
Enhanced Training of Query-Based Object Detection via
Selective Query Recollection

Fangyi Chen1 Han Zhang1 Kai Hu1 Yu-Kai Huang1 Chenchen Zhu2 Marios Savvides1

Carnegie Mellon University1 Meta AI2

{fangyic,hanz3,kaihu,yukaih2,marioss}@andrew.cmu.edu chenchenz@fb.com

Abstract

This paper investigates a phenomenon where query-
based object detectors mispredict at the last decoding stage
while predicting correctly at an intermediate stage. We
review the training process and attribute the overlooked
phenomenon to two limitations: lack of training emphasis
and cascading errors from decoding sequence. We design
and present Selective Query Recollection (SQR), a simple
and effective training strategy for query-based object detec-
tors. It cumulatively collects intermediate queries as decod-
ing stages go deeper and selectively forwards the queries
to the downstream stages aside from the sequential struc-
ture. Such-wise, SQR places training emphasis on later
stages and allows later stages to work with intermediate
queries from earlier stages directly. SQR can be easily
plugged into various query-based object detectors and sig-
nificantly enhances their performance while leaving the in-
ference pipeline unchanged. As a result, we apply SQR on
Adamixer, DAB-DETR, and Deformable-DETR across var-
ious settings (backbone, number of queries, schedule) and
consistently brings 1.4 ∼ 2.8 AP improvement. Code is
available at https://github.com/Fangyi-Chen/
SQR

1. Introduction

Object detection is a long-established topic in computer
vision aiming to localize and categorize objects of interest.
Previous methods [4, 7, 10, 11, 16, 18, 21, 25, 26, 29, 32, 33,
35–37] rely on dense priors tiled at feature grids so as to
detect in a sliding-window paradigm, and have dominated
object detection for the recent decade, but these methods
fail to shake off many hand-crafted processing steps such
as anchor generation or non-maximum suppression, which
block end-to-end optimization.

Recent research attention has been geared towards
query-based object detection [3, 17, 20, 23, 28, 31, 38] since
the thriving of transformer [30] and DETR [3]. By view-

20 40 60 80 100 120 140 160
inference time (ms)

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

AP
DAB-R50-50e

DAB-SwinB-50e

Deformable-R50-1x

Deformable-R50-50e

Ada-R50-100q-1x

Ada-R50-1x
Ada-R101-100q-3x

Ada-R101-3x

w/o SQR
w/ SQR

Figure 1. The inference speed and AP for various networks on
the MS-COCO val set. The red stars are the results trained with
SQR. The blue circles are the results of baselines without SQR.
SQR enhances the training of query-based object detectors while
leaving the inference pipeline unchanged.

ing detection as a direct set prediction problem, the new
archetype represents the set of objects using a set of learn-
able embeddings, termed as queries, which are fed to a
decoder consisting of a stack (typically six) of decoding
stages. Each stage performs similar operations: (1) in-
teracting queries with image features via an attention-like
mechanism, so the queries are aggregated with valuable in-
formation that represents objects; (2) reasoning the relation
among all queries so that global dependency on objects co-
occurrence and duplicates could be captured; (3) interpret-
ing bounding box and category from each query by a feed
forward network. Queries are sequentially processed stage-
by-stage, and each stage is formulated to learn a residual
function with reference to the former stage’s output, aiming
to refine queries in a cascaded style.

As such wise, the decoding procedure implies that de-
tection should be stage-by-stage enhanced in terms of IoU
and confidence score. Indeed, monotonically improved AP
is empirically achieved by this procedure. However, when
visualizing the stage-wise predictions, we surprisingly ob-
serve that decoder makes mistakes in a decent proportion of

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23756

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

Traffic light | 0.41 Traffic light | 0.38 Traffic light | 0.38 Traffic light | 0.37 Traffic light | 0.21 Traffic light | 0.27

Remote | 0.25
Remote | 0.22

Cell phone | 0.26
Remote | 0.12

Cell phone | 0.35
Remote | 0.12

Cell phone | 0.39
Remote | 0.12

Cell phone | 0.42
Remote | 0.10

Cell phone | 0.23
Cell phone | 0.22

Figure 2. Are query-based object detectors always enhancing predictions stage-by-stage? The traffic light at stage 1 gets a confident score
of 0.41, while from stage 2 to 5 the confidence gradually decreases to 0.21 (Upper); the remote at stage 3 was wrongly classified as a cell
phone, and from stage 3 to 6 the mistake was amplified from 0.26 to 0.42 (Lower). The visualization is acquired from Adamixer-R50 (42.5
AP) tested on COCO val set.

cases where the later stages degrade true-positives and up-
grade false-positives from the former stages. As shown in
Fig.2, the traffic light at stage 1 gets categorical confidence
of 0.41, while from stage 2 to 5 the confidence gradually
decreases to 0.21; the remote at stage 3 was wrongly clas-
sified as a cell phone, while from stage 3 to 6 the error was
exacerbated from 0.26 to 0.42. We present a more detailed
statistic in Section 3.

