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Abstract

Point cloud completion aims to recover the completed 3D
shape of an object from its partial observation. A common
strategy is to encode the observed points to a global fea-
ture vector and then predict the complete points through a
generative process on this vector. Nevertheless, the results
may suffer from the high-quality shape generation problem
due to the fact that a global feature vector cannot sufficient-
ly characterize diverse patterns in one object. In this pa-
per, we present a new shape completion architecture, name-
ly AnchorFormer, that innovatively leverages pattern-aware
discriminative nodes, i.e., anchors, to dynamically capture
regional information of objects. Technically, AnchorFormer
models the regional discrimination by learning a set of an-
chors based on the point features of the input partial ob-
servation. Such anchors are scattered to both observed and
unobserved locations through estimating particular offset-
s, and form sparse points together with the down-sampled
points of the input observation. To reconstruct the fine-
grained object patterns, AnchorFormer further employs a
modulation scheme to morph a canonical 2D grid at in-
dividual locations of the sparse points into a detailed 3D
structure. Extensive experiments on the PCN, ShapeNet-
55/34 and KITTI datasets quantitatively and qualitatively
demonstrate the efficacy of AnchorFormer over the state-of-
the-art point cloud completion approaches. Source code is
available at https://github.com/chenzhik/AnchorFormer.

1. Introduction
As a 3D data description, point cloud can characterize

various attributes of real-world objects. Although the point
cloud data is readily acquired via laser scanners or depth
cameras, factors like occlusion, transparency of surface, or
the limit of sensor resolution, often cause geometric infor-
mation loss and result in incomplete point cloud. As a re-
sult, it is an essential task of point cloud completion to im-
prove the data quality for the downstream tasks, e.g., point
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Figure 1. An illustration of point cloud completion by leveraging
(a) a global feature vector and (b) anchors in our AnchorFormer.
We highlight the reconstruction results of two local patterns in the
bounding boxes and visualize the details in the zoomed-in view.
The L1 Chamfer Distance are also given.

cloud classification [21–23] and 3D object detection [20].
Recent works [1, 34, 41, 46, 47] on point cloud comple-

tion usually formulate the task as a generation problem and
mainly capitalize on an encoder-decoder architecture. The
input partial points are encoded as a global feature vec-
tor which is further decoded to reconstruct the point cloud.
Figure 1(a) conceptually depicts a typical process of point
cloud completion through leveraging a global feature vec-
tor, which is generally measured by the pooling operation
in the encoding phase to encapsulate the holistic shape in-
formation. The pooling operation inevitably leads to the
loss of the fine-grained details and limits the capability of
the global feature. It is thus difficult to decode from such
degenerated global feature vector to reconstruct the diverse
patterns of a 3D object, especially for completing some ge-
ometric details, e.g., the airplane tail in the green box in
Figure 1(a). In contrast, we propose to rebuild object shape
from a set of discriminative nodes, i.e., anchors, which in-
dicate the local geometry of different patterns in an object,
as shown in Figure 1(b). We derive the anchors from the
input partial observation via self-attention. As such, the
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anchors could adequately infer the key patterns of the ob-
served points. Moreover, some anchors can even be scat-
tered into the unobserved locations to represent the missing
parts and potentially capable of holistically reconstructing
all patterns in the object. Taking the anchors and the down-
sampled points of the input observation as the sparse points,
we reform the fine-grained shape structure at the location of
each sparse point to complete the point cloud of the object.

By exploiting the idea of shape reconstruction from
pattern-aware discriminative nodes, we present a novel
Anchor-based Transformer architecture namely Anchor-
Former for point cloud completion. Given the input par-
tial observation of a 3D object, AnchorFormer first down-
samples the points and extracts the point features via an
EdgeConv-based head [32]. Next, a transformer encoder
takes the point features of down-sampled points as the in-
puts and is learnt to predict a set of coordinates, i.e., an-
chors, in each basic block of the encoder. Meanwhile, the
point features of down-sampled points and anchors are also
refined through the encoder. The anchors are further scat-
tered into different 3D locations by learning specific off-
sets. Finally, AnchorFormer combines the down-sampled
points and anchors as sparse points, and deliberately devis-
es a morphing scheme to deform a canonical 2D grid at the
location of each sparse point into a 3D structure. The whole
architecture of AnchorFormer is optimized with respect to
two objectives: the Chamfer Distance between the predict-
ed points and the ground-truth points, and the compactness
constraint of the generated points in each pattern.

