
Elastic Aggregation for Federated Optimization

Dengsheng Chen1∗, Jie Hu2,3*, Vince Junkai Tan4, Xiaoming Wei1, Enhua Wu2,3,5†

1 Meituan 2 State Key Laboratory of Computer Science, ISCAS
3 University of Chinese Academy of Sciences 4 Bytedance Inc. 5 University of Macau

{chendengsheng,weixiaoming}@meituan.com, hujie@ios.ac.cn, vince.tan.jun.kai@gmail.com, ehwu@um.edu.mo

Abstract

Federated learning enables the privacy-preserving train-
ing of neural network models using real-world data across
distributed clients. FedAvg has become the preferred opti-
mizer for federated learning because of its simplicity and
effectiveness. FedAvg uses naïve aggregation to update the
server model, interpolating client models based on the num-
ber of instances used in their training. However, naïve ag-
gregation suffers from client drift when the data is heteroge-
nous (non-IID), leading to unstable and slow convergence.
In this work, we propose a novel aggregation approach,
elastic aggregation, to overcome these issues. Elastic ag-
gregation interpolates client models adaptively according to
parameter sensitivity, which is measured by computing how
much the overall prediction function output changes when
each parameter is changed. This measurement is performed
in an unsupervised and online manner. Elastic aggregation
reduces the magnitudes of updates to the more sensitive pa-
rameters so as to prevent the server model from drifting to
any one client distribution, and conversely boosts updates to
the less sensitive parameters to better explore different client
distributions. Empirical results on real and synthetic data
as well as analytical results show that elastic aggregation
leads to efficient training in both convex and non-convex
settings while being fully agnostic to client heterogeneity
and robust to large numbers of clients, partial participation,
and imbalanced data. Finally, elastic aggregation works
well with other federated optimizers and achieves significant
improvements across the board.

1. Introduction
Unlike traditional centralized learning in which models

are trained using large datasets stored in a central server [15],
federated learning - first proposed in [40] - leverages data
spread across many clients to learn classification tasks dis-

*Equal contribution.
†Corresponding author. This work is supported in part by NSFC Grants

(62072449).

tributively without explicitly sharing data [22, 26, 27, 42],
thereby ensuring a basic level of privacy. Federated learning
is characterized by four key features:

• Unreliable links: The links connecting the server and
clients can be unreliable, and only a small subset of
clients may be active at any given time.

• Massive distribution: The number of clients is typically
high, but the amount of data per client is relatively
small.

• Substantial heterogeneity: Client data is heterogeneous
and non-IID [26], meaning that data across different
clients can be sampled from varying regions of the
sampling space.

• Imbalanced data: There can be significant imbalances
in the amount of data available per client.

The most popular algorithm for federated learning is Fe-
dAvg [40], which tackles the communication bottleneck by
performing multiple local updates on the available clients
before communicating the overall change to the server. Fe-
dAvg uses naïve aggregation to interpolate client models
and has shown success in certain applications. However, its
performance on heterogeneous data is still an active area of
research [16, 25, 33]. According to [25], training models on
local data that minimize local empirical loss appears to be
meaningful, but yet, doing so is fundamentally inconsistent
with minimizing the global empirical loss. Client updates
drive the server model away from the ideal distribution, a
phenomenon known as ’client drift’. Naïve aggregation [40]
is efficient in aggregating client models but does not account
for distribution inconsistencies across client data or the con-
sequent objective inconsistency. In other words, with naïve
aggregation, the server model risks converging to a station-
ary point of a mismatched objective function which can be
arbitrarily different from the true objective [53].

Prior works [24, 40, 48] attempt to overcome this issue by
running fewer epochs or iterations of SGD on the devices or
by stabilizing server-side updates so that the resulting models
correspond to inexact minimizations and keep globally desir-
able properties. In this work, we propose a novel aggregation

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12187

!

"

#!!"!

!"""

"!

""#!
#!!

Minima point

Low empirical loss for client A

Low empirical loss for client B

Low empirical loss for server

Naïve aggregation

Elastic aggregation

Client update

!

"

#!!"!

!"""

"!

""#!
#!!

Minima point

Low empirical loss for client A

Low empirical loss for client B

Low empirical loss for server

Naïve aggregation

Elastic aggregation

Client update

Figure 1. Illustration of naïve aggregation and elastic aggregation. The local updates of client A and client B drive the server model θ
towards their individual minima (black dots in plot). Naïve aggregation simply averages the received model from clients A and B, yielding
θ′ as the new server model. Although θ′ minimizes the local empirical loss of clients A and B, θ′ drifts from ideal distribution for the server
model. Elastic aggregation adjusts gradient with respect to parameter sensitivity. Parameter θx is more sensitive (has a larger gradient norm),
and is restricted with ζx < 1 to reduce the magnitude of its update. Parameter θy is less sensitive (has a smaller gradient norm), and is
correspondingly boosted with ζy > 1 to better explore the parameter space. This minimizes the loss for clients A and B, while not causing
the server model to drift from its ideal distribution. Hence, elastic aggregation results in a better update θ′′.

approach, elastic aggregation, to overcome client drift. We
measure parameter sensitivity using unlabeled samples of
client data, by computing the changes to the overall function
output for a given change to the parameter in question, with-
out relying on the loss. This allows our method to not only
avoid requiring labeled data but importantly also pre-empt
complications that could otherwise arise from the loss being
at a local minimum with gradients close to zero. During the
aggregation of client models, updates to the more sensitive
parameters can then be reduced in magnitude, preventing
the server model from drifting to any client distribution.
Conversely, updates to the less sensitive parameters can be
boosted to better explore different client distributions.