This phenomenon inspires us to review the current train-
ing strategy and bring two conjectures. Firstly, the respon-
sibility that each stage takes is unbalanced, while supervi-
sion applied to them is analogous. An early stage could
make mistakes without causing too much impact because it
gets chances to be corrected later, and the later stages are
more responsible for the final prediction. But during train-
ing, all of these stages are supervised in an equivalent man-
ner and there lacks such a mechanism that places particular
training emphasis on later stages. Secondly, due to the se-
quential structure of the decoder, an intermediate query re-
fined by a stage - no matter whether this refinement brings
positive or negative effects - will be cascaded to the fol-
lowing stages, while the query prior to the refinement never
gets an opportunity to be propagated forward even though it
emerges unscathed and might be more representative than
the refined one. The cascading errors increase the diffi-

culty of convergence and the sequential structure impedes
the later stages from seeing prior queries during training.

Based on these intuitions, we present Query Recollection
(QR) as a training strategy for query-based object detectors.
It cumulatively collects intermediate queries as stages go
deeper, and feeds the collected queries to the downstream
stages aside from the sequential structure. By each stage,
the new add-ins alongside the original inputs are indepen-
dently treated among each other, so the attentions and losses
are calculated individually. In such a manner, QR enjoys
two key features: (1) The number of supervision signals per
stage grows in geometric progression, so that later stages
get more supervision than the former ones, for example,
the sixth stage got 32 times more supervision than the first;
(2) Later stages get chance to view the outputs beyond its
neighboring stage for training, which mitigates the poten-
tial impact due to cascading errors. We further discover that
selectively forward queries to each stage, not with the entire
query collection but only those from the prior two stages,
can raise the number of supervision in a Fibonacci sequence
which halves the extra computing cost and brings even bet-
ter results. We name it Selective Query Recollection (SQR).

Our contributions are summarized in three folds: (1)
We quantitatively investigate the phenomenon where query-
based object detectors mispredict at the last decoding stage

23757

while predicting correctly at an intermediate one. (2) We
attribute the overlooked phenomenon to two training limi-
tations, and propose a simple and effective training strategy
SQR that elegantly fits query-based object detectors. (3) We
conduct experiments on Adamixer, DAB DETR, and De-
formable DETR across various training settings that verify
its effectiveness (Fig.1).

2. Related Work
2.1. Training Strategy for Object Detection

Detectors based on dense priors have been dominating
the community for decades. The abstract concept anchor
box or anchor point [26, 29] aims to match with ground
truth (GT) objects depending on their Intersection-over-
Union (IoU) values or other advanced soft scoring factors
[7, 15, 18, 29, 37]. Among anchor-based detectors, multi-
stage models iteratively refine bounding box and category
stage-by-stage. A typical example is Cascade RCNN [2]
which is based on the design that the output of an interme-
diate stage is sampled and re-labeled to train the next stage
with increasing IoU thresholds, so these stages are guaran-
teed to be progressively refined. Recently, DETR [3] starts a
family of end-to-end query-based models where object de-
tection is regarded as a set prediction problem. To train
DETR, a predefined number of object queries are matched
to either a ground-truth or background by solving the Hun-
garian Matching problem. The queries are refined by sev-
eral decoder stages similar to Cascade RCNN, and each in-
termediate stage is supervised by the matching results.

2.2. Query-Based Object Detection

Recently, many algorithms have been following the idea
of DETR. Deformable DETR [38] proposes a deformable
attention module that alleviates the aforementioned issues
and massively improves the convergence speed by a factor
of 10. Conditional DETR [23] decouples the object query
into content query and spatial query in the decoder cross-
attention module and learns a conditional spatial query from
the decoder embedding to enable fast learning of the distinc-
tive extremity of the ground-truth objects. Anchor-DETR
[31] formulates the object queries as anchor points such that
each object query may only focus on a certain region near
its anchor point. Many future works are inspired by this
design. DAB-DETR [20] dives deep into the role of object
queries. It directly uses anchor box coordinates as spatial
query to speed up training. The model benefits from the spa-
tial prior by modulating the positional attention map using
the width and height of the box. DN-DETR [17] further im-
proves the convergence speed and query matching stability
of DAB-DETR with the help of the Ground Truth denoising
task. Adamixer [9] re-designs the query-key pooling mech-
anism by letting the query adaptively attend to the mean-

Model S1 S2 S3 S4 S5 S6

Deformable 38.4 42.2 43.7 44.2 44.4 44.5
Adamixer 15.1 30.3 37.7 40.6 42.1 42.5

Table 1. Stage-wise AP results. Deformable DETR(300 queries)
and Adamixer(100 queries) are trained using official implementa-
tion, both of their decoders consist of 6 stages, and per stage AP is
reported on COCO val set.

add&norm

MLP

cross attention FFNself attention

Figure 3. Typical structure of a single decoding stage.

ingful regions of the encoded features directly through bi-
linear sampling. An MLP-Mixer then dynamically decodes
the pooled features into final predictions. DETA (Detec-
tion Transformers with Assignment) [24] proposes a novel
overlap-based assignment that enables one-to-many assign-
ments to DETR.

Despite their significant improvement on DETR, they fo-
cus little on the training emphasis and cascading errors. We
propose SQR to pay attention to the two problems.