The main contribution of this paper is the proposed An-
chorFormer for reconstructing shape in point cloud com-
pletion. This issue also leads to the elegant views of how
to characterize the geometric patterns in an object and how
to convert the patterns into the fine-grained 3D structures.
Extensive experiments over four datasets demonstrate the
effectiveness of AnchorFormer from both quantitative and
qualitative perspectives.

2. Related Work
Early works [2,6,18,26] on shape completion usually in-

fer the missing parts based on hand-crafted features such as
surface smoothness or symmetry axes. Other works [13,25]
rely on large scale 3D object datasets and formulate the task
as the matching of similar patches. With the development of
deep learning, the most recent approaches formulate shape
completion based on deep models. We categorize the relat-
ed works in this direction into two groups, i.e., voxelization
based and point cloud based shape completion.

Voxelization based shape completion. The success of
convolution neural networks (CNN) in 2D image analysis
prompted the application of 3D CNN to 3D data under-
standing. One natural solution for shape completion can
be 3D voxel-level generation which is directly inspired by

pixel-level image inpainting. Several works [10, 30, 38] s-
tudy the problem based on purely volumetric data. For in-
stance, Han et al. [10] propose to learn the multi-scale shape
structure of the incomplete voxels via a 3D CNN. In addi-
tion, the voxel can be employed as an intermediate descrip-
tor in shape completion and further converted to other 3D
representation [4, 43]. For example, GRNet [43] leverages
a differentiable gridding layer to capture voxel correlation
and then converts the predicted voxels to point clouds. De-
spite the good model capacity of 3D CNN for feature learn-
ing, the geometric information loss caused by voxelization
still makes it difficult for fine-grained reconstruction.

Point cloud based shape completion. The research
[19,27,33,40,44,48,51] processing raw point cloud data for
shape completion has largely proceeded along the scheme
of point feature learning plus point generation. The work-
s [45, 47] of exploring point feature utilize the MLP-based
networks to learn a global feature vector of objects, and then
predict the 3D structure based on that vector. To seek richer
information for point cloud completion, the cascaded net-
works [11,12,31] are adopted to extract point features from
different layers in a multi-scale manner. A representative
work is PF-Net [12], which predicts the missing points in
a hierarchical decoding scheme. Inspired by image [14]
and video [16, 17, 24] Transformer, point feature learning
via self-attention [46, 50] starts to emerge. Moreover, there
exist other directions for point feature learning, such as ad-
versarial learning [35] to make the generated shape realistic
and cross-modality feature learning [8, 49] that facilitates
shape reconstruction with the image. Point generation is
the subsequent step after the learning of point features. One
of the early work is FoldingNet [45] which maps the 2D
grid onto a 3D surface to generate points through leverag-
ing global feature of objects. Wen et al. [36] further upgrade
the folding operation and introduce hierarchical folding to
preserve 3D structures in different point resolution. More
recently, Xiang et al. [41] devise a snowflake-like point
growth method where child points are generated by split-
ting their parent points to capture local details. Neverthe-
less, these methods decode the shape from a global feature
vector and may still suffer from the robustness problem in
fine-grained pattern reconstruction.

In summary, our work belongs to point cloud based
shape completion techniques. Different from the methods
that employ a global feature vector for object reconstruc-
tion, our AnchorFormer contributes by investigating not on-
ly how to characterize geometric patterns through learning a
set of anchors, but also how the anchors can be better lever-
aged for high-quality 3D shape reconstruction.