Contributions. Elastic aggregation tackles distribution in-
consistency across client data using the concept of parameter
sensitivity and is simple to implement, requiring little hy-
perparameter tuning. Furthermore, parameter sensitivity is
computed in an online and unsupervised manner, and thus
better utilizes the unlabeled data generated by the client
during runtime. Elastic aggregation is easily integrated
into different federated optimizers, achieving substantial
improvements over naïve aggregation. The empirical results
on real and synthetic data and analytical results show that
elastic aggregation leads to efficient training in both convex
and non-convex settings, across all four federated learning
scenarios (unreliable links, massive distribution, substantial
heterogeneity, and imbalanced data).

2. Related work

Federated learning is a fast-evolving topic. The gen-
eral setup involves server and client updates; each of these
updates is associated with minimizing some local loss
function. The server model then benefits from all client
data and achieves superior performance, for tasks such as
next word prediction [17, 56], emoji prediction [45], de-
coder models [8], vocabulary estimation [7], low latency
vehicle-to-vehicle communication [49] and predictive mod-
els in health [6]. Nevertheless, federated learning raises
several issues and has been the topic of much research
effort, focusing on the issues of generalization and fair-
ness [33, 42], the design of more efficient communication
strategies [4,24,26,27,51,52], the study of lower bounds [55],
differential privacy guarantees [2], security [5], etc [22]. We
focus here on relevant work that specifically addresses the
four federated learning characteristics noted above - massive
distribution, heterogeneity, unreliable links, and imbalanced
data.

Much of earlier work in this context proposes optimizing
for the local risk objective with SGD [51] over mini-batches
of client data, analogous to the centralized scenario, with the
server then averages the received models. FedAvg [40] is a
generalization of local SGD, proposing a larger number of
local SGD steps per round. In the case of identical clients, it
reduces to parallel SGD for which asymptotic convergence
has been proven [51, 62]; more recently, [25, 43] analyzed
the same method under the name of local SGD, also for

12188

identical functions. FedAvg inexactly solves client-side opti-
mization, requiring the tuning of the number of epochs and
the learning rate hyper-parameters in order to achieve a good
accuracy-communication trade-off [30, 40].

Despite the strong empirical performance of FedAvg in
IID settings, performance degrades in non-IID scenarios [61].
The analysis of FedAvg for heterogeneous clients is more
delicate, due to the aforementioned client drift, first empir-
ically observed by [61]. Several analyses bound this drift
by assuming bounded gradients [54, 57], viewing it as addi-
tional noise [25], or assuming that the client optima are ϵ-
close [16,33]. [36] proposes using variance reduction to deal
with client heterogeneity but achieved slower convergence
rates than SGD. Other variants include using a decreasing
learning rate [30], modifying client empirical loss dynami-
cally [1,31], adding regularizers on local updates [23,24,50],
or modifying the server side updates [21, 48]. While these
works do recognize the incompatibility of local and global
stationary points, their proposed fixes are based on inexact
minimization. Additionally, in order to establish conver-
gence for non-IID situations, these works impose additional
constraints.

Another class of work that extend the analysis of SGD-
type methods to federated learning settings specifically ad-
dresses the special case of full client participation [9, 14,
26, 34–36, 38, 44, 50, 58]. For example, FedSVRG [26] and
DANE [50] need gradient information from all clients each
round and are as such not directly applicable to partial feder-
ated learning settings. Furthermore, it may not be trivial to
extend these works to overcome the deficiency. For example,
FedDANE [32] is a version of DANE that works with partial
participation. However, with partial participation, FedDANE
empirically performs worse than FedAvg [33]. Similar to
these works, FedPD [60] proposes distributed optimization
with a different notion of ’participation’. FedPD activates
either all clients or no clients per round, which again fails to
satisfy the partial participation condition.

Finally, there have been earlier works aiming to decrease
communication costs by compressing the transmitted mod-
els [3, 12, 41], decreasing the bit-rate of the transmission.
These ideas are complementary to our work and can work
together with our approach.

3. Method

In this section, we focus on the introduction of parameter
sensitivity in process of federated learning, which is our
main innovation. The proof of convergence is provided in
the technical part of supplementary materials.

3.1. Federated Learning with Naïve Aggregation

In federated learning, we solve an optimization problem
of the form:

arg min
θ∈Rn

[ℓ(θ) ≜
1

m

m∑
k=1

Lk(θ)], (1)

where Lk(θ) ≜ E(x,y)∽Pk
[ℓk(θ; (x, y))] is the empirical

loss of the kth client, Pk is the data distribution for the kth

client across K clients.