3. Motivation
Are query-based object detectors always predicting the

optimal detections at the last stage? Table.1 shows that AP
gradually increases with stages going deeper, indicating im-
proved predictions on a general scale. While the observa-
tion in Fig.2 implies that simple AP results are insufficient
for an in-depth analysis of that question.

Preliminary. Queries are updated successively. A typi-
cal structure of a decoding stage is illustrated in Fig.3. An
initial query q0i (i ∈ N = {1, 2, ..., n}) is an embedding
trained through back-propagation, and n is the total number
of initial queries. During inference, the first stage updates
the initial query by adding a residual term to it, producing
intermediate query q1i , followed by later stages sequentially
updating the intermediate query in the same way. The pro-
cedure can be formulated as

qsi = Ds(qs−1
i , qs−1, x) = qs−1

i + (A ◦ F)(qs−1
i , qs−1, x)

(1)
Ds is a decoding stage where s is stage index; qsi is the ith
query at stage s; qs is a set of queries qs = {qsi |i ∈ N};
(A ◦ F) stands for a bundle of modules including self and
cross attention and feed forward network; x means features;
and LayerNorm [1] that applied on each module is omitted

23758

Model TP Threshold TP F Rate FP E Rate

Deformable IoU>0.50 51.4% 55.7%
DETR IoU>0.75 49.5% 55.9%

Adamixer IoU>0.50 28.6% 50.8%
IoU>0.75 26.7% 51.2%

Table 2. True-positive Fading Rate and False-positive Exacerba-
tion Rate.

for simplicity. Afterward, qsi predicts an object P s
i via two

multi-layer perceptrons for classification and regression:

P s
i = (MLPcls(q

s
i), MLPreg(q

s
i)) (2)

P 1∼6
i are predicted by the q1∼6

i rooted in q0i , where P 6
i is

the expected outcome and P 1∼5
i are intermediate results.

P s
i is regarded as a true-positive towards a ground-truth G

only if the IoU(P s
i , G) exceeds a threshold, its category

matches with G, and the categorical score is ranked as the
highest among all other counterparts.

Investigation. We study the stage-wise testing results
by first defining two rates: (1) If P 6

i is a true-positive (TP)
towards a ground-truth G, we check whether P 1∼5

i gener-
ate a better TP towards the same G that has higher IoU &
higher category score than P 6

i . The occurrence rate is de-
noted as TP fading rate. (2) If P 6

i is a false-positive (FP),
we check whether P 1∼5

i produce a FP but with lower cate-
gory score than P 6

i . The occurrence rate is denoted as FP
exacerbation rate.

The statistics are shown in Table.2. We can see that
TP fading rate achieves 50% and 27% on the two mod-
els. Considering the strict constraints it holds, the TP fading
rate reaches an impressively high level. Deformable DETR
is much higher than Adamixer due to the smaller AP gap
among stages, thus, in many cases, earlier stages are more
likely to outperform the last stage. FP exacerbation holds
looser constraints and is easier to be satisfied, its rate is
above 50% on the two models. Higher TP threshold im-
plies higher quality of P 6

i and it is harder to find qualifiers
in P 1∼5

i , but the two rates are similar with 0.75 as with
0.5, pointing out the consistency of this phenomenon. We
also observe that more than half of the occurred cases are
marginally triggered, i.e. the predictions from the triggered
P 1∼5
i are only marginally better than the sixth. This is a fur-

ther reason why the deformable DETR has those high rates
- the results from the 5th and 6th stages are extremely visu-
ally close. In dominated number of cases, the final stage is
(one of) the best, after all, its mAP is the highest.

When the conditions of the two rates establish, we fur-
ther replace P 6

i with the optimal prediction found in P 1∼6
i

and measure the AP. On Deformable DETR, AP grows from
44.5 AP to 51.7 (+7.2 AP); on Adamixer, AP grows from

42.5 AP to 53.3 (+10.7 AP), demonstrating huge potential
in query-based detectors yet to be mined.

Conclusion. This reveals that models frequently predict
the optimum at intermediate stages instead of the last one.
We view the problem from the training’s perspective and
identify the lack of training emphasis and the cascading er-
rors from query sequence as two obstacles impeding the oc-
currence of the most reliable predictions in the last stage,
elaborated in Section 1.

4. Query Recollection

4.1. Expectancy

We desire such a training strategy that embraces:
• Uneven supervision applied to decoding stages that

places emphasis on later ones, enhancing later stages
for better final outcomes.

• A variety of early-stage queries directly introduced to
later stages, mitigating the impact of cascading errors.

To this end, we design a concise training strategy coined
as Query Recollection (QR). Compared with prior arts, it
collects intermediate queries at every stage and forwards
them along the original pathway. Dense Query Recollec-
tion (DQR) is the fundamental form and Selective Query
Recollection (SQR) is an advanced variant.

4.2. Dense Query Recollection

Notation. The process of single decoding stage (self-
attention, cross-attention, FFN), the ground-truth assign-
ment, and loss calculations are applied within a set
of queries {qi|i ∈ {1, 2, ..., n}}, where n is typically
100/300/500. We regard the set of queries as a basic unit
in our method and generally denote as q.