3. AnchorFormer
In this section, we present our proposal of Anchor-

Former. Figure 2 shows an overview of our AnchorFormer
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Figure 2. An overview of our AnchorFormer. Given the input partial observation P of an object, the points are down-sampled as S0 and
the point features are extracted to predict a set of discriminative nodes A, i.e., anchors, via the transformer encoder. The features F of
the anchors and down-sampled points are learnt during feature encoding. Through learning specific offsets on F , the anchors are further
scattered into different 3D locations. Taking the anchors A′ after scattering and the down-sampled points S0 as sparse points S, a morphing
scheme is devised to reconstruct the detailed 3D structures at the location of each sparse point for dense points D prediction.
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Figure 3. The detailed structure of the dual attention block.

architecture for point cloud completion. Specifically, An-
chorFormer first down-samples the input points and extract-
s the point features via a feature extractor, followed by the
prediction of a set of discriminative nodes, i.e., anchors, in
transformer encoder. The features of the sampled points and
anchors are refined during feature encoding. Next, the an-
chors are scattered into different 3D locations by learning
particular offsets. Finally, AnchorFormer groups the down-
sampled points and anchors as sparse points, and leverages
a morphing scheme to convert a 2D grid at the location of
each sparse point into a 3D structure. AnchorFormer is end-
to-end trained by optimizing two objectives, i.e., the recon-
struction of the predicted points, and the compactness con-
straint of the generated points in each pattern.

3.1. Anchor Generation

Most existing point cloud completion approaches encode
the input partial observation as a global feature vector vi-
a pooling operation, and then decode the vector for shape
reconstruction. Nevertheless, the pooling operation may re-
sult in the loss of geometric details, and limits the capabili-
ty of the global feature. Therefore, it is difficult to leverage
such diluted global feature for reconstruction of various pat-
terns in objects. To address this issue, we exploit the recipe
of modeling object parts with key points [39] and introduce
to learn a set of anchors to facilitate the reconstruction of lo-
cal patterns. Particularly, we design the learning of anchors

in two steps: feature extraction and anchor prediction.
Feature Extraction. Given the points P of the input

partial observation, we first adopt an EdgeConv-based head
[32] to down-sample the input observation into N points
and extract the point features with dimension C. The down-
sampled points S0 ∈ RN×3 and the corresponding point
features F0 ∈ RN×C are obtained by

S0 = FPS(P), F0 = Conv(P,S0), (1)

where FPS(·) denotes the farthest point sampling opera-
tion [21], and Conv(·) presents the EdgeConv-based net-
works. The output point features F0 are further converted
to a feature sequence and fed into a transformer encoder in
our AnchorFormer for anchor prediction.

Anchor Prediction. Next, we devise a transformer en-
coder to jointly predict the anchor coordinates, and refine
the features of the down-sampled points and the anchors.
Specifically, a dual attention block is designed as the basic
unit of our transformer encoder. The current dual attention
block predicts a set of new anchors, and refines the input
point features from the previous block at the same time. To
characterize unobserved parts, a feature expansion module
is presented to employ the feature difference between the
input point features and the corresponding pooled feature
vector for the anchor feature prediction. The cross-attention
between the predicted anchor features and input point fea-
tures is utilized for anchor coordinate learning.

Figure 3 depicts the structure of the basic dual atten-
tion block in our transformer encoder. For the i-th block,
the input point features Fi−1 ∈ RNi−1×C of the Ni−1 in-
put points Si−1 ∈ RNi−1×3 are enhanced through the self-
attention mechanism. We take the enhanced point features
as Xi ∈ RNi−1×C and exploit the feature expansion module
to predict the features of L anchors. Through the linear pro-
jection on the feature difference between the enhanced point
features Xi and the corresponding pooled feature vector gi,
the anchor features X ′

i ∈ RL×C are learnt by

gi = MaxPool(Xi), X ′
i = MLP (gi −Xi), (2)

where MaxPool(·) and MLP (·) denote the max pooling
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Figure 4. Illustration of the Point Morphing scheme for fine-grained pattern reconstruction. The structures of the transformer decoder
(including six decoder blocks) and the morphing block are also detailed.
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Figure 5. The detailed structure for Anchor Scattering.