FedAvg. A common approach to solving Eq. 1 in federated
settings is FedAvg [40]. At each round, a subset of clients
is selected (typically randomly) and the server broadcasts
its model to each client. In parallel, the clients run SGD
on their own loss function ℓk and then send their updated
models to the server. The server then updates its model to be
the average of these client models.

Suppose that at the rth round, the server has model θ
and samples a client set S . Here we use a standard gradient
descent form to update parameters:

θ ← θ − η∆, (2)

where ∆ is the aggregated clients’ gradients and η is the
learning rate of the server, which is typically 1.0. FedAvg
uses naïve aggregation to compute ∆.

Naïve aggregation. We can write naïve aggregation as:

∆ =
∑
k∈S

(wk ·∆k), (3)

where ∆k = θ − θk is the accumulated gradients within a
training round of the kth client, and wk = |Dk|/

∑
k∈S |Dk|

is the aggregated weight of the kth client across the activated
clients S . Dk, θk are the training dataset and trained param-
eters on the kth client, respectively.

3.2. Exploring parameter sensitivity

Due to the non-IID-ness (heterogeneity) across differ-
ent clients, P can vary substantially across different clients.
Thus, the simple and efficient way to aggregate client models
described in Eq. 3 cannot solve client drift and cause oscil-
lation as well as slow convergence. We explore parameter
sensitivity as an approach to overcoming these issues.

The main idea we are proposing is that less sensitive
parameters can be freely updated to minimize the loss for
individual clients in S without causing the server to drift;
by the same reasoning, parameters that are more sensitive
should not be updated as much. This is illustrated in Fig. 1.

At the rth round, the active clients receive the server
model θr, which parameterizes the approximation function

12189

Algorithm 1: Elastic aggregation within a single
layer

A variable with a superscript i indicates the ith

element of the variable. A variable with a subscript
k indicates the variable from kth client. η, η′ are
learning rates of server and clients respectively. µ, τ
are the hyper-parameters. θ, θk ∈ Rn are the
server’s and the kth client’s parameters respectively.
Ω ∈ Rn is the aggregated parameter sensitivity.
Ωk ∈ Rn is the parameter sensitivity on the kth

client.
Initialize θ
Bk ← Sample a subset of training data Dk.
Dk ← Drop the samples of Bk from Dk.
for each round do

for each activated client k do
Initialize Ωk as zeros.
for each batch data x ∈ Bk do

g = ∇||F (θ;x)||22
for i ∈ [1, · · · , n] do

Ωi
k ← µΩi

k + (1− µ)|gi|

θk ← θ
for each epoch do

for each batch data x ∈ Dk do
θk ← θk − η′∇ℓk(F (θk;x))

∆k = θk − θ

wk ← |Dk|/
∑

k |Dk|; Ω =
∑

k(wk · Ωk);
Ω′ = max(Ω)

for i ∈ [1, · · · , n] do
ζi = 1 + τ − Ωi/Ω′

∆i = ζi ·
∑

k(wk ·∆i
k)

θi ← θi − η ·∆i

F of the true function F̄ . F maps the input x to the output
y, and our goal is to largely maintain the same output y for
the observed x while learning additional training instances
(x, y) ∽ Pk. To this end, we measure how sensitive the
output of function F is to changes in the network parameters.
To reduce confusion, we ignore the symbols denoting the
round r and the client k for all variables and only discuss
parameter sensitivity locally.

For a given data point x, the output of the network is
F (θ;x). A small perturbation δ in the parameters θ results
in a change in the function output that can be approximated
by:

F (θ + δ;x)− F (θ;x) ≈ g(θ;x)δ, (4)

where g(θ;x) = ∂F (θ;x)
∂θ is the gradient of the learned func-

tion with respect to the parameter θ evaluated at the data
point x. Our goal is to maintain the output of the network
(the learned function F) for each observed data point and

thus we reduce the magnitudes of the updates to the parame-
ters that are more sensitive for the data point. Conversely, we
boost the updates to the less sensitive parameters to better-fit
client distributions.

Based on equation 4, and assuming a small constant
change δ, we can measure the sensitivity of a parameter by
the magnitude of the gradient g(θ;x), i.e., how much does a
small perturbation to that parameter change the output of the
learned function for data point x. There are many ways to
measure the sensitivity of a parameter by the magnitude of
the gradient, such as a fishing matrix. However, in federated
learning, we have to take the computation ability of each
client into account, which is only with limited computation
ability. Therefore, we use the exponentially-decayed moving
average1 to obtain sensitivity Ωi for ith parameter θi:

Ωi ← µΩi + (1− µ)|g(θi;x)|, (5)

where µ is momentum and we empirically set it to 0.9.
When the output function F is multi-dimensional, as is

the case for most neural networks, equation 5 involves com-
puting the gradients for each output, which requires as many
backward passes as the dimensionality of the output. As a
more efficient alternative, we propose to use the gradients
of the squared L2 norm of the learned function output, i.e.
g(θ;x) = ∇||F (θ;x)||22. Hence, we only need to compute
one backward pass in order to estimate the parameters’ sen-
sitivity.

