
Extracting Class Activation Maps from Non-Discriminative Features as well

Zhaozheng Chen
Singapore Management University
zzchen.2019@phdcs.smu.edu.sg

Qianru Sun
Singapore Management University

qianrusun@smu.edu.sg

Abstract

Extracting class activation maps (CAM) from a classifi-
cation model often results in poor coverage on foreground
objects, i.e., only the discriminative region (e.g., the “head”
of “sheep”) is recognized and the rest (e.g., the “leg” of
“sheep”) mistakenly as background. The crux behind is
that the weight of the classifier (used to compute CAM) cap-
tures only the discriminative features of objects. We tackle
this by introducing a new computation method for CAM
that explicitly captures non-discriminative features as well,
thereby expanding CAM to cover whole objects. Specifi-
cally, we omit the last pooling layer of the classification
model, and perform clustering on all local features of an
object class, where “local” means “at a spatial pixel posi-
tion”. We call the resultant K cluster centers local proto-
types — represent local semantics like the “head”, “leg”,
and “body” of “sheep”. Given a new image of the class, we
compare its unpooled features to every prototype, derive K
similarity matrices, and then aggregate them into a heatmap
(i.e., our CAM). Our CAM thus captures all local features of
the class without discrimination. We evaluate it in the chal-
lenging tasks of weakly-supervised semantic segmentation
(WSSS), and plug it in multiple state-of-the-art WSSS meth-
ods, such as MCTformer [45] and AMN [26], by simply re-
placing their original CAM with ours. Our extensive exper-
iments on standard WSSS benchmarks (PASCAL VOC and
MS COCO) show the superiority of our method: consistent
improvements with little computational overhead. Our code
is provided at https://github.com/zhaozhengChen/LPCAM.

1. Introduction
Extracting CAM [50] from classification models is the

essential step for training semantic segmentation models
when only image-level labels are available, i.e., in the
WSSS tasks [8, 22, 24, 26, 46]. More specifically, the gen-
eral pipeline of WSSS consists of three steps: 1) training a
multi-label classification model with the image-level labels;
2) extracting CAM of each class to generate a 0-1 mask

(usually called seed mask), often with a further step of re-
finement to generate pseudo mask [1,20]; and 3) taking all-
class pseudo masks as pseudo labels to train a semantic seg-
mentation model in a fully-supervised fashion [5, 6, 41]. It
is clear that the CAM in the first step determines the perfor-
mance of the final semantic segmentation model. However,
the conventional CAM and its variants often suffer from the
poor coverage of foreground objects in the image, i.e., a
large amount of object pixels are mistakenly recognized as
background, as demonstrated in Figure 1(a) where only few
pixels are activated in warm colors.

We point out that this locality is due to the fact that
CAM is extracted from a discriminative model. The train-
ing of such model naturally discards the non-discriminative
regions which confuse the model between similar as well as
highly co-occurring object classes. This is a general prob-
lem of discriminative models, and is particularly obvious
when the number of training classes is small [37,46,48]. To
visualize the evidence, we use the classifier weights of con-
fusing classes, e.g., “car”, “train” and “person”, to compute
CAMs for the “bus” image, and show them in Figure 1(b).
We find from (a) and (b) that the heating regions in ground
truth class and confusing classes are complementary. E.g.,
the upper and frontal regions (on the “bus