operation and multilayer perceptron, respectively. We fur-
ther compute the cross-attention weights between the en-
hanced point features Xi ∈ RNi−1×C and the predicted
anchor features X ′

i ∈ RL×C , and employ the weights to
aggregate input points Si−1 ∈ RNi−1×3. The resultant ag-
gregation is finally fused with the pooled feature vector gi
to predict the coordinates ai ∈ RL×3 of L anchors:

ai = MLP (Con[CroAtten(Xi, X
′
i,Si−1), gi]), (3)

where CroAtten(·) and Con[·] are the cross-attention and
feature concatenation. Note that the input point features
and the input points for the first dual-attention block are F0

and S0, which are extracted from the EdgeConv-based head.
For the (i+1)-th dual attention block, we concatenate the en-
hanced point features Xi with the predicted anchor features
X ′

i as the input feature Fi ∈ RNi×C (Ni = Ni−1 + L).
Similarly, we combine the input points Si−1 with the pre-
dicted anchors ai as the input points Si ∈ RNi×3 for (i+1)-
th block. As such, the transformer encoder progressively
increases the anchors and anchor features via cascaded dual
attention blocks. We take all the predicted M anchors as
A ∈ RM×3 and the output point features from the last dual
attention block as F ∈ R(N+M)×C . The anchors A, down-
sampled points S0 and features F of all points are employed
for the subsequent point generation.

3.2. Anchor Scattering

Given the learnt anchors from the transformer encoder
and the down-sampled points of input observation, we aim
to enrich the fine-grained details around those sparse points.
Nevertheless, the anchors predicted by an encoder block

during feature encoding often cluster in a local location, and
thus it is hard to exploit these anchors to represent the holis-
tic object shape. In other words, there are not enough an-
chors located in the space of the missing parts to facilitate
the detailed structure reconstruction. To address it, we pro-
pose to scatter the anchors into different locations through
learning specific offsets to capture different patterns.

We formally detail the formulation of anchor scattering
in Figure 5. Given the point features F ∈ R(N+M)×C from
the last encoder block of transformer encoder, we predic-
t the anchor offsets ∆A ∈ RM×3 via a linear projection
on the max pooled feature vector of F . Each anchor is
then scattered into different 3D locations through adding
the learnt offset, and the scattered anchors A′ ∈ RM×3 are
obtained by

∆A = MLP (MaxPool(F )), A′ = A+∆A. (4)

Through exploring the global shape information of the input
points for offset prediction, the anchors are expected to be
scattered into the space of the missing patterns for learning a
holistic object shape. We take both of the scattered anchors
A′ and the down-sampled points S0 of input observation as
the sparse points S ∈ R(N+M)×3 for the following fine-
grained 3D structure reconstruction.

3.3. Point Morphing

Point cloud completion advances [9,45] usually integrate
the global feature vector into the deformation of a 2D grid
for point generation. In view that solely exploiting the glob-
al feature vector to capture precise 3D details is insufficient,
the relationship between the surrounding points should be
also considered in the local pattern completion. By further
incorporating the local point features into the reconstruc-
tion of detailed 3D structures, we propose a point morphing
scheme to control the 2D grid deformation at the location
of each sparse point.

Figure 4 depicts the pipeline of our point morphing
scheme. Given the input sparse points S and the cor-
responding input point features F , a transformer decoder
which consists of six decoder blocks is first utilized for fea-
ture fusion. We take the output feature from the transformer
decoder as the decoded point features E ∈ R(N+M)×C ,
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which are then fed into three cascaded point morphing
blocks for local pattern reconstruction. Specifically, as
shown in the right part of Figure 4, we calculate the glob-
al feature vector α ∈ RCm and local point features β ∈
R(N+M)×Cm = {βj}N+M−1

j=0 for all N +M sparse points:

α = MLP (MaxPool(E)), β = MLP (E), (5)

where the output feature dimension of MLP in the m-th
morphing block is Cm. For the reconstruction of the pat-
tern around the j-th sparse point, we leverage the global
feature α ∈ RCm and the local point feature βj ∈ RCm as
the affine parameters to modulate the 2D grid deformation.
Given the input grid features hin ∈ RK×Cm (K denotes
point number of each grid), the output grid features hout for
the j-th sparse point are computed by

hout = α
hin − µ

σ
+ βj , (6)

where µ and σ denotes the mean and standard deviation of
a mini-batch of hin. Note that the input grid features for the
first morphing block are the canonical 2D grid G ∈ RK×2,
and we set the output feature dimension Cm of the last mor-
phing block as 3 to obtain the final output grid features, i.e.,
the 3D offsets ∆dj ∈ RK×3 for the j-th sparse point. Then,
we duplicate the coordinates sj ∈ R3 of the j-th sparse
point K times and fuse them with the learnt 3D offsets to
obtain the surrounding dense points dj ∈ RK×3:

dj = Dup(sj) + ∆dj , (7)

where Dup(·) denotes the point duplication. As such, each
local pattern around one sparse point is described by K
dense points. Finally, we collect all the dense points sur-
rounding each sparse point to form the output dense points
D ∈ R[(N+M)×K]×3 for our AnchorFormer.