3.3. Elastic aggregation with respect to parameter
sensitivity

The elastic aggregation for ith parameter can be written
as:

∆i = ζi ·
∑
k∈S

(wk ·∆i
k), (6)

where ζi is the adaptive coefficient with respect to the pa-
rameter sensitivity. The definition of ζi is:

ζi = 1 + τ − Ωi/Ω′, (7)

where Ω′ = max(Ω) is the maximum of parameter sensi-
tivities in each layer, and Ωi =

∑
k∈S(wk · Ωi

k) is the ag-
gregated sensitivity of ith parameter across activated clients.
The server is able to boost updates (ζi > 1.0) to parameters
that have low sensitivity (low Ωi). Meanwhile, sensitive
parameters (high Ωi) have their updates restricted with a
penalty (ζi < 1.0). τ is a hyper-parameter determining the
ratio of boosted or restricted parameters. FedAvg with elastic
aggregation is formalized in Algorithm 1.

1While a Polyak-style average has more theoretical guarantees for accu-
mulating Ω over batches, our results match the claim that “an exponentially-
decayed moving average typically works much better in practice" [39].
Thus, we use the exponentially-decayed moving average to accumulate Ω
over batches. Refer to supplementary materials for more discussion.

12190

Discussion on τ . In Eq. 6, ζi ∈ (1, 1+ τ] is applied to the
less sensitive parameters, and ζi ∈ [τ, 1) is applied to the
more sensitive parameters. Thus, τ determines the portion
of the parameter to be restricted or boosted. Generally, a
larger τ indicates that a larger proportion of parameters will
be boosted, as shown in Tab. 1, and vice versa.

If a large proportion of parameters is restricted (τ is small,
such as 0.1), the server model will not be updated much, and
exiting local minima becomes difficult. However, with a
large τ such as 0.9, optimization of the server model be-
comes unstable, and this also causes performance degrada-
tion. It is therefore critical to maintain a balance between
these extremes with a suitable τ and we find that τ = 0.5
generalizes well to various experiments. At this value of τ ,
roughly three-quarters of the parameters are boosted.

4. Experiments settings
Inconsistent usage of models, datasets, and non-IID parti-

tion methods makes it difficult to compare the performances
of federated learning algorithms fairly. To enforce fair com-
parison, we explicitly specify the combinations of datasets,
models, and non-IID partition methods to be used for experi-
ments, which mostly consist of those used in existing work
published at top-tier machine learning venues [18]. Note that
although the reported precisions are state-of-the-art for the
models we have chosen, higher-capacity models can achieve
higher performances on these datasets. Therefore, we com-
pare the relative performance of elastic aggregation against
naïve aggregation for various federated learning scenarios.

4.1. Implementation

We measure our algorithm against the most comprehen-
sive and representative suite of federated datasets and model-
ing tasks to date. For this purpose, we carry out simulations
on five diverse and representative experiments on several
datasets. In order to facilitate the experiments, we use the
cosine annealing scheduler [37] for the client learning rate
η′r at the rth round, which is given by η′r = (1+cos(r

Rπ))η′.
For all tasks, we measure the performance on the entire test
set throughout training. Clients are sampled uniformly at
random, without replacement within a given round, but with
replacement across rounds. There are a variety of feder-
ated optimizers that improve the performance of federated
learning. Here, we use the most basic and widely used feder-
ated optimization algorithm, i.e., FedAvg [40], as the default
baseline in our experiments. With reference to [46], we
implement all experiments with two important characteris-
tics. First, instead of doing K training steps per client, we
do E epochs of training over each client’s data. Second,
to account for varying numbers of gradient steps per client,
we weigh the average of the client outputs ∆k

t by the num-
ber of training samples. This also follows the approach of

[40] and often outperforms uniform weighting [47]. We set
µ = 0.95 for the accumulation of the parameter sensitivity
over batches in each client. τ = 0.5, η = 1.0 is used for
all experiments. While computing Eq. 7, we normalize the
parameter sensitivity layer by layer, which means that the pa-
rameter sensitivity is divided by the maximum value within
the same layer. Aside from experiments 5.1, we set E = 1
for each client for all experiments.

4.2. Generate synthetic federated datasets.

Differences in distribution have an enormous influence
on the performance of federated optimization. The Dirichlet
distribution is used on the label ratios to ensure uneven
label distributions among clients for non-IID splits, as in
[59]. To generate imbalanced data, we sample the number
of data points from a log-normal distribution. The degree
of imbalance depends on the variance of the log-normal
distribution, which is controlled by the hyper-parameter α.
A smaller α indicates a stronger non-IID-ness in partitions,
as shown in Fig. 2.

5. Experiments
Under all experiments, the samples used for computing

parameter sensitivities at each client will be randomly sam-
pled training data, and these sampled data will not be used
for supervised training anymore. For a fair comparison, these
sampled data will not be used in the baseline methods either.

5.1. Comparison with naive aggregation

MNIST. As our baseline, we conduct a convex optimiza-
tion experiment on MNIST [29] with logistic regression
[31, 33, 40]. In this experiment, we generate a synthetic
federated dataset of MNIST with α = 100.0 and split the
dataset into 1000 partitions. At each round of training, we
randomly choose 100 clients without repeating the partition.
As shown in Tab. 2, the elastic aggregation has a large ad-
vantage over naïve aggregation even with a large number of
participating clients.

