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Abstract
Implicit neural representation has recently shown a

promising ability in representing images with arbitrary res-
olutions. In this paper, we present a Local Implicit Trans-
former (LIT), which integrates the attention mechanism and
frequency encoding technique into a local implicit image
function. We design a cross-scale local attention block to ef-
fectively aggregate local features and a local frequency en-
coding block to combine positional encoding with Fourier
domain information for constructing high-resolution im-
ages. To further improve representative power, we pro-
pose a Cascaded LIT (CLIT) that exploits multi-scale fea-
tures, along with a cumulative training strategy that grad-
ually increases the upsampling scales during training. We
have conducted extensive experiments to validate the effec-
tiveness of these components and analyze various training
strategies. The qualitative and quantitative results demon-
strate that LIT and CLIT achieve favorable results and out-
perform the prior works in arbitrary super-resolution tasks.

1. Introduction
Single Image Super-Resolution (SISR) is the process

of reconstructing high-resolution (HR) images from their
corresponding low-resolution (LR) counterparts. SISR has
long been recognized as a challenging task in the low-level
vision domain due to its ill-posed nature, and has attracted
a number of researchers dedicated to this field of study over
the past decade [1–21]. A line of SISR research referred to
as ‘fixed-scale SR’ [1–15] focuses on extracting feature em-
beddings from LR images and leveraging these embeddings
to upsample images with a predefined factor through learn-
able deconvolutions [3] or sub-pixel convolutions [4]. De-
spite their success, many of the proposed approaches neces-
sitate a distinct deep neural network model for each upsam-
pling scale, which is usually restricted to a limited selection
of integers (e.g., 2×, 3×, 4×). Such a limitation constrains
the potential applications and deployment options of SISR
models. To overcome this limitation, approaches for up-
sampling LR images in a continuous manner via a single
model emerge and attracted considerable attention recently.

Over the past few years, arbitrary-scale SR has emerged
and attracted considerable attention from researchers [16–
21]. Apart from the pioneering work Meta-SR [16], recent
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Figure 1. An illustration and comparison of different approaches that take
into account nearby pixels for continuous upsampling: (a) the local ensem-
ble method used in [17], and (b) our proposed local attention mechanism.

endeavors [17–21] have achieved arbitrary-scale SR by re-
placing the upsampling layers commonly adopted by pre-
vious approaches with local implicit image functions, and
have demonstrated favorable performance. These local im-
plicit functions employ multi-layer perceptrons (MLPs) to
map 2D coordinates and corresponding latent representa-
tions to RGB values. Fig. 1 illustrates how different ap-
proaches sample latent representations based on the queried
coordinates (depicted as the red dots). Fig. 1 (a) illus-
trates the local ensemble technique adopted by contempo-
rary mainstream methods [17–21]. It calculates the RGB
value of the queried coordinate by taking the weighted av-
erage of those of the surrounding four pixels based on their
relative distances to the queried coordinate. This approach,
however, does not consider contextual information and re-
lies solely on distance. For instance, in Fig. 1, the queried
coordinates are intentionally designed to lie on edges. How-
ever, merely calculating the weighted average of pixels fails
to reflect the contextual information about the image con-
tent, thereby preventing the accurate capture of the neces-
sary features for performing SR. As a result, although pixel
distance plays a vital role in SR tasks, it is essential to con-
centrate more on the contextual information in an image.

In light of the above observations, we propose a Lo-
cal Implicit Transformer (LIT), which expands the num-
bers of referenced latent vectors and accounts for the fea-
ture correlation in the context by exploiting the attention
mechanism [22]. LIT comprises a Cross-Scale Local Atten-
tion Block (CSLAB), a Local Frequency Encoding Block
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(LFEB), and a decoder. CSLAB generates attention maps
based on the bilinearly interpolated latent vectors at the
queried coordinates and the key latent vectors sampled from
a grid of coordinates with relative positional bias [23, 24].
The first and second columns of Fig. 1 (b) visualize the at-
tention maps generated by LIT, where the attention areas
align closely with the edges. By applying attention maps
to feature embeddings, the RGB values of the queried co-
ordinates can be contextually predicted. Moreover, inspired
by [21, 25, 26], we introduce LFEB, which projects rela-
tive coordinates into latent space to address the spectral bias
problem [27] of an implicit neural function. Specifically,
relative coordinates are encoded into relative positional en-
coding, which are multiplied with the frequency encoding
extracted from the feature embedding in the Fourier domain
to generate the frequency embeddings. This design enables
the frequency embedding to integrate the relative positional
encoding with texture information, thereby augmenting the
expressivity of relative coordinates. Finally, a decoder is
adopted to produce RGB values by taking advantage of the
attention feature embedding and the frequency embedding.