3.4. Network Optimization

The architecture of AnchorFormer is end-to-end learnt
by optimizing two objectives. One is the commonly adopted
Chamfer Distance loss to minimize the distance between
the predicted points and the ground truth. The other one
is a compactness constraint to regulate the generated dense
points in each fine-grained pattern.

We measure the point reconstruction via optimizing the
L1 Chamfer Distances (CDL1) [5] from two aspects: the
distance between the predicted sparse points S and the
ground truth G, and the distance between the predicted
dense points D and the ground truth G. Therefore, the re-
construction loss Lrec is formulated as:

Lrec = CDL1(S,G) + CDL1(D,G). (8)

To facilitate the detailed structure reconstruction, we addi-
tionally employ a constraint [15] to guarantee the generat-
ed dense points surrounding a sparse point to be compact

in each pattern. The loss function is to optimize the dis-
tance between local points based on a minimum spanning
tree which is constructed on the point coordinate set Pr.
Such loss function Ltree is defined as:

Ltree(Pr, λ) =
∑

(u,v)∈T (Pr)

I{Ed(u, v) ≥ λϵ}Ed(u, v), (9)

where T (·) is the minimum spanning tree which is built on
the predicted point coordinates Pr. We denote Ed(u, v) as
the Euclidean distance between the vertex u and v in that
tree. ϵ is the average edge length of the tree and I is the
indicator function. We employ λ as a scale ratio to adjust
the penalty of the distance. Thus, the proposed regulariza-
tion term of point compactness Lcpa derived from Ltree is
formulated as follows:

Lcpa =
∑N+M−1

j=0
Ltree(dj , λ), (10)

where dj denotes the predicted dense points around j-th s-
parse point as mentioned in Eq.(7) and λ is the scale ratio.

The overall training objective L in our AnchorFormer
integrates the point reconstruction loss and the point com-
pactness constraint:

L = Lrec + γLcpa, (11)

where γ is the trade-off parameter.

4. Experiments
4.1. Experimental Settings

Datasets. We empirically verify the merit of our An-
chorFormer on PCN [47], ShapeNet-55/34 [46] and KIT-
TI [7]. The PCN dataset consists of 28, 974 shapes for
training and 1, 200 shapes for testing from 8 categories,
which are sampled from the ShapeNet [3] dataset. The input
partial observations are generated by back-projecting 2.5D
depth images from 8 different views. The ShapeNet-55/34
datasets are also derived from ShapeNet. We follow the s-
tandard protocols in [46, 50] to evaluate models on the two
datasets. In particular, ShapeNet-55 contains 55 categories
and includes 41, 952 and 10, 518 shapes in the training and
testing sets, respectively. The training data of ShapeNet-34
are 46, 765 shapes from 34 categories, and the testing data
of 5, 705 shapes are divided into two parts: 3, 400 shapes
from 34 seen categories and 2, 305 shapes from 21 unseen
classes. The evaluations on ShapeNet-55/34 are conduct-
ed on the point cloud data masked with a ratio of 25%,
50% and 75%, accordingly formulating the completion task
at three difficulty levels of simple (S), moderate (M) and
hard (H). For the KITTI dataset, there are 2,401 partial car
shapes extracted from outdoor 3D scenes. We use the stan-
dard setting in [43,46,50] to employ all the shapes in KITTI
as the testing data, and the models for evaluation are trained
on the subset of PCN which contains all car shapes.
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Table 1. Performance comparison in terms of L1 Chamfer Distance ×103 (CDL1) on the PCN dataset. The Chamfer Distance performances
of each category and the averaged result across all categories are all listed. (Lower CDL1 is better)

Method Plane Cabinet Car Chair Lamp Sofa Table Boat CDL1

FoldingNet [45] 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31
TopNet [29] 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15
PCN [47] 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 9.64
GRNet [43] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83
PMPNet [37] 5.50 11.10 9.62 9.47 6.89 10.74 8.77 7.19 8.66
PoinTr [46] 4.05 9.34 7.97 7.92 6.40 9.29 6.66 6.47 7.26
SnowFlakeNet [41] 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21
SeedFormer [50] 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74

AnchorFormer 3.70 8.94 7.57 7.05 5.21 8.40 6.03 5.81 6.59

Ground-TruthAnchorFormer GRNetPCN PoinTr SeedFormerInput

Plane

Car

Chair

Lamp

Figure 6. Four visual examples of point cloud completion results by different approaches on the PCN dataset. Different colors denote the
point clouds reconstructed by different approaches.