Federated EMNIST. Due to resource constraints of edge
devices, existing works commonly use shallow neural net-
works for experiments. Similarly, we include Federated
EMNIST [46] with a shallow neural network consisting of
two convolution layers followed by two linear layers [46].
Notably, Fed-EMNIST [46] has a natural client partitioning
that is highly representative of real-world federated learn-
ing problems. It contains 3,400 users (clients) and 62 label
classes. The dataset is split into 671,585 training examples
and 77,483 testing examples. Rather than holding out spe-
cific users, we split each user’s examples across the train

12191

5% 10% 20% 40%
65

66

67

68

69

Ep
oc

h=
1

= 100.0

5% 10% 20% 40%
65

66

67

68

69
= 50.0

5% 10% 20% 40%
65

66

67

68

69
= 10.0

5% 10% 20% 40%
60

61

62

63

64

65

66
= 1.0

5% 10% 20% 40%

56

58

60

62

= 0.5

naïve
elastic

5% 10% 20% 40%
Participation percentage

79.0

79.5

80.0

80.5

81.0

81.5

82.0

Ep
oc

h=
5

5% 10% 20% 40%
Participation percentage

79.0

79.5

80.0

80.5

81.0

81.5

82.0

5% 10% 20% 40%
Participation percentage

78

79

80

81

82

5% 10% 20% 40%
Participation percentage

74

75

76

77

78

79

80

5% 10% 20% 40%
Participation percentage

73

74

75

76

77

78

45 50 55
of samples

0

50

100

150

200

of

 p
ar

tit
io

ns

45 50 55
of samples

0

50

100

150

40 50 60
of samples

0

25

50

75

100

50 100
of samples

0

50

100

150

200

50 100
of samples

0

50

100

150

200

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

La
be

l d
ist

rib
ut

io
n

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Performances across different partitioning distributions, participation rates and numbers of local epochs. Compared with naïve
aggregation, elastic aggregation achieves significant improvements across these settings.

τ Naïve 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Train Acc.(%) 58.36 57.21 58.33 58.76 60.66 60.47 61.44 60.66 60.55 61.01 59.27 58.96
Test Acc.(%) 60.74 58.30 59.76 61.17 61.91 63.39 62.74 63.39 63.23 63.22 60.83 61.37
Boosted(%) - 0.0 11.45 27.24 43.75 59.74 74.43 84.57 89.93 93.53 96.26 97.38

Table 1. The effect of τ . Using an unsuitable τ for elastic aggregation with cause it to even under-perform naïve aggregation. The last row
shows the percentage of parameters that are boosted for different τ .

and test so that all users have at least one example in the
train and one example in the test. Users with fewer than 2
examples are excluded from the data set. As shown in Tab. 2,
elastic aggregation generalizes well to real-world federated
learning problems.

CIFAR-100. In this experiment, we conduct a balanced
but non-IID partition on Fed-CIFAR100 2, which was intro-
duced by TensorFlow Federated [20] with ResNet-20 [19]

2https://github.com/tensorflow/federated

12192

Dataset Rounds(Epochs) Total Sampled Batch Init. LR Model Naïve(%) Elastic(%)
Balanced data across clients

CIFAR-100 4000(∼80) 500 10 10 0.05 ResNet-20 32.31 56.64
Unbalanced data across clients

MNIST 20(∼2) 1000 100 100 0.1 Logistic Regression 70.14 73.64
EMNIST 1000(∼2.5) 3400 10 100 0.1 2Conv+2Linear 88.71 89.82
CIFAR-10 4000(∼40) 1000 10 10 0.05 ResNet-20 66.84 68.74
CINIC-10 200(∼20) 1000 100 10 0.05 ResNet-20 35.81 36.29
CINIC-10 4000(∼40) 1000 10 10 0.05 ResNet-20 68.68 69.25

Table 2. Test accuracies for various datasets. Along with rounds, we list a more intuitive measure, i.e., epochs, to better reflect the total
training computation.

Optimizer FedAvg FedAvgM FedProx SCAFFOLD AdaOpt PFNM Per-FedAvg pFedMe
w/o Elastic. 49.34 62.52 51.52 72.10 78.00 71.23 50.44 83.20
w/ Elastic. 52.37 64.48 53.64 75.42 80.34 73.64 53.24 85.63
Improvement. 3.03 1.96 2.12 3.32 2.34 2.41 2.80 2.43

Table 3. Elastic aggregation can be easily integrated with different federated optimizers, achieving performance improvements. (Notes that
the comparison across different federated optimizers is meaningless since they are under different experiment settings.)

as the baseline model. As shown in Tab. 2, elastic aggrega-
tion significantly speeds up training. Furthermore, the final
accuracy is improved by over 20% compared with the naïve
baseline, which demonstrates the effectiveness of elastic
aggregation.