In order to address the issue of diverse scaling factors
and achieve arbitrary-scale super-resolution, it is crucial
to consider the role of upsampling factors in constructing
high-resolution images within the local implicit image func-
tion. However, simultaneously training a local implicit im-
age function with a wide range of upsampling factors (e.g.,
1× ∼ 30×) poses significant challenges. As a result, we
propose a cumulative training strategy to incrementally en-
hance the fuction’s its representative power. The strategy
initially trains the local implicit image function with small
upsampling factors and then finetunes it with alternatively
sampled small and large ones. Furthermore, we present
Cascaded LIT (CLIT) to harness the advantages of multi-
scale feature embeddings, complementing missing details
and information during one-step upsampling. The combi-
nation of the cumulative training strategy and CLIT enables
efficient and effective handling of arbitrary-scale SR tasks.

The main contributions of our work are summarized as
follows: (1) We introduce the LIT architecture, which incor-
porates the local attention mechanism into arbitrary-scale
SR (2) We further develop a cumulative training strategy
and the cascaded framework CLIT to effectively handle
large-scale upsampling. (3) We carry out comprehensive
analyses of the performance impacts for LIT and CLIT. The
extensive experimental findings demonstrate that the pro-
posed LIT and CLIT are able to yield remarkable or com-
parable results across a wide range of benchmark datasets.

The paper is organized as follows. Section 2 reviews the
related work. Section 3 walks through the proposed LIT and
CLIT frameworks and the implementation details. Section 4
presents the experimental results. Section 5 concludes.

2. Related Work
Implicit neural representation. Implicit neural repre-
sentation is a technique for representing continuous-
domain signals via coordinate-based multi-layer percep-
trons (MLPs). Its concept has been adopted in various 3D
tasks, e.g., 3D object shape modeling [28–32], 3D scene re-
construction [33–36], and 3D structure rendering [25, 37–
39]. For example, NeRF [25] employs implicit neural rep-
resentation to perform novel view synthesis, which maps
coordinates to RGB colors for a specific scene. In the past
few years, 2D applications of implicit neural representa-
tion have been attempted as well, such as image represen-
tation [40, 41] and super-resolution [17–21]. Our work is
related to a technique called ‘local implicit neural repre-
sentation’ [17, 21], which encodes LR images to feature
embeddings such that similar information could be shared
within local regions. Such local implicit neural representa-
tions are exploited to upscale LR images to HR ones.

Single image super-resolution. In the past several years,
various deep neural network (DNN) based architectures [1–
15] have been proposed for SISR. Among these works, SR-
CNN [1] pioneered the use of convolutional neural net-
works (CNNs) to achieve SISR in an end-to-end manner. It
is later followed by several subsequent works that incorpo-
rated more complicated model architectures, such as resid-
ual blocks [6, 7], dense connections [8, 9], attention based
mechanisms [10–12], or cascaded frameworks [5, 42, 43],
to extract more effective feature representations for SISR.
Recently, transformer-based methods [13–15] were intro-
duced to SISR and achieved promising performance.

Arbitrary-scale super-resolution. As discussed in Sec-
tion 1, most of the contemporary SISR works limit their up-
sampling scales to specific integer values, and are required
to train a distinct model for each upsampling scale. To over-
come such a limitation, several approaches [16–21] were
proposed to train a unified model for arbitrary upsampling
scales. Meta-SR [16] proposed a meta-upscale module for
predicting the weights of their convolutional filters from co-
ordinates and scales. The predicted weights are then utilized
to perform convolutions to generate HR images. In contrast
to Meta-SR, LIIF [17] employs an MLP as a local implicit
function, which takes a queried coordinate in an HR im-
age, its nearby feature representations extracted from the
corresponding LR image, as well as a cell size to predict an
RGB value for that coordinate. UltraSR [18] and IPE [19]
extended LIIF by replacing coordinates with the embedded
ones to deal with the spectral bias issue [25, 27, 41, 44, 45]
inherent in MLPs. LTE [21] further introduced a local tex-
ture estimator that transforms coordinates into Fourier do-
main information to enrich the representational capability
of its local implicit function. Different from the above ap-
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Figure 2. The proposed LIT framework. The local sampling operation samples input embeddings based on a grid of coordinates.

proaches, our proposed methodology exploits a novel local
attention mechanism and a cascaded framework to deal with
the arbitrary-scale SR. In order to fairly compare with the
above approaches, we similarly adopt EDSR [7], RDN [9]
and SwinIR [14] as the encoders for our LIT and CLIT.