Implementation Details. We implement our Anchor-
Former on the PyTorch platform. The number N of the
down-sampled points from EdgeConv-based head is 128.
The encoder of AnchorFormer consists of 8 cascaded dual
attention blocks, and the vanilla point transformer decoder
proposed in [46] is adopted as our decoder. The number
L of the predicted anchors in each dual attention block in
transformer encoder is set as 16 and the total number M of
the anchors is 128. The number K of the grid points is set
as 64. The parameters of λ and γ are determined by cross
validation and set as 1.2 and 0.05 empirically. Our network-
s are trained by exploiting AdamW optimizer with the base
learning rate set as 0.0002.

Evaluation Metrics. We employ the L1/L2 Chamfer
Distance and the F-Score [28] as the evaluation metrics for
the PCN and ShapeNet-55/34 datasets. On KITTI, we fol-
low [46, 50] to report the Fidelity Distance (FD) and Mini-
mal Matching Distance (MMD) performances.

4.2. Comparisons with State-of-the-Art Methods

We compare our AnchorFormer with several state-of-
the-art techniques, including FoldingNet [45], TopNet [29],
PCN [47], GRNet [43], PMPNet [37], PoinTr [46], S-
nowFlakeNet [41] and SeedFormer [50], on the PCN,

ShapeNet-55/34 and KITTI datasets.

Evaluation on PCN. Table 1 summarizes the L1 Cham-
fer Distance (CDL1) comparisons on eight categories of the
PCN dataset. AnchorFormer consistently outperforms all
baselines in terms of both per-category Chamfer Distance
and the averaged distance. In general, lower Chamfer Dis-
tance indicates more accurate reconstructive shape. Specif-
ically, AnchorFormer achieves the averaged CDL1 of 6.59,
which reduces the Chamfer Distance of the best competitor
SeedFormer by 0.15. Though both of SeedFormer and An-
chorFormer rebuild the 3D shape from a set of key points,
they are fundamentally different in that SeedFormer esti-
mates the seed features through interpolating the features of
the observed partial points, and AnchorFormer dynamical-
ly refines anchor features in transformer encoder to better
capture local geometry. As indicated by the results, learn-
ing more powerful pattern features does benefit shape re-
construction. Figure 6 further visualizes the point cloud
completion results of four different shapes. In particular,
AnchorFormer predicts high-quality object shapes with s-
moother surfaces (e.g., the body of the airplane) and more
fine-grained local structures (e.g., the wheels of the car). In
addition, there is less noise in the point clouds generated
by our AnchorFormer. The results demonstrate the advan-
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Table 2. Performance comparison in terms of L2 Chamfer Distance ×103 (CDL2) and F-Score@1% (F1) on the ShapeNet-55 dataset. The
per-category L2 Chamfer Distance results are reported on 5 categories with most training samples and 5 categories with the least training
samples. CDL2-S, CDL2-M and CDL2-H denote the L2 Chamfer Distance on the masked point cloud with the ratio of 25%, 50% and 75%,
respectively. CDL2 and F1 are the averaged results on all categories and all difficulties. (Lower CDL2 and higher F1 are better)

Method Table Chair Plane Car Sofa Birdhouse Bag Remote Keyboard Rocket CDL2-S CDL2-M CDL2-H CDL2 F1