Basic Pathway. Query along the basic pathway is re-
fined by all stages. We illustrate it in Fig.4(a). Taking a
4-stages decoder as an example, we denote q0-1-2-3-4 as the
final query that is refined by all stages. So the basic PT
finally produces

q0-1-2-3-4 = D4(D3(D2(D1(q0)))) (3)
= PT 1-2-3-4(q0) (4)

During training, the queries from each stage, i.e. q0-1,
q0-1-2, q0-1-2-3, and q0-1-2-3-4 are independently followed by
Hungarian Assignment that matches ground-truth with q in
a one-to-one manner, and then followed by loss calculation
for supervision. In Fig.4, we mark those q that require su-
pervision as q̂. Along the basic pathway, the number of q̂ at
each stage is 1.

DQR Formulation. We densely collect every intermedi-
ate q and independently forward them to every downstream

23759

 q0-1

 q0

D2

 q0-1-2 q0-2

 q0-1

 q0-1-2-3 q0-2-3 q0-1-3

 q0-1-2 q0-2

 q0-1-2-3-4 q0-2-3-4 q0-1-3-4

 q0-1-2-4 q0-2-4

D3

D4

D1

 q0-1

 q0

D2

 q0-1-2 q0-2

 q0-1 q0

 q0-1-2-3 q0-2-3 q0-1-3 q0-3

 q0-1-2 q0-2 q0-1 q0

 q0-1-2-3-4 q0-2-3-4 q0-1-3-4 q0-3-4

 q0-1-2-4 q0-2-4 q0-1-4 q0-4

D3

D4

D1 select

select

select

 q0-1

 q0-1-2

 q0-1-2-3

 q0-1-2-3-4

D2

D3

D4

 q0

D1

(a)Basic (b)Dense QR (c)Selective QR

 q

 q0-1-2

Output of stage/QR

Collection C Query, from initial to stage 1 then to 2

Query with supervision applied

 q0 q0 C
0

 C 1

 C 2

 C 3

 C
0

 C 1

 C 2

 C 3

Figure 4. (a). Basic process for decoding queries stage by stage,
applied in both training and testing. (b). Dense query recollection.
(c). Selective query recollection.

stage, as illustrated in Fig.4(b). After each stage, a collec-
tion C is formed where the number of q grows geometri-
cally, namely 2s at sth stage. Formally,

C0 = {q0} (5)

Cs = {Ds(q)|q ∈ Cs−1} ∪ Cs−1 (6)

In a collection C, half of queries inside are newly gen-
erated by the current stage, i.e. from {Ds(q)|q ∈ Cs−1},
while another half are from previous stages, Cs−1. Sepa-
rately, for each q in the former half, we apply Hungarian
assignment and loss calculation, so the number of supervi-
sion signals grows in geometric progression as well, namely
2s−1 at sth stage.

Such-wise, Dense Query Recollection satisfies our ex-
pectancy where the number of supervision signal for each
stage grows as (1,2,4,8,16,32), meanwhile, all prior queries
would be visible in all later stages.

stage 1 2 3 4 5

TP F Rate(%) 1.2 4.4 8.5 12.4 16.9
FP E Rate(%) 14.3 18.6 20.8 24.5 30.2

stage 1∼3 4&5 3∼5 2∼5 1∼5

TP F Rate(%) 11.2 23.9 26.9 28.3 28.6
FP E Rate(%) 32.4 40.8 45.3 48.5 50.8

Table 3. Stage-wise TP Fading Rate and FP Exacerbation Rate
with Adamixer.

During inference, we only use the basic pathway, so the
inference process is untouched. For a standard 6-stage de-
coder, the pathway is PT 1-2-3-4-5-6

4.3. Selective Query Recollection

The last proposal empirically enhances training, but the
query collection process is indiscriminate, which brings two
defects: First, the geometrical growth of the number of q̂
and their attention/loss calculations cost a lot. Second, if
we input an early q that skips too many stages to a far-away
late stage, the potential benefit could be overshadowed by
the huge learning gap between the stages and query. For in-
stance, if the initial q0 is directly introduced to stage 6 and
produces q̂0-6, this query would have the highest difficulty
among all queries at stage 6 and the calculated loss would
dominate the overall losses. So we are inclined to selec-
tively collect intermediate q rather than densely collect all
of them.

Selection. To find a better query recollection scheme, we
further conduct a detailed analysis on the TP Fading Rate
and FP Exacerbation Rate introduced in Section 3.

Recall the spirits of the two rates where we seek from
P 1∼5
i for an alternative that is better than P 6

i , we want
to investigate which specific intermediate stage/stages con-
tribute the most. Concretely, if P 6

i is a true-positive towards
a ground-truth G, we separately check each stage whether
generating a better TP; similarly, if P 6

i is a false-positive,
we separately check each stage whether generating a better
FP. The results are summarized in Table 3. We find that the
majority of alternatives of P 6

i are from stage 4&5, where
the corresponding TP fading rate and FP exacerbation rate
reach 23.9% and 40.8%, respectively, which are close to the
results of stages 1 ∼ 5. While stage 1 ∼ 3 together only
produces 11.2% and 32.4%.