3. Methodology
In this section, we first provide an overview of the pro-

posed LIT framework, followed by the implementation de-
tails of it and its main modules.We then discuss our cumu-
lative training strategy, as well as the framework of CLIT.

3.1. Overview of the LIT Framework

LIT is a framework that employs a novel cross-scaled
local attention mechanism and a local frequency encoding
technique to perform arbitrary-scale SR tasks. Fig. 2 (a)
provides an overview of the proposed framework, which
aims at producing an HR image IHR ∈ RrhH×rwW×3 at
2D HR coordinates xHR ∈ X from a given LR image
ILR ∈ RH×W×3 at 2D LR coordinates xLR ∈ X based
on an arbitrary upsampling scale r = {rh, rw}, where X is
the 2D coordinate space that is used to represent an image in
the continuous domain. An encoder Eθ first extracts a fea-
ture embeddingZ ∈ RH×W×C from ILR. The extractedZ
is then forwarded into LIT along with the 2D coordinates of
IHR and a cell = (2/sh, 2/sw) to generate the RGB values
of a residual image IHRr ∈ RrhH×rwW×3 in a pixel-wise
fashion. Lastly, the residual image IHRr is combined with
a bilinearly upsampled image IHR↑ ∈ RrhH×rwW×3 via
element-wise addition to derive the final HR image IHR.

3.2. Local Implicit Transformer

LIT is developed for mapping any 2D coordinate in the
continuous image domain to an RGB color. As highlighted
in Fig. 2 (b), it is composed of a cross-scale local attention

block (CSLAB), a local frequency encoding block (LFEB),
and a decoder Dφ paraterizerized by φ. The former two
blocks are responsible for estimating a local latent embed-
ding z̃ ∈ RGhGw×C and a local frequency embedding
f̃ ∈ RGhGw×C , respectively, where Gh and Gw denote the
height and width of local grids employed for performing lo-
cal coordinate sampling, as depicted in Fig. 3. On the other
hand,Dφ utilizes these embeddings along with the provided
cell to generate IHRr . More specifically, LIT first projectsZ
using four separate convolutional layers to obtain four latent
embeddings, corresponding to query q, key k, value v, and
frequency f . Based on a queried HR coordinate xq ∈ xHR,
CSLAB and LFEB estimate z̃ and f̃ as follows:

z̃ = CSLAB(δx, q, k, v), (1)

f̃ = LFEB(δx, f), (2)

δx =
{
xq − x(i,j)

}
i∈{1,2,...,Gh},j∈{1,2,...,Gw}

, (3)

where x(i,j) ∈ xLR denotes an LR coordinate in the lo-
cal grid indexed by (i, j), and δx represents the set of
local relative coordinates defined by Eq. (3). The lo-
cal grid is sampled in a manner that positions its cen-
ter x(bGh/2c+1,bGw/2c+1) at the LR coordinate closest to
xq . The query latent vector q ∈ R1×C at the HR coor-
dinate xq is computed by bilinear interpolation, while the
remainder of the local latent embeddings k ∈ RGhGw×C ,
v ∈ RGhGw×C , and f ∈ RGhGw×C are sampled at the lo-
cal LR coordinates x = {xi,j}i∈{1,2,...,Gh},j∈{1,2,...,Gw}.
With the local latent embedding z̃ and the local frequency
embedding f̃ , the function of Dφ is formulated as follows:

Ir(xq) = Dφ(z̃, f̃ , c), (4)

where Ir(xq) is the predicted RGB value at the queried co-
ordinate xq , and c = {HR∆h, HR∆w} denotes the cell that
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Figure 3. An illustration of the proposed local coordinate sampling
scheme. The red rectangular region, outlined by a dashed line, represents
the local grid with dimensions Gh × Gw . The red dots indicate the sam-
pled local LR coordinates, while the gray dots correspond to the HR coor-
dinates. The grid dimensions LR∆h,w

and HR∆h,w
represent the unit

sizes of pixels in LR and HR images, respectively.

represents the height and width of a pixel in an HR image,
as illustrated in Fig. 3. Dφ is implemented as a five-layer
MLP utilizing Gaussian Error Linear Unit (GELU) activa-
tion [46], and is employed consistently across all images.