CIFAR-10 and CINIC-10. To further demonstrate the
performance improvement resulting from elastic aggregation,
we generate two synthetic federated datasets for CIFAR-
10 [20] and CINIC-10 [10] with α = 100.0. CINIC-10
extends CIFAR-10 with the addition of down-sampled Ima-
geNet images, making for a more challenging dataset. This
also enables measuring the performance of models trained
on CIFAR images on ImageNet images for the same classes.
As shown in Tab. 2, elastic aggregation achieves superior
performances on both the CIFAR-10 and the more difficult
CINIC-10 datasets, confirming that our method generalizes
well to large scale datasets.

Natural Language Processing on Shakespeare dataset.
We maintain the same experimental setup as [40] on the most
commonly used natural language processing tasks: Shake-
speare LSTM. The epoch in each round is 1, the batch size
is 10 and both elastic and naive aggregation are trained for
2k rounds. We get the final accuracy as 62.14% for naive
aggregation and 64.73% for elastic aggregation. The results
show that elastic aggregation not only has a significant im-
provement in CV related tasks, but also has an positive effect
on NLP related tasks.

Imbalanced and non-IID. We are also interested in un-
derstanding how parameter sensitivity can help improve
convergence, particularly in cross-device and non-IID sce-
narios. Given the resource constraints of edge devices,
large DNN models are usually trained under the cross-
organization (also known as cross-silo) federated learning
settings. Across the following experiments, we use CIFAR-
10 [28] with ResNet-20 [19]. We study three different pa-
rameters here: non-IID-ness, participation rate, and number
of epochs. We explore the effects of varying non-IID-ness
with α = 100.0, 50.0, 10.0, 1.0, 0.5 across 1000 partitions.
For participation rate, we test sampling 5%, 10%, 20%, 40%
of the clients at each round. Finally, we test having 1, 5
epochs of local updates, to better show the robustness of
elastic aggregation. As shown in Fig. 2, elastic aggregation
is especially superior for situations with massive distribution,
substantial heterogeneity, and imbalanced data.

5.2. Integration with modern optimizer

Federated optimizer with elastic aggregation. To illus-
trate the generalizability of elastic aggregation, we integrate
elastic aggregation into FedAvg [40], FedAvgM [46] and
FedProx [31]. FedAvgM is an enhancement of FedAvg on
the server-side, making use of the momentum strategy to
update the server model. FedProx is an enhancement of
FedAvg on the client-side, adding a penalty to the client up-
dates. We have presented the details of FedAvg with elastic
aggregation in Algorithm 1. Please refer to supplementary
materials for more details about the other federated opti-
mizers with elastic aggregation. As shown in the left part
of Tab. 3, elastic aggregation works well with other com-

12193

0 5 10 15 20
20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

MNIST

naive
elastic

55 60 65
of samples

0

50

100

150

of

 p
ar

tit
io

ns

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

La
be

l d
ist

rib
ut

io
n

0 250 500 750 1000
50

60

70

80

90
Fed EMNIST

naive
elastic

0 200 400
of samples

0

250

500

750

1000

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000
40

45

50

55

60

65

70
CIFAR-10

naive
elastic

45 50 55
of samples

0

50

100

150

200

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
15

20

25

30

35

40
CINIC-10

naive
elastic

80 90 100
of samples

0

25

50

75

100

125

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000
0

20

40

Fed CIFAR-100

naive
elastic

99.5 100.0 100.5
of samples

0

100

200

300

400

500

Partitions
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Convergence speeds on different datasets.

plementary approaches whether designed for client-side or
server-side. In order to further verify the generality of elastic
aggregation, we did further experiments on the stat-of-the-
art methods in FL, i.e. SCAFFOLD [23], AdaOpt [46] and
PFNM [59]. Since these methods target on different aspect
of federated learning, we conducted experiments based on
their original experimental settings. As shown in middle part
of Tab. 3, elastic aggregation plays a positive effect in most
federated optimizers.

Influence on personalization. Personalization in feder-
ated learning is also a topic of great concern. Specifically,
we equipped Per-FedAvg [13], pFedMe [11] – both focus
on the model personalization (local model performance) in
federated learning with elastic aggregation and found that
elastic aggregation is also do a favour in learning a better
personalized model, as shown in the right part of Tab. 3.

5.3. Limitations

In Fig. 3, we compare testing curves on various datasets
and observe that elastic aggregation outperforms naïve ag-
gregation by converging faster. Nevertheless, using elas-

tic aggregation results in additional computational burden
and communication costs, which may affect the overall per-
formance of federated learning scenarios. For a more de-
tailed analysis of the computational overhead, please refer to
the supplementary materials. Despite these challenges, we
firmly believe that the significant performance improvements
associated with elastic aggregation warrant its use over naïve
aggregation.

6. Conclusion

Our work delves into the impact of heterogeneity on op-
timization methods for federated learning. We proposed a
novel aggregation method, elastic aggregation, which uti-
lizes parameter sensitivity to overcome gradient dissimilarity.
To the best of our knowledge, we are the pioneers in utiliz-
ing unlabeled client data to enhance federated learning per-
formances. Empirical evaluations across various federated
datasets validate the theoretical analysis and reveal that elas-
tic aggregation can significantly enhance the convergence
behavior of federated learning in realistic heterogeneous sce-
narios. Future directions may include expanding the elastic
aggregation approach to adaptive optimization methods or
gossip-based training techniques.