The above analysis implies that the queries from the ad-
jacent stage and the stage prior to the adjacent stage are
more likely to bring positive effects. We intuitively follow
the observations and selectively operate collection along the
basic pathway: before starting stage Ds, we collect q from
the 2 nearest stages, i.e. Ds−1 and Ds−2 as the input of Ds.

SQR Formulation. The Selective Query Recollection

23760

can be formulated as

C0 = {q0} C1 = {q0, q0-1} (7)

Cs = {Ds(q)|q ∈ Cs−1} ∪ select(Cs−1) (8)
= {Ds(q)|q ∈ Cs−1} ∪ {Ds−1(q)|q ∈ Cs−2}(9)

Such wise, Selective Query Recollection (Fig.4(c)) still
satisfies our expectancy, and the number of supervision sig-
nals grows in a Fibonacci sequence (1,2,3,5,8,13). Com-
pared to the Dense Recollection, to a great extent, SQR
reduces the computing burden and we observe that SQR
even outperforms the dense counterpart in terms of preci-
sion. This verifies our assumption that a q skipping too
many stages might be noise for remote stages overshadow-
ing its positive effects.

Recollection Starting Stage. Above we collect queries
starting from stage 1. Instead, we can practically vary this
starting stage, and this will further reduce the total queries
in each collection and further reduce the computing burden.
E.g., if starts SQR from stage 2, the Fibonacci sequence will
start from stage 2 and result in (1,1,2,3,5,8); if starts from
stage 3, result in (1,1,1,2,3,5). The starting stage is regarded
as a hyper-parameter for SQR.

5. Experiments
We conduct our experiments on the MS-COCO [19] de-

tection track using the MMDetection [5] and Detrex [27]
code-bases. All models are trained on train2017 split. Un-
less otherwise specified, models are trained and tested with
image scale of 800 pixels, where AdamW optimizer with
a standard 1x schedule (12 epochs) is utilized for training.
For ablation study and analysis, Adamixer [9] with R50 [12]
is chosen because of its good performance and fast conver-
gence speed (42.5 AP with 1x schedule). We further apply
SQR on other detectors to verify its effectiveness.

5.1. Ablation Study

Baseline vs DQR vs SQR. Table.4 shows that both DQR
and SQR improve the baseline by a large margin. DQR
reaches 44.2 (+1.7 AP) while SQR reaches a slightly high
result 44.4 (+1.9 AP). Note that SQR is much more efficient
than DQR. As shown in Table.5, under the same training
setting, SQR cuts down a great amount of training time of
DQR and still achieves equal or higher AP.

Varying Starting Stage of SQR. We present how SQR
performs when varying the starting stage in Table.5. The
best performance is acquired when query recollection starts
at stage 1 but with the most computational cost. We can
see that starting at stage 2 performs similarly to starting
at stage 1 while the computing burden is decently reduced.
With recollection starting later, the benefits from SQR de-
crease as expected since the recollected queries from early

Methods AP AP50 AP75 APS APM APL

Baseline 42.5 61.5 45.6 24.6 45.1 59.2
DQR 44.2 62.8 47.9 26.7 46.9 60.5
SQR 44.4 63.2 47.8 25.7 47.4 60.2

Table 4. AP comparison among Baseline, DQR, and SQR

Method Start Stage Train Time AP AP50

Baseline - 1x(5hours) 42.5 61.5
Baseline - 2x 42.5 61.3
Baseline - 3x 42.5 61.4

DQR - 2.24x 44.2 62.8
SQR 1 1.57x 44.4 63.2
SQR 2 1.34x 44.2 63.0
SQR 3 1.18x 43.8 62.3
SQR 4 1.07x 42.9 61.4

Table 5. Further comparison among Baseline, DQR, and SQR with
different starting stage in terms of training time and AP.

Method TP Threshold TP F Rate FP E Rate

Baseline IoU>0.50 28.6% 50.8%
SQR IoU>0.50 23.3 % 47.3 %

Baseline IoU>0.75 26.7% 51.2%
SQR IoU>0.75 21.1% 47.0%

Table 6. Baseline vs. SQR on true-positive fading rate and false-
positive exacerbation rate.

stages become fewer and training emphasis gets gradually
balanced.

TP Fading Rate And FP Exacerbation Rate. We
present Table.6 to verify that TP fading rate and FP exacer-
bation rate decrease due to the training effect when applied
SQR. Specifically, TP fading rate decreases from 28.6% to
23.3% and from 26.7% to 21.1% across two IoU thresh-
olds. FP exacerbation rate downgrades from 50.8% to 47.3
and 51.2% to 47.0%.

5.2. Relation with Increased Number of Supervision

Some concurrent studies reveal that query-based detec-
tors suffer from training inefficiency due to the one-to-one
matching, and propose to add extra parallel query groups
and match them with ground-truths in a one-to-many man-
ner, such as Group DETR [6] and H-DETR [14]. We rec-
ognize them as increased number of supervision, i.e., each
ground-truth is matched to multiple queries, and thus the
number of supervision (q̂) is greatly increased. However,
simply adding more query groups is a sub-optimal solution
according to our motivation, since these extra supervisions

23761

Design #Supv / stage #Supv AP

I (Group DETR) 3,3,3,3,3,3 18 43.4
II 4,4,4,3,2,1 18 43.0
III 1,2,3,4,4,4 18 43.7
IV (SQR) 1,1,2,3,5,8 20 44.2

V (Group DETR) 6,6,6,6,6,6 36 43.6
VI (SQR) 1,2,3,5,8,13 32 44.4

Table 7. Results of the 6 designed training strategies on Adamixer
to investigate the relation with number of supervision. The infer-
ence is untouched. #Supv denotes the number of supervision.

are given uniformly among stages. So we present 6 designs
as training strategies for investigation.