Cross-scale local attention block. LIT exploits CSLAB
to perform a local attention mechanism over a local grid to
generate a local latent embedding z̃ for each HR coordinate,
as illustrated in Fig. 2 (c). CSLAB first calculates the inner
product of q and k, adds the relative positional bias B to
the result, and obtains an attention matrix. This attention
matrix is subsequently normalized by a Softmax operation
to produce a local attention map. Finally, CSLAB performs
element-wise multiplication of v and the local attention map
to derive z̃. The overall procedure is formulated as follows:

z̃ = softmax(
qk>√
C

+B)× v, (5)

B = FC(γ(δx)), (6)

γ(δx) = [sin (20δx), cos (20δx), ...

, sin (2L−1δx), cos (2L−1δx)],
(7)

where C denotes the channel dimension of the local key la-
tent embedding k, FC represents a fully-connected layer, γ
is the positional encoding function, and L is a hyperparame-
ter. In this work, L is set to 10, and the multi-head attention
mechanism adopted is formulated in Eq. (8) as follows:

z̃ = concat(softmax(
qik
>
i√

C/H
+Bi)× vi), (8)

whereH is the number of attention heads and i ∈ [1, ...,H].

conv
LIT

LIT

LIT

Encoder Eθ

Figure 4. An overview of the proposed CLIT framework.

Local frequency encoding block. Fig. 2 (d) illustrates
the local frequency encoding block, which incorporates
dominant-frequency components to generate the local fre-
quency embedding f̃ . In order to account for dominant-
frequency information, LFEB first encodes local frequency
latent embedding f using Fast Fourier Transform (FFT),
which is then multiplied by the relative positional encod-
ing to generate f̃ . The resultant local frequency embedding
f̃ is then concatenated with the flattened local latent embed-
ding z̃ to form a mixing embedding, which can be used by
the decoder consisting of MLPs to predict RGB values [47].

3.3. Cumulative Training Strategy

In this section, we discuss our proposed cumulative
training strategy, which is developed for enhancing the per-
formance of arbitrary-scale SR. The cumulative training
strategy focuses on the schedule of the cell sizes selected
during the training phase, as “cell decoding” has been rec-
ognized as an essential input to a local implicit image func-
tion [17]. Recent studies [17, 19] have observed that the
effect of cell decoding on the performance of arbitrary-
scale SR is prominent for in-distribution upsampling, but
degrades significantly for out-of-distribution large-scale up-
sampling. Such trends are demonstrated in Table 3 of [17]
and Table 4 of [19]. The authors in [21] also constrained
their cell sizes to in-distribution ranges to mitigate the neg-
ative impact during evaluation. To overcome the degrada-
tion issue for out-of-distribution cell sizes, incorporating
large cell sizes during training appears to be a promising
solution. However, simply training the local implicit image
function with a diverse range of cell sizes at once leads to
a performance drop. According to our experimental obser-
vations presented in Section 4.4, we find that training the
local implicit image function by alternatively switching be-
tween large and small cells offers positive impacts on the
performance. Based on the above observations, we propose
a cumulative training strategy which first trains the local im-
plicit image function with large cell sizes, and finetunes it
with the alternative training strategy to improve the perfor-
mance on different upsampling scales. More quantitative
results of our training strategies can be found in Section 4.4.
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Method ×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30
Bicubic [7] 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59
EDSR-baseline [7] 34.55 30.90 28.94 - - - - -
EDSR-baseline-Meta-SR [16, 17] 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
EDSR-baseline-LIIF [17] 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48
EDSR-baseline-UltraSR [18] 34.69 31.02 29.05 26.81 23.75 22.21 21.21 20.51
EDSR-baseline-IPE [19] 34.72 31.01 29.04 26.79 23.75 22.21 21.22 20.51
EDSR-baseline-LTE [21] 34.72 31.02 29.04 26.81 23.78 22.23 21.24 20.53
EDSR-baseline-CLIT (Ours) 34.81 31.12 29.15 26.92 23.83 22.29 21.26 20.53
RDN-Meta-SR [16, 17] 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47
RDN-LIIF [17] 34.99 31.26 29.27 26.99 23.89 22.34 21.31 20.59
RDN-UltraSR [18] 35.00 31.30 29.32 27.03 23.73 22.36 21.33 20.61
RDN-IPE [19] 35.04 31.32 29.32 27.04 23.93 22.38 21.34 20.63
RDN-LTE [21] 35.04 31.32 29.33 27.04 23.95 22.40 21.36 20.64
RDN-CLIT (Ours) 35.10 31.39 29.39 27.12 24.01 22.45 21.38 20.64
SwinIR-MetaSR [16, 21] 35.15 31.40 29.33 26.94 23.80 22.26 21.26 20.54
SwinIR-LIIF [17, 21] 35.17 31.46 29.46 27.15 24.02 22.43 21.40 20.67
SwinIR-LTE [21] 35.24 31.50 29.51 27.20 24.09 22.50 21.47 20.73
SwinIR-CLIT (Ours) 35.29 31.55 29.55 27.26 24.11 22.51 21.45 20.70