12194

References

[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas
Navarro, Matthew Mattina, Paul N Whatmough, and
Venkatesh Saligrama. Federated learning based on dy-
namic regularization. In International Conference on
Learning Representations, 2021.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Yu,
Sanjiv Kumar, and H Brendan Mcmahan. cpsgd:
Communication-efficient and differentially-private dis-
tributed sgd. arXiv preprint arXiv:1805.10559, 2018.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. Advances
in Neural Information Processing Systems, 30:1709–
1720, 2017.

[4] Debraj Basu, Deepesh Data, Can Karakus, and Suhas
Diggavi. Qsparse-local-sgd: Distributed sgd with quan-
tization, sparsification, and local computations. arXiv
preprint arXiv:1906.02367, 2019.

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practi-
cal secure aggregation for privacy-preserving machine
learning. In proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 1175–1191, 2017.

[6] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex
Olshevsky, Ioannis Ch Paschalidis, and Wei Shi. Fed-
erated learning of predictive models from federated
electronic health records. International journal of med-
ical informatics, 112:59–67, 2018.

[7] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and
Françoise Beaufays. Federated learning of out-of-
vocabulary words. arXiv preprint arXiv:1903.10635,
2019.

[8] Mingqing Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Françoise Beau-
fays, and Michael Riley. Federated learning of n-gram
language models. arXiv preprint arXiv:1910.03432,
2019.

[9] Laurent Condat, Grigory Malinovsky, and Peter
Richtárik. Distributed proximal splitting algo-
rithms with rates and acceleration. arXiv preprint
arXiv:2010.00952, 2020.

[10] Luke N Darlow, Elliot J Crowley, Antreas Antoniou,
and Amos J Storkey. Cinic-10 is not imagenet or cifar-
10. arXiv preprint arXiv:1810.03505, 2018.

[11] C. T. Dinh, N. H. Tran, and T. D. Nguyen. Personalized
federated learning with moreau envelopes. 2020.

[12] Aritra Dutta, El Houcine Bergou, Ahmed M Abdel-
moniem, Chen-Yu Ho, Atal Narayan Sahu, Marco
Canini, and Panos Kalnis. On the discrepancy be-
tween the theoretical analysis and practical implemen-
tations of compressed communication for distributed
deep learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, number 04, pages 3817–3824,
2020.

[13] A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized
federated learning: A meta-learning approach. 2020.

[14] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik.
A unified theory of sgd: Variance reduction, sampling,
quantization and coordinate descent. In International
Conference on Artificial Intelligence and Statistics,
pages 680–690. PMLR, 2020.

[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[16] Farzin Haddadpour and Mehrdad Mahdavi. On the con-
vergence of local descent methods in federated learning.
arXiv preprint arXiv:1910.14425, 2019.

[17] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swa-
roop Ramaswamy, Françoise Beaufays, Sean Augen-
stein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

[18] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng,
Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml:
A research library and benchmark for federated ma-
chine learning. arXiv preprint arXiv:2007.13518, 2020.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[20] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and
Phillip Gibbons. The non-iid data quagmire of decen-
tralized machine learning. In International Conference
on Machine Learning, pages 4387–4398. PMLR, 2020.

[21] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown.
Measuring the effects of non-identical data distribu-
tion for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[22] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

12195

[23] Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic con-
trolled averaging for federated learning. In Interna-
tional Conference on Machine Learning, pages 5132–
5143. PMLR, 2020.

[24] Sai Praneeth Karimireddy, Quentin Rebjock, Sebas-
tian Stich, and Martin Jaggi. Error feedback fixes
signsgd and other gradient compression schemes. In
International Conference on Machine Learning, pages
3252–3261. PMLR, 2019.

[25] Ahmed Khaled, Konstantin Mishchenko, and Peter
Richtárik. Tighter theory for local sgd on identical and
heterogeneous data. In International Conference on
Artificial Intelligence and Statistics, pages 4519–4529.
PMLR, 2020.

[26] Jakub Konečnỳ, H Brendan McMahan, Daniel Ram-
age, and Peter Richtárik. Federated optimization: Dis-
tributed machine learning for on-device intelligence.
arXiv preprint arXiv:1610.02527, 2016.

[27] Jakub Konečnỳ, H Brendan McMahan, Felix X
Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[30] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Vir-
ginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Maga-
zine, 37(3):50–60, 2020.

[31] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar
Sanjabi, Ameet Talwalkar, and Virginia Smith. Feder-
ated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127, 2018.

[32] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smithy. Feddane:
A federated newton-type method. In 2019 53rd Asilo-
mar Conference on Signals, Systems, and Computers,
pages 1227–1231. IEEE, 2019.

[33] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen
Wang, and Zhihua Zhang. On the convergence of fe-
davg on non-iid data. arXiv preprint arXiv:1907.02189,
2019.

[34] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter
Richtárik. Acceleration for compressed gradient de-

scent in distributed and federated optimization. arXiv
preprint arXiv:2002.11364, 2020.