FoldingNet [45] 2.53 2.81 1.43 1.98 2.48 4.71 2.79 1.44 1.24 1.48 2.67 2.66 4.05 3.12 0.082
TopNet [29] 2.21 2.53 1.14 2.18 2.36 4.83 2.93 1.49 0.95 1.32 2.26 2.16 4.30 2.91 0.126
PCN [47] 2.13 2.29 1.02 1.85 2.06 4.50 2.86 1.33 0.89 1.32 1.94 1.96 4.08 2.66 0.133
GRNet [43] 1.63 1.88 1.02 1.64 1.72 2.97 2.06 1.09 0.89 1.03 1.35 1.71 2.85 1.97 0.238
PoinTr [46] 0.81 0.95 0.44 0.91 0.79 1.86 0.93 0.53 0.38 0.57 0.58 0.88 1.79 1.09 0.464
SeedFormer [50] 0.72 0.81 0.40 0.89 0.71 1.51 0.79 0.46 0.36 0.50 0.50 0.77 1.49 0.92 0.472

AnchorFormer 0.58 0.67 0.33 0.69 0.58 1.35 0.64 0.36 0.27 0.42 0.41 0.61 1.26 0.76 0.558

Table 3. Performance comparison in terms of L2 Chamfer Distance ×103 (CDL2) and F-Score@1% (F1) on the ShapeNet-34 dataset.
The L2 Chamfer Distance performances on both of the 34 seen categories and 21 unseen categories are reported. CDL2-S, CDL2-M and
CDL2-H denote the L2 Chamfer Distance on the masked point cloud with a ratio of 25%, 50% and 75%, respectively. CDL2 and F1 are
the averaged results on corresponding category subset (seen/unseen) across all difficulties. (Lower CDL2 and higher F1 are better)

Method 34 seen categories 21 unseen categories
CDL2-S CDL2-M CDL2-H CDL2 F1 CDL2-S CDL2-M CDL2-H CDL2 F1

FoldingNet [45] 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
TopNet [29] 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.50 0.121
PCN [47] 1.87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101
GRNet [43] 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216
PoinTr [46] 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384
SeedFormer [50] 0.48 0.70 1.30 0.83 0.452 0.61 1.07 2.35 1.34 0.402

AnchorFormer 0.41 0.57 1.12 0.70 0.564 0.52 0.90 2.16 1.19 0.535

View 1 View 2 View 1 View 2

Input

PoinTr

AnchorFormer

Case A Case B

Figure 7. Point cloud completion results of two car shapes in two
different views in the KITTI dataset.

tage of characterizing regional information through learning
a set of anchors to enhance point cloud completion.

Evaluation on ShapeNet-55. We then evaluate Anchor-
Former on the ShapeNet-55 dataset with more categories.
Table 2 lists the performances of L2 Chamfer Distance
(CDL2) of different approaches. In detail, we report the
averaged CDL2 and F1 values on all the categories, and the
CDL2 performances on the masked point cloud data with
three different ratios, i.e., CDL2-S, CDL2-M and CDL2-H.
Moreover, we select and show the per-category CDL2 of
the five categories (Table, Chair, Plane, Car and Sofa) with
the most training samples (>2,500), and the five categories
(Birdhouse, Bag, Remote, Keyboard and Rocket) with the
least training examples (<80). On all the experimental set-
tings, our AnchorFormer leads to higher performances a-

Table 4. Fidelity Distance (FD) and Minimal Matching Distance
(MMD) on KITTI. (Lower FD and MMD are better)

TopNet [29] PCN [47] GRNet [43] PoinTr [46] AnchorFormer

FD 5.354 2.235 0.816 0.000 0.000
MMD 0.636 1.366 0.568 0.526 0.458

gainst other methods. In the case of training the model for
the five categories with few data, AnchorFormer still ex-
hibits improvements over SeedFormer, verifying the good
model capacity to capture 3D shape information. Anchor-
Former also surpasses SeedFormer by 0.086 in F1 score and
the result indicates that AnchorFormer reconstructs the 3D
shape with a higher percentage of the correct points.

Evaluation on ShapeNet-34. Following [46], we exam-
ine the generalization ability of AnchorFormer for novel ob-
ject shape completion on ShapeNet-34. Table 3 details the
CDL2 on both the seen categories and unseen classes. As
expected, the average performances on unseen categories
are inferior to those on the seen categories. Despite hav-
ing large shape differences between training data and testing
unseen data, AnchorFormer still achieves 0.535 F1 score on
21 unseen categories and obtains 0.133 F1 gain over Seed-
Former. The results basically validate the generalization a-
bility of AnchorFormer for novel object reconstruction.

