventory section IKEA-Objects.
ScanNet-Office-Scene - To show that the objects do not
need to be of the exact same model for the proposed at-
tack to work, we consider a generic office scene - scene0040
from the ScanNet [8] dataset.
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Superpoint+Superglue R2D2+NN SIFT+NNScene

Figure 4. Qualitative results for aligning objects in different scenes of the IKEA-Scenes dataset. We evaluate three combinations of local
features and matchers. Aligned objects are color-coded green to red along the gravity direction to make their orientation better visible.

Office-Objects - We collected image sequences of 5 com-
mon office room objects - a door, a whiteboard, an office
chair, a desk with computer, and a bookshelf. These images
are used as queries by the attacker.
RIO10 - RIO10 [47] is a localization benchmark dataset
which we use to evaluate the effectiveness of a potential
defence strategy that a localization server might employ.

We manually scale all local 3D models constructed by
the attacker to roughly metric scale.

5. Experimental Evaluation
This section presents a series of experiments that show

the practical feasibility of the attack introduced in Sec. 3.
First, we show via qualitative results that the method pro-
posed in Sec. 3.2 allows the attacker to place the 3D models
of relevant objects close to the actual corresponding objects
in the scene. We then explain and evaluate a simple im-
plementation of the method described in Sec. 3.3 that the
attacker can use to decide the presence/absence of objects.

For querying the localization server, we use images from
the datasets described above. To implement the server, we
use HLoc [31,32] (with default thresholds and parameters),
a state-of-the-art visual localization approach. HLoc uses

feature descriptors to establish 2D-3D matches between fea-
tures extracted from the query image and 3D scene points.
The resulting correspondences are then used for pose esti-
mation. We demonstrate the reliance of the attack on the ro-
bustness of the localization process by evaluating three dif-
ferent local image features and matchers: Superpoint [10]
features with the SuperGlue [32] (most robust), R2D2 [30]
with Nearest Neighbor (NN) matching, and SIFT [22] with
NN matching (least robust).

5.1. 3D Object Placement

We qualitatively evaluate the accuracy of the 3D object
placements obtained using the approach from Sec. 3.2 for
the IKEA-Scenes and ScanNet-Office-Scene datasets. We
use qualitative results rather than quantitative metrics since
it is hard to quantify when a placement is realistic enough.
E.g., consider the predicted positions of the oven in the 3rd
row of Fig. 4. The first two predictions are far enough from
the ground truth position that a metric such as the IoU of
the 3D bounding boxes of the objects will discard them as
wrong. Yet, the estimated positions are close enough to the
ground truth to provide the attacker with a good layout of
the scene.
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Figure 5. (a) Example images from ScanNet-Office-Scene and corresponding objects in Office-Objects. (b) Qualitative results for aligning
generic office objects in ScanNet [8] scene0040, using Superpoint+Superglue and R2D2+NN.

Fig. 4 shows results for placing selected items from the
IKEA-Objects dataset in 4 different scenes from the IKEA-
Scenes dataset. Fig. 5 shows results for placing objects
from the Office-Objects dataset in the ScanNet-Office-Scene
dataset. As can be seen, using a robust localization process
based on Superpoint features and the Superglue matcher or
R2D2 features allows the attacker to place the objects close
to their ground truth positions. In particular, the results from
Fig. 5 show that the alignment also works well when the
queried object is not the same model of different color/size
but also a very different one in terms of shape and overall
appearance. The results clearly demonstrate the practical
feasibility of the placement strategy.

We used slightly different values for the error thresholds
required by the positioning algorithm based on the object
size and obtained poses. Such an approach is feasible if a
human supervises the attack. Code and data is available at
https://github.com/kunalchelani/ObjectPositioningFromPoses.

5.2. Deciding the Presence/Absence of an Object

In Sec. 3.3, we suggested strategies which an attacker
can use to decide whether an object is present or not in a
scene S. for each object.

Concretely, using a set of training scenes, the attacker
has learned representative values ϵ+ and ϵ− for the inlier-
ratio returned by Alg. 1 for cases where the object is

present(+) respectively absent(-). When deciding the pres-
ence of an object o in a scene S, the attacker uses the inlier
ratio (ϵ) from Alg. 1 to make their decision. The object o is
considered to be present in the scene if |ϵ− ϵ+| < |ϵ− ϵ−|
and otherwise considered as absent.

We use the IKEA-Scenes and IKEA-Objects dataset for
this experiment. When deciding the presence/absence of an
object in a scene, the other 6 scenes are used as training
scenes. Many of the objects from IKEA-Objects are only
present in one of the scenes from IKEA-Scenes. In these
cases, no reference value for ϵ+ is available for these scenes.
In such cases, the object is considered as present if ϵ > ϵ−.
This strategy is motivated by the assumption that correctly
placing an object that is present results in a higher inlier-
ratio than placing objects that are not present.