Table 1. The average PSNR (dB) on the DIV2K [48] validation set. The results are obtained from the original manuscripts [17–19, 21]. The best and
second-best performing results are highlighted by the red and blue colors, respectively.

3.4. Cascaded Local Implicit Transformer

Previous works [17, 21] typically address arbitrary-scale
SR through a single step of upsampling. However, one-step
upsampling struggles to reconstruct an HR image when the
upsampling scale is large [5, 42, 43]. In light of this, we
propose a cascaded upsampling strategy, called “Cascaded
LIT (CLIT)” to predict residual images from multi-scale fea-
ture embeddings. In an N -branched CLIT, the multi-scale
feature embeddings Z1,Z2, ...,ZN are derived as follows:

ZN = Z ↑s1×s2×...×sN−1 ,

where s1 = 1 and s ∈ s,
(9)

where ↑ is a bilinear upsampling function and s is a set of
scaling factors, which are configurable hypermeters. For a
branch i, i ∈ [1, ..., N ], LITi estimates the residual image
Iir from the feature embedding Zi with the coordinate and
the corresponding cells. Lastly, the final HR image IHR ∈
RrhH×rwW×3 can be estimated as the following equation:

IHR = λN−1I1
r + λN−2I2

r + ...+ λ0INr + IHR↑ . (10)

where λ is a discount factor, with a default value of 0.75.
During the training phase, CLIT is trained using the pro-
posed cumulative training strategy. Initially, LIT1 is trained
with the strategy employed by [17]. Subsequently, LIT1 is
finetuned and LIT2 is initialized by applying the alternative
training strategy. By incrementally incorporating LITs into
CLIT, the performance is progressively enhanced. The de-
tails of the training strategies are specified in Section 4.

4. Experimental Results

In this section, we present the experimental results and
discuss their implications. We begin with a brief introduc-
tion to our experimental setup in Section 4.1. Following
that, we evaluate our CLIT with different datasets in Sec-
tion 4.2. The, Section 4.3 showcases the learned attention
maps. Finally, ablation studies for various configurations of
the proposed CLIT and LIT are compared in Section 4.4.

4.1. Experimental Setup

Dataset. We use the DIV2K dataset [48] for network
training. It consists of 1, 000 images in 2K resolutions and
provides low-resolution counterparts with down-sampling
scales, ×2,×3,×4, which are generated by the bicubic in-
terpolation method. On the other hand, we also evaluate the
performance on the validation set of DIV2K [48], Set5 [49],
Set14 [50], B100 [51] and Urban100 [52] in terms of peak
signal-to-noise (PSNR) values.