• Design I: Following Group DETR, 3 groups of
queries are initialized and independently undergo the
whole process of the decoder. The pathway is 3 ×
PT 1-2-3-4-5-6, and number of supervision is 3 groups
×6 stages = 18.

• Design II: 4 groups of queries are initialized but the
pathways are PT 1-2-3-4-5-6, PT 1-2-3-4-5, PT 1-2-3-4,
PT 1-2-3, so, with training emphasis on early stages,
the number of supervision is 4+4+4+3+2+1 = 18.

• Design III: Similar to Design II but not every initial-
ized queries starts from stage 1. The pathways for
the 4 groups are PT 1-2-3-4-5-6, PT 2-3-4-5-6, PT 3-4-5-6,
PT 4-5-6, so, with training emphasis on later stages, the
number of supervision is 1 + 2 + 3 + 4 + 4 + 4 = 18.

• Design IV: SQRstarting stage=2, the number of su-
pervision is 1 + 1 + 2 + 3 + 5 + 8 = 20.

• Design V: Same as Design I but with 6 groups. The
number of supervision is 6 groups ×6 stages = 36.

• Design VI: SQRstarting stage=1, the number of su-
pervision is 1 + 2 + 3 + 5 + 8 + 13 = 32.

Table.7 summarizes the results. From the controlled ex-
periments with Design I, II, III, we conclude training with
emphasis on late stages is the best option. Design IV and
VI are SQR with different starting stages. We show that
with similar or even fewer supervisions, SQR outperforms
other designs by a large margin. These comparisons verify
our motivation and prove that the enhancement from SQR
is not simply from the increased number of supervisions.

5.3. Training Emphasis via Re-weighted Loss

Although the training emphasis contributes to the suc-
cess of SQR, the access to the early intermediate queries
is irreplaceable. We attempt another way to place training
emphasis without query recollection, i.e. re-weighting the
losses of six decoding stages following the Fibonacci se-
quence (1,2,3,5,8,13). The AP slightly degrades by (-0.6)
compared to the baseline, indicating access to the interme-
diate queries is necessary for emphasized supervision.

0 10 20 30 40 50 60 70
#epochs

10

20

30

40

AP SQR-Adamixer
Adamixer
SQR-Deformable DETR
Deformable DETR
Adamixer equal train hour
Deformable equal train hour

Figure 5. Equal training-time comparison: Baseline vs. SQR

5.4. Relation with Stochastic Depth

Stochastic Depth (SD) [13] is a training strategy for very
deep network where it randomly removes a fraction of lay-
ers independently for each mini-batch, so the depth of path-
way varies during training just like SQR. However, SD is of
vital inefficiency, because an image has to first pass through
a backbone and then be processed by a varying-depth path-
way, but for SQR, an image that passes through the back-
bone can be processed by multiple varying-depth pathways
at the same time. To verify this point, we apply SD on the
vanilla decoder: During training, for each mini-batch we
randomly remove decoding stages following a series of pre-
defined probabilities. From stage 1∼ 6, the removal prob-
ability R could be either a constant (0.1), increasing (0.0,
0.1,..., 0.5), or decreasing (0.5, 0.4,..., 0.0). During testing,
SD requires the outputs of each decoding stage to be cali-
brated by the expected times the stage participates in train-
ing, so we multiply (1-R) with the residual term in Equ.1.
As a result, SD (40.7 mAP) is not comparable to SQR.

5.5. Training efficiency

SQR leads to an extra computing burden compared to the
baseline since the number of q̂ grows. In Table.5, SQR in-
creases training time of Adamixer-R50 by 0.35∼2.85 hours
(+0.07% ∼ 57%). In practice, the effects on different mod-
els/implementations/platforms vary. For instance, ResNet-
50 is a light-weighted backbone, so the effects of applying
SQR are relatively high, while with heavier backbones like
ResNet-101 and Swin Transformer [22], the training time is
less impacted (+10%).

For comparison under equal training time, we train the
baseline Adamixer with extra epochs (+ 200% epochs) and
baseline Deformable DETR with (+50% epochs). Both
models’ performances (see Fig.5) saturate early and there is
no significant improvement over the extended training time,
indicating that the benefit of SQR cannot be compensated
by including more training iterations.