Tab. 1 shows precision and recall of this strategy. Since
the computation of the inlier-ratio ϵ depends upon the error
thresholds, we present the results for three different sets of
thresholds. The results show that for most scenes, it is pos-
sible to obtain a precision/recall of approx. 0.4/0.6, which,
e.g., translates to 3 out of 5 present, and around 29 out of
33 absent objects from IKEA-objects being correctly classi-
fied. The average precision using random guessing in these
scenes is 0.19. This, together with the quality of the place-
ment, clearly validates the feasibility of the proposed attack.
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Scene
Superpoint+Superglue R2D2+NN SIFT + NN

10◦, 0.25m 30◦, 0.5m 60◦, 2m 10◦, 0.25m 30◦, 0.5m 60◦, 2m 10◦, 0.25m 30◦, 0.5m 60◦, 2m
Precision Recall P R P R P R P R P R P R P R P R

Scene1 0.6 0.85 0.75 0.85 0.67 0.85 0.57 0.57 0.36 0.57 0.28 0.57 0.33 0.57 0.45 0.71 0.33 0.43
Scene2 0.36 0.4 0.36 0.5 0.37 0.6 0.34 0.4 0.3 0.3 0.35 0.6 0.33 0.4 0.26 0.5 0.28 0.6
Scene3 0.55 0.71 0.36 0.57 0.25 0.43 0.31 0.71 0.47 1 0.41 1.0 0.3 0.42 0.5 0.42 0.44 1.0
Scene4 0.17 0.4 0.23 0.6 0.14 0.4 0.34 0.6 0.28 0.4 0.2 0.4 0.15 0.4 0.15 0.4 0.17 0.4
Scene5 0.33 0.6 0.4 0.8 0.44 0.8 0.5 0.6 0.34 0.4 0.5 0.6 0.22 0.4 0.25 0.4 0.33 0.4
Scene6 0.25 0.6 0.28 0.6 0.22 0.4 0.22 0.4 0.3 0.6 0.33 0.8 0.14 0.2 0.2 0.2 0.25 0.6
Scene7 0.5 0.5 0.5 0.33 0.33 0.5 0.6 0.5 0.5 0.5 0.38 0.5 0 0 0.14 0.17 0 0

Table 1. Precision (P) and recall (R) of our method to determine the presence of objects for the IKEA-scenes and IKEA-Objects datasets.
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Figure 6. Effectiveness of a potential approach to prevent the proposed attack based on not providing poses for queries containing only a
few objects. Only objects contributing at least 10% of the inliers found on the object with the most inliers are considered. As can be seen,
finding a suitable threshold for the minimum number of visible objects can be difficult.

6. Preventing the Attack?
A natural way to prevent the presented attack is to try

to distinguish between genuine and malicious queries. By
not sending poses for query images deemed as (potentially)
malicious, the localization service effectively prevents the
attacker from using pose estimates to learn about the scene.

One potential classification strategy is based on the fact
that the attacker sends images focusing on a single object.
In this case, we expect that most of the 3D points from the
inlier 2D-3D matches found by HLoc lie on a single 3D
object. We thus count the number of 3D objects that con-
tribute at least a certain fraction of inliers (X% of the inliers
of the object contributing the largest number of inliers). If
the number is too small, the query image is considered to be
malicious and is rejected.

Fig. 6 shows results for three different objects used to at-
tack three different scenes of the RIO10 dataset [47]. Here,
we use the instance-level labels provided by the dataset,
which include background classes such as floor and walls,
to define objects. As can be seen, rejecting the majority
of malicious queries while retaining genuine queries can
be challenging. The reason is that even while focusing on
a single object, other objects might be partially visible in
the queries, e.g., part of a desk for monitors, different pil-
lows on a couch, books on a shelf, etc. In addition, genuine
queries might focus on small parts of the scene or even in-
dividual objects. Thus, finding a suitable threshold on the
minimum number of visible objects can be hard. Further-
more, note that this defense strategy requires the service to
have knowledge about the objects in the scene, either ex-
tracted from the queries or the scene representation. This
requirement creates a potential privacy risk if an attacker is

able to gain access to the service.

7. Conclusions and Future work
In this paper, we have considered the problem of privacy-

preserving localization. Prior work aims to defend attacks
for the case where the attacker gains access to a cloud-based
localization service. In contrast, we show that it is possible
for an attacker to recover information about the scene by
using the service as intended: by querying the server with
images of different objects, an attacker is able to determine
which objects are present and to estimate their position in
the scene. The attack is based on the minimum amount of
information that a localization service needs to provide to its
users, i.e., camera poses for query images, and exploits that
modern localization systems are robust to changing condi-
tions. Experiments with our proof-of-concept implementa-
tion show the practical feasibility of the attack. The attack
is applicable even if the localization algorithm used by the
server is otherwise perfectly privacy-preserving.

Our results show that existing privacy-preserving ap-
proaches are not sufficient to ensure user privacy, creating
the need for further research. In particular, first experiments
show that preventing the attack proposed in this paper with-
out reducing localization performance and creating other
angles of attack is a non-trivial task and interesting direc-
tion for future work.
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Laura Leal-Taixé. Is geometry enough for matching
in visual localization? In ECCV, 2022. 1, 3

[53] Qunjie Zhou, Torsten Sattler, and Laura Leal-Taixe.
Patch2pix: Epipolar-guided pixel-level correspon-
dences. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2021. 2

13141