Evaluation on KITTI. Next, we also experiment with
our AnchorFormer on KITTI as in [46] to test point cloud
completion on real 3D car shape. Table 4 shows the Fidelity
Distance (FD) and Minimal Matching Distance (MMD) of
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Table 5. Performance comparisons among different variants of
AnchorFormer on the PCN dataset.

Model Anchor Morphing Lcpa CDL1 F1

A Global Feature Folding - 7.33 0.792
B

√
Folding - 6.81 0.810

C
√

Style-based Folding - 6.77 0.814
D

√ √
- 6.68 0.820

E
√ √ √

6.59 0.827

different methods. AnchorFormer constantly performs bet-
ter than other models with respect to both two metrics. On
one hand, the lowest FD attained by AnchorFormer reflect-
s that the input structure is well preserved with shape re-
construction. On the other hand, the lowest MMD indicates
that the shape predicted by AnchorFormer is more like a car
than other approaches. Furthermore, Figure 7 showcases
point cloud completion of two examples in two views. An-
chorFormer recreates the shape with better quality in fine-
grained patterns, which manifests the merit of leveraging
anchors to reform the detailed 3D structures.

4.3. Analysis of AnchorFormer

Model Design. Here, we study how each design in our
AnchorFormer impacts the overall performance of point
cloud completion. Table 5 lists the performance compar-
isons among different variants of AnchorFormer. We start
from the basic model (A), which leverages a vanilla trans-
former encoder [46] to learn the global feature vector of
an object and then decodes the vector via a transformer
decoder, following by the folding operation [45] to gen-
erate the points. The model B upgrades the basic model
A through learning a set of discriminative nodes, i.e., an-
chors, to characterize regional information, and improves
F1 score from 0.792 to 0.81. The model C and D further
replace the folding operation with Style-based Folding [42]
and our point morphing scheme, respectively. Compared
to Style-based Folding that only integrates the global fea-
ture vector of an object into the 2D grid deformation pro-
cedure, point morphing jointly adjusts the deformation by
both of the local point features and the global object feature
for fine-grained pattern reconstruction. As such, the model
D attains better CDL1 and F1 score than the model C. Final-
ly, the model E, i.e., our AnchorFormer, by regulating the
compactness of the generated points in each pattern, shows
the best performances.

Visualization Analysis. To better qualitatively verify
the effectiveness of completing point cloud from anchors,
we further visualize the formation of anchors, sparse points,
and dense points in Figure 8. Note that we plot the sparse
points and dense points which are derive from the identical
anchor in the same color. As shown in the figure, the an-
chors distribute at both the observed (e.g., the body of the
boat in the third example) and unobserved (e.g., the seat and
back of the sofa in the first case) locations. Through point

Ground TruthDense PointsSparse PointsAnchors

Figure 8. Visualization of the formation of anchors, sparse points,
and dense points for three shapes from the PCN dataset with their
corresponding ground truth. We plot the sparse points and dense
points that are derived from the identical anchor in the same color.

scattering operation, the anchors are then scattered around
each location and combined with the down-sampled points
of the input observation as sparse points, to rebuild a coarse
3D structure of an object. The fine-grained structure at each
sparse point is further reformed by the morphing scheme.
The results indicate that AnchorFormer benefits from the
learning of a set of anchors, and enriches the details of the
local pattern around each sparse point, leading to a complet-
ed 3D object shape.

5. Conclusions

We have presented AnchorFormer that explores the re-
gional discrimination for point cloud completion. In par-
ticular, we study the problem of completing object shape
from learning a set of discriminative nodes, i.e., anchors, to
characterize different local geometric patterns. To materi-
alize our idea, AnchorFormer first predicts a series of an-
chors from the input partial observation via the transformer
encoder. Through learning specific offsets, the anchors are
further scattered into different 3D locations and combined
with the down-sampled points of the input observation as
sparse points. Finally, a point morphing scheme is deliber-
ately designed to reconstruct the fine-grained 3D structure
at the location of each sparse point by deforming a canoni-
cal 2D grid. Experiments demonstrate the superiority of our
AnchorFormer and qualitative evaluations on point cloud
completion also show that it nicely models the fine-grained
geometry and reconstructs the missing parts precisely.
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