5.6. Comparison with State-of-the-art

We conduct experiments on recent query-based detectors
with different training settings and various backbones, with
and without SQR. We primarily follow the original training

23762

Model w/ SQR #query #epochs COCO 2017 validation split

AP AP50 AP75 APS APM APL

DETR-R50 [3] 100 500 42.0 62.4 44.2 20.5 45.8 61.1
Conditional DETR-R50 [23] 300 50 40.9 61.8 43.3 20.8 44.6 60.2
Conditional DETR-R101 [23] 300 50 42.8 63.7 46.0 21.7 46.6 60.9
Anchor-DETR-R50 [31] 300 50 42.1 63.1 44.9 22.3 46.2 60.0
Anchor-DETR-R101 [31] 300 50 43.5 64.3 46.6 23.2 47.7 61.4
SAM-DETR-R50 [34] 300 50 39.8 61.8 41.6 20.5 43.4 59.6
∗SMCA-DETR-R50 [8] 300 50 43.7 63.6 47.2 24.2 47.0 60.4
∗SMCA-DETR-R50 [8] 300 108 45.6 65.5 49.1 25.9 49.3 62.6
∗DN-DAB-DETR-R50 [17] 300 50 44.1 64.4 46.7 22.9 48.0 63.4
∗DN-DAB-DETR-R101 [17] 300 50 45.2 65.5 48.3 24.1 49.1 65.1
∗DAB-DETR-R50 [20] 300 50 42.2 63.1 44.7 21.5 45.7 60.3
∗SQR-DAB-DETR-R50 ✓ 300 50 44.5 (+2.3) 64.4 47.5 24.8 48.6 61.7
∗DAB-DETR-SwinB [20] 300 50 49.0 71.0 53.0 29.6 53.8 68.3
∗SQR-DAB-DETR-SwinB ✓ 300 50 51.6 (+2.6) 72.5 55.9 32.0 56.8 71.0
∗Deformable DETR-R50 [38] 300 12 37.2 55.2 40.4 20.6 40.2 50.2
∗SQR-Deformable DETR-R50 ✓ 300 12 39.9 (+2.7) 58.4 43.7 23.8 43.2 53.3
∗Deformable DETR-R50 [38] 300 50 44.5 63.2 48.9 28.0 47.8 58.8
∗SQR-Deformable DETR-R50 ✓ 300 50 45.9 (+1.4) 64.7 50.2 27.7 49.2 60.5

Adamixer-R50 [9] 100 12 42.5 61.5 45.6 24.6 45.1 59.2
SQR-Adamixer-R50 ✓ 100 12 44.4 (+1.9) 63.2 47.8 25.7 47.4 60.2
†Adamixer-R50 [9] 100 12 42.5 61.5 45.8 24.4 45.2 58.7
†SQR-Adamixer-R50 ✓ 100 12 45.3 (+2.8) 63.8 49.0 26.8 48.1 62.2
∗†Adamixer-R50 100 36 45.1 63.9 48.9 28.3 47.8 60.6
∗†SQR-Adamixer-R50 ✓ 100 36 46.7 (+1.6) 65.2 50.3 29.4 49.6 62.1
∗†Adamixer-R50 300 36 46.6 65.5 50.6 29.3 49.3 62.3
∗†SQR-Adamixer-R50 ✓ 300 36 48.9 (+2.3) 67.5 53.2 32.0 51.8 63.7
∗†Adamixer-R101 [9] 100 36 45.7 64.7 49.6 27.8 49.1 61.2
∗†SQR-Adamixer-R101 ✓ 100 36 47.3 (+1.6) 66.0 51.3 30.1 50.7 62.2
∗†Adamixer-R101 [9] 300 36 47.6 66.7 51.8 29.5 50.5 63.3
∗†SQR-Adamixer-R101 ✓ 300 36 49.8 (+2.2) 68.8 54.0 32.0 53.4 65.1

Table 8. Comparison results with various query-based detectors on COCO 2017 val. #query: the number of queries used during inference.
* indicates models trained with multi-scale augmentation, † marks models with 7 decoder stages.

setting of our baselines, where training schedules consists
of standard 12, 36, and 50 epochs; the number of queries is
chosen between 100 and 300; multi-scale training is applied
to 36e and 50e schedules as the shorter side of images range
480 ∼ 800. The training is conducted on 8x Nvidia A100.

The result is summarized in Fig.1 and Table 8. SQR
consistently brings AP improvements to Adamixer, DAB-
DETR and Deformable-DETR at the same inference speed.
Concretely, on DAB-DETR, SQR brings +2.3 and +2.6 AP
with R50 and SwinB, respectively; on Deformable DETR,
SQR boosts it by 2.7 AP under 12e and by 1.4 AP under
50e; on Adamixer with R50, SQR achieves +1.9 AP un-
der the basic setting (100 queries, 12e). With an additional
stage, the gap between w/ and w/o SQR is enlarged +2.8 AP.

SQR consistently improves these models by 1.4∼2.8 AP.

6. Conclusion

In this work, we investigate the phenomenon where the
optimal detections of query-based object detectors are not
always from the last decoding stage, but can sometimes
come from an intermediate decoding stage. We first rec-
ognize two limitations causing the issue, i.e. lack of train-
ing emphasis and cascading errors from query sequence.
The problem is addressed by Selective Query Recollection
(SQR) as a simple and effective training strategy. Across
various training settings, SQR boosts Adamixer, DAB-
DETR, and Deformable-DETR by a large margin.