Training details During training, we feed batches of size
48× 48 low-resolution images into the framework, follow-
ing the prior works [7]. For each batch, a single upsampling
scale is sampled from a uniform distribution r ∼ U(1, 4).
With single upsampling scales s, a batch of HR images is
cropped into patches of size 48r × 48r, while the corre-
sponding LR images are cropped into patches of 48 × 48.
The patches are augmented by randomly horizontal flip-
ping, vertical flipping, and 90◦ rotating. Then, we sam-
ple 482 pixels (coordinate-RGB pairs) on each HR patch
as the ground-truths. We set the batch size to 32 and use
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Method Set5 Set14 B100 Urban100
×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8

RDN [9] 38.24 34.71 32.47 - - 34.01 30.57 28.81 - - 32.34 29.26 27.72 - - 32.89 28.80 26.61 - -
RDN-Meta-SR [16, 17] 38.22 34.63 32.38 29.04 26.96 33.98 30.54 28.78 26.51 24.97 32.33 29.26 27.71 25.90 24.83 32.92 28.82 26.55 23.99 22.59
RDN-LIIF [17] 38.17 34.68 32.50 29.15 27.14 33.97 30.53 28.80 26.64 25.15 32.32 29.26 27.74 25.98 24.91 32.87 28.82 26.68 24.20 22.79
RDN-UltraSR [18] 38.21 34.67 32.49 29.33 27.24 33.97 30.59 28.86 26.69 25.25 32.35 29.29 27.77 26.01 24.96 32.97 28.92 26.78 24.30 22.87
RDN-IPE [19] 38.11 34.68 32.51 29.25 27.22 33.94 30.47 28.75 26.58 25.09 32.31 29.28 27.76 26.00 24.93 32.97 28.82 26.76 24.26 22.87
RDN-LTE [21] 38.23 34.72 32.61 29.32 27.26 34.09 30.58 28.88 26.71 25.16 32.36 29.30 27.77 26.01 24.95 33.04 28.97 26.81 24.28 22.88
RDN-CLIT (Ours) 38.26 34.79 32.69 29.54 27.34 34.09 30.69 28.93 26.83 25.36 32.39 29.33 27.80 26.07 25.00 33.14 29.05 26.93 24.44 23.04
SwinIR [14] 38.35 34.89 32.72 - - 34.14 30.77 28.94 - - 32.44 29.37 27.83 - - 33.40 29.29 27.07 - -
SwinIR-MetaSR [16, 21] 38.26 34.77 32.47 29.09 27.02 34.14 30.66 28.85 26.58 25.09 32.39 29.31 27.75 25.94 24.86 33.29 29.12 26.76 24.16 22.75
SwinIR-LIIF [17] 38.28 34.87 32.73 29.46 27.36 34.14 30.75 28.98 26.82 25.34 32.39 29.34 27.84 26.07 25.01 33.36 29.33 27.15 24.59 23.14
SwinIR-LTE [21] 38.33 34.89 32.81 29.50 27.35 34.25 30.80 29.06 26.86 25.42 32.44 29.39 27.86 26.09 25.03 33.50 29.41 27.24 24.62 23.17
SwinIR-CLIT (Ours) 38.41 34.97 32.86 29.69 27.62 34.27 30.85 29.08 26.94 25.55 32.46 29.42 27.91 26.15 25.09 33.56 29.43 27.25 24.77 23.33

Table 2. The average PSNR (dB) on Set5 [49], Set14 [50], B100 [51], and Urban100 [52]. The results are obtained from the original manuscripts [17–19, 21].
The best and second-best performing results are highlighted by the red and blue colors, respectively.
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Figure 5. The qualitative results of LIIF [17], LTE [21], and our CLIT with using RDN [9] as the encoder.

the Adam optimizer [53] together with L1 loss for train-
ing. We train LIT for 1, 000 epochs, and the learning rate
is initialized at 1e−4 and decayed by a factor 0.5 at [200,
400, 600, 800] epochs. For cumulative training of CLIT,
as discussed in Section 3.4, we sample N scale factors
{s1, s2, ..., sN} from the distribution U(1, 4) according the
number of LITs N in the train step. The total upsampling
scale r = s1 × s2...× sN is the product of all scale factors.
If 48r × 48r is greater than the whole HR image, we clip
the scale factor of stage 1. To train N LITs, we fine-tune
the model for 500×N epochs, and the learning rate is ini-
tialized at 1e−4 and decayed by a factor 0.5 at [100 × N ,
200×N , 300×N , 400×N ] epochs.

4.2. Validation of CLIT

Quantitative results. We first compare our proposed
CLIT to existing local implicit neural representation meth-
ods for arbitrary-scale SR, including LIIF [17], Ul-
traSR [18], IPE [19], and LTE [21]. Table 1 summarizes the
quantitative results in terms of PSNR(dB) on DIV2k [48].
As shown in Table 1, CLIT achieves the best performance
when EDSR-Baseline [7], RDN [9] are used as the en-
coders. These results demonstrate the advantage of CLIT.