[35] Zhize Li and Peter Richtárik. A unified analysis of
stochastic gradient methods for nonconvex federated
optimization. arXiv preprint arXiv:2006.07013, 2020.

[36] Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen
Pan, Enhong Chen, and Yifei Cheng. Variance reduced
local sgd with lower communication complexity. arXiv
preprint arXiv:1912.12844, 2019.

[37] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic
gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[38] Ali Makhdoumi and Asuman Ozdaglar. Convergence
rate of distributed admm over networks. IEEE Transac-
tions on Automatic Control, 62(10):5082–5095, 2017.

[39] James Martens. New insights and perspectives
on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

[40] Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[41] Konstantin Mishchenko, Eduard Gorbunov, Martin
Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint
arXiv:1901.09269, 2019.

[42] Mehryar Mohri, Gary Sivek, and Ananda Theertha
Suresh. Agnostic federated learning. In International
Conference on Machine Learning, pages 4615–4625.
PMLR, 2019.

[43] Kumar Kshitij Patel and Aymeric Dieuleveut. Com-
munication trade-offs for synchronized distributed sgd
with large step size. arXiv preprint arXiv:1904.11325,
2019.

[44] Reese Pathak and Martin J Wainwright. Fedsplit: An
algorithmic framework for fast federated optimization.
arXiv preprint arXiv:2005.05238, 2020.

[45] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao,
and Françoise Beaufays. Federated learning for emoji
prediction in a mobile keyboard. arXiv preprint
arXiv:1906.04329, 2019.

[46] Sashank Reddi, Zachary Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and H Brendan McMahan. Adaptive federated
optimization. arXiv preprint arXiv:2003.00295, 2020.

[47] S Reddi, Manzil Zaheer, Devendra Sachan, Satyen
Kale, and Sanjiv Kumar. Adaptive methods for noncon-
vex optimization. In Proceeding of 32nd Conference on
Neural Information Processing Systems (NIPS 2018),
2018.

12196

[48] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas
Poczos, and Alex Smola. Stochastic variance reduc-
tion for nonconvex optimization. In International con-
ference on machine learning, pages 314–323. PMLR,
2016.

[49] Sumudu Samarakoon, Mehdi Bennis, Walid Saad,
and Merouane Debbah. Federated learning for ultra-
reliable low-latency v2v communications. In 2018
IEEE Global Communications Conference (GLOBE-
COM), pages 1–7. IEEE, 2018.

[50] Ohad Shamir, Nati Srebro, and Tong Zhang.
Communication-efficient distributed optimization us-
ing an approximate newton-type method. In Interna-
tional conference on machine learning, pages 1000–
1008. PMLR, 2014.

[51] Sebastian U Stich, Jean-Baptiste Cordonnier, and Mar-
tin Jaggi. Sparsified sgd with memory. arXiv preprint
arXiv:1809.07599, 2018.

[52] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar,
and H Brendan McMahan. Distributed mean estimation
with limited communication. In International Confer-
ence on Machine Learning, pages 3329–3337. PMLR,
2017.

[53] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi,
and H Vincent Poor. Tackling the objective inconsis-
tency problem in heterogeneous federated optimization.
arXiv preprint arXiv:2007.07481, 2020.

[54] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis,
Kin K Leung, Christian Makaya, Ting He, and Kevin
Chan. Adaptive federated learning in resource con-
strained edge computing systems. IEEE Journal on
Selected Areas in Communications, 37(6):1205–1221,
2019.

[55] Blake Woodworth, Jialei Wang, Adam Smith, Brendan
McMahan, and Nathan Srebro. Graph oracle models,
lower bounds, and gaps for parallel stochastic optimiza-
tion. arXiv preprint arXiv:1805.10222, 2018.

[56] Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage,
and Françoise Beaufays. Applied federated learning:
Improving google keyboard query suggestions. arXiv
preprint arXiv:1812.02903, 2018.

[57] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel
restarted sgd with faster convergence and less commu-
nication: Demystifying why model averaging works
for deep learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, number 01, pages
5693–5700, 2019.

[58] Honglin Yuan and Tengyu Ma. Federated accel-
erated stochastic gradient descent. arXiv preprint
arXiv:2006.08950, 2020.

[59] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learn-
ing of neural networks. In International Conference on
Machine Learning, pages 7252–7261. PMLR, 2019.

[60] Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao
Yin, and Yang Liu. Fedpd: A federated learning frame-
work with optimal rates and adaptivity to non-iid data.
arXiv preprint arXiv:2005.11418, 2020.

[61] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda,
Damon Civin, and Vikas Chandra. Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582,
2018.

[62] Martin Zinkevich, Markus Weimer, Alexander J Smola,
and Lihong Li. Parallelized stochastic gradient descent.
In NIPS, number 1, page 4. Citeseer, 2010.

12197

	. Introduction
	. Related work
	. Method
	. Federated Learning with Naïve Aggregation
	. Exploring parameter sensitivity
	. Elastic aggregation with respect to parameter sensitivity

	. Experiments settings
	. Implementation
	. Generate synthetic federated datasets.

	. Experiments
	. Comparison with naive aggregation
	. Integration with modern optimizer
	. Limitations

	. Conclusion