23763

References
[1] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer

normalization. ArXiv, abs/1607.06450, 2016. 3
[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6154–6162, 2018. 3

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nico-
las Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. ArXiv,
abs/2005.12872, 2020. 1, 3, 8

[4] Fangyi Chen, Chenchen Zhu, Zhiqiang Shen, Han Zhang,
and M. Savvides. Ncms: Towards accurate anchor free ob-
ject detection through l2 norm calibration and multi-feature
selection. Comput. Vis. Image Underst., 200:103050, 2020.
1

[5] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 6

[6] Qiang Chen, Xiaokang Chen, Gang Zeng, and Jingdong
Wang. Group detr: Fast training convergence with decou-
pled one-to-many label assignment. ArXiv, abs/2207.13085,
2022. 6

[7] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and
Weilin Huang. Tood: Task-aligned one-stage object detec-
tion. In 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 3490–3499. IEEE Computer So-
ciety, 2021. 1, 3

[8] Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai,
and Hongsheng Li. Fast convergence of detr with spa-
tially modulated co-attention. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3601–3610,
2021. 8

[9] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo.
Adamixer: A fast-converging query-based object detector.
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5354–5363, 2022. 3, 6, 8

[10] Ross B. Girshick. Fast r-cnn. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1440–1448,
2015. 1

[11] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 580–587, 2014.
1

[12] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 6

[13] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep networks with stochastic depth. In
ECCV, 2016. 7

[14] Ding Jia, Yuhui Yuan, Hao He, Xiao pei Wu, Haojun Yu,
Weihong Lin, Lei huan Sun, Chao Zhang, and Hanhua Hu.
Detrs with hybrid matching. ArXiv, abs/2207.13080, 2022.
6

[15] Kang jik Kim and Hee Seok Lee. Probabilistic anchor as-
signment with iou prediction for object detection. In ECCV,
2020. 3

[16] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, and
Jianbo Shi. Foveabox: Beyond anchor-based object detec-
tor. ArXiv, abs/1904.03797, 2019. 1

[17] Feng Li, Hao Zhang, Shi guang Liu, Jian Guo, Lionel M.
Ni, and Lei Zhang. Dn-detr: Accelerate detr training by
introducing query denoising. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
13609–13617, 2022. 1, 3, 8

[18] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection. 2017
IEEE International Conference on Computer Vision (ICCV),
pages 2999–3007, 2017. 1, 3

[19] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV, 2014. 6

[20] Shilong Liu, Feng Li, Hao Zhang, Xiao Bin Yang, Xian-
biao Qi, Hang Su, Jun Zhu, and Lei Zhang. Dab-detr:
Dynamic anchor boxes are better queries for detr. ArXiv,
abs/2201.12329, 2022. 1, 3, 8

[21] W. Liu, Dragomir Anguelov, D. Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. Ssd:
Single shot multibox detector. In ECCV, 2016. 1

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9992–10002, 2021. 7

[23] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng,
Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.
Conditional detr for fast training convergence. 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3631–3640, 2021. 1, 3, 8

[24] Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, and
Philipp Krähenbühl. Nms strikes back, 2022. 3

[25] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You only look once: Unified, real-time ob-
ject detection. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788, 2016. 1

[26] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39:1137–1149, 2015. 1, 3

[27] Tianhe Ren, Shilong Liu, Hao Zhang, Feng Li, Xingyu Liao,
and Lei Zhang. detrex. https://github.com/IDEA-
Research/detrex, 2022. 6

[28] Pei Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, and Ping Luo. Sparse r-cnn: End-to-end
object detection with learnable proposals. 2021 IEEE/CVF

23764

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14449–14458, 2021. 1

[29] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9626–9635, 2019. 1, 3

[30] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017. 1

[31] Yingming Wang, X. Zhang, Tong Yang, and Jian Sun. An-
chor detr: Query design for transformer-based detector. In
AAAI, 2022. 1, 3, 8

[32] Haibao Yu, Qi Han, Jianbo Li, Jianping Shi, Guangliang
Cheng, and Bin Fan. Search what you want: Barrier panelty
nas for mixed precision quantization. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, ed-
itors, Computer Vision – ECCV 2020, pages 1–16, Cham,
2020. Springer International Publishing. 1

[33] Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang,
Yifeng Shi, Zhenglong Guo, Hanyu Li, Xing Hu, Jirui
Yuan, and Zaiqing Nie. Dair-v2x: A large-scale dataset
for vehicle-infrastructure cooperative 3d object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 21361–21370,
June 2022. 1

[34] Gongjie Zhang, Zhipeng Luo, Yingchen Yu, Kaiwen Cui,
and Shijian Lu. Accelerating detr convergence via semantic-
aligned matching. 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 939–
948, 2022. 8

[35] Haoyang Zhang, Ying Wang, Feras Dayoub, and Niko Sun-
derhauf. Varifocalnet: An iou-aware dense object detector.
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 8510–8519, 2021. 1

[36] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and
Stan Z. Li. Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection.
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9756–9765, 2020. 1

[37] Chenchen Zhu, Fangyi Chen, Zhiqiang Shen, and Marios
Savvides. Soft anchor-point object detection. In ECCV,
2020. 1, 3

[38] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transform-
ers for end-to-end object detection. ArXiv, abs/2010.04159,
2021. 1, 3, 8

23765