Table 2 compares CLIT to prior works [17–19, 21]
on widely-used datasets, including Set5 [49], Set14 [50],
B100 [51], and Urban100 [52], with RDN and SwinIR.
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Figure 6. The qualitative results of LIIF [17], LTE [21], and our CLIT using RDN [9] as the encoder and non-integer upsampling scales.

Note that RDN [9] is trained and evaluated for specific up-
sampling scales. CLIT outperforms those existing methods
in most cases across all datasets and scales, even achieving
a 0.26dB PSNR improvement on Set5 for the ×8 scale.

Qualitative results. Fig. 5 compares the qualitative re-
sults of CLIT with the baseline methods LIIF [17] and
LTE [21], on various dataset DIV2k [48], Set14 [50],
B100 [51], and Urban100 [52] with variant upsampling
scales. The official codes provided by them were used to
produce the results. In the first row, the SR visualization
results with a ×12 upsampling scale are depicted. It can be
observed that both LIIF and LTE struggle to reconstruct the
letters continuously, whereas the CLIT result demonstrates
continuity for these alphabets, particularly for ’M’ and ’S’.
In the second row, the stripes on the zebra appear blurry in
the LIIF and LTE results, whereas they are more distinct in
the CLIT result. In the third row, the cross pattern on the
tablecloth is not clearly rendered by LIIF and LTE. In con-
trast, CLIT is able to successfully generate clean crosses
and sharp lines. In the fourth row, despite the blurriness of
the original LR image, CLIT captures the texture and pro-
duces straight lines on the flag, showcasing its effectiveness.

Fig. 6 presents the results of text image enhancement em-
ploying progressively increasing non-integer upsampling
factors, alongside a comparison with earlier methods, LIIF
[17] and LTE [21]. The input image first undergoes a down-
scaling process by a factor of 2.2 to generate an LR im-
age. Subsequently, the LR image is then upscaled using
predetermined non-integer factors ×1.6,×2.5,×3.4,×4.3.

LRInput LR HRPrediction
Figure 7. A visualization of the local attention maps of the coordinates
highlight as red dots.

It can be observed that our proposed model effectively cap-
tures the patterns of text within the image, and accurately
estimates words and numbers with enhanced sharpness and
clarity. The enhancement becomes particularly evident in
the word ’infinity’ in the first row of contexts, ’SUNSHINE’
in the fifth row, and the number ’0’ in the final row, as each
of these elements demonstrates considerable improvements.

4.3. Visualization Local Attention Maps

In Fig. 7, we providevisualizations of local atten-
tion maps. The LR images are generated by applying
bicubic downsampling to HR images with scale factors
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In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×8 ×12

LIT 34.79 31.07 29.10 26.84 25.47 23.77
LIT (-a) 34.71 31.00 29.02 26.76 25.40 23.70
LIT (-f) 34.78 31.07 29.09 26.83 25.46 23.77
LIT (-c) 34.65 31.00 29.04 26.80 25.45 23.77
LIT (+e) 34.79 31.08 29.11 26.85 25.48 23.78

Table 3. The average PSNR (dB) for different design choices. The no-
tations -a/f/c denote the removal of the cross-scale local attention block,
frequency encoding block, and cell size, respectively, and +e denotes the
addition of local ensemble. The best performing one is indicated in bolded.

{×4.5,×6,×6}. Subsequently, the proposed CLIT with
RDN [9] encoder is utilized to produce HR predictions.
It can be observed that the attention maps closely align
with the edges, indicating that the cross-scale local atten-
tion block effectively captures similar latent codes within a
local area. This substantiates that our proposed design en-
ables the generation of SR images from LR counterparts,
ultimately producing clean and sharp edges in the output.

4.4. Ablation Studies

In this section, we present a series of ablation analyses to
substantiate the design decisions proposed in this paper. All
of the ablation experiments are conducted on the DIV2K
[48] validation set, utilizing the EDSR-baseline [7] as the
encoder and employing the PSNR metric for evaluation.
Validation of the design choices. Table 3 presents a sum-
mary of the quantitative contributions associated with each
LIT component. A significant improvement is observed
when adopting the cross-scale local attention block, while a
relatively minor gain with the frequency encoding block by
comparing LTE with LTE (-a) and LTE (-f), respectively. In
addition, LTE (-c) reveals that removing cell decoding leads
to more severe performance degradation for in-distribution
upsampling scales compared to out-of-distribution counter-
parts, highlighting the importance of cell decoding for in-
distribution upsampling scales. Finally, incorporating the
local ensemble technique in LIT (+e) results in a further,
albeit modest, enhancement of the overall performance.
The effectiveness of the local grid. Table 4 provides a
performance comparison of various local grid sizes em-
ployed within the local coordinate sampling scheme, as dis-
cussed in Section 3. The results presented in Table 4 re-
veal that increasing the local grid size contributes to perfor-
mance enhancements, albeit at the cost of extended training
times. As a result, this study adopts a 7×7 local grid size to
strike an ideal balance between effectiveness and efficiency.
Analysis on the training strategy. Table 5 presents a
quantitative comparison of the proposed cumulative train-
ing strategy with the other training strategies for training
an LIT. The baseline strategy trains LIT using upsampling
scales sampled from a uniform distribution, r ∼ U(1, 4).
Expanding the sampling scale distribution to r ∼ U(1, 12)
improves the performance of large-scale upsampling while

Local gird
Gh ×Gw

In-distribution Out-of-distribution Training time×2 ×3 ×4 ×6 ×8 ×12
1× 1 34.71 31.00 29.02 26.76 25.40 23.70 20.9
3× 3 34.76 31.04 29.07 26.81 25.46 23.76 23.2
5× 5 34.78 31.07 29.08 26.83 25.47 23.78 28.4
7× 7 34.79 31.07 29.10 26.84 25.47 23.77 33.6
9× 9 34.79 31.06 29.10 26.84 25.47 23.77 53.0
15× 15 34.83 31.10 29.11 26.86 25.49 23.78 76.1
25× 25 34.86 31.13 29.15 26.88 25.50 23.80 190.9

Table 4. The average PSNR (dB) and the training time (hour) of multiple
local grid sizes. The bolded numbers correspond to the best performance.

Training strategy ×2 ×3 ×4 ×6 ×8 ×12
Training with r ∼ U(1, 4) 34.79 31.07 29.10 26.84 25.47 23.77
Training with r ∼ U(1, 12) 34.69 31.06 29.11 26.87 25.52 23.82
Alternative training strategy 34.75 31.09 29.12 26.88 25.52 23.81
Cumulative training strategy 34.78 31.10 29.14 26.89 25.54 23.83

Table 5. The average PSNR (dB) of different training strategies. The best
performing results are indicated in bold.

compromising the performance of small-scale upsampling.
To achieve high-quality results across all upsampling scale
ranges, the alternative training strategy trains LIT alter-
natively by switching the sampling scales between r ∼
U(1, 4) and r ∼ U(4, 12). On the other hand, the pro-
posed cumulative training strategy first trains LIT with r ∼
U(1, 4), followed by fine-tuning using the alternative train-
ing strategy. This progressive approach improves the per-
formance of LIT by gradually broadening the distribution
of the upsampling scales. Comparing the results of the cu-
mulatively trained LIT with the results of EDSR-baseline-
CLIT in Table 1 reveals that the proposed cumulative train-
ing strategy works for both LIT and CLIT. Moreover, the re-
sults from these tables suggest that the cascaded framework
is more effective in addressing arbitrary-scale SR tasks.

5. Conclusion
In this paper, we introduced the attention mechanism and

frequency encoding technique to address arbitrary-scale SR
tasks. To achieve this objective, we proposed the LIT frame-
work, which consists of a cross-scale local attention block
and a local frequency encoding block. The former is de-
signed to find the local latent embedding to reconstruct the
corresponding RGB value, while the latter focuses on en-
coding coordinates with the frequency information derived
from the feature embeddings. To enhance the capability
of capturing fine details, we proposed CLIT and the corre-
sponding cumulative training strategy that trains the model
with progressively increasing upsampling scales. Based on
the experimental results, both quantitative and qualitative
assessments showcase the superior performance of LIT and
CLIT in comparison to existing methods. Furthermore, our
comprehensive analyses validated the effectiveness of the
training strategies and the components employed by them.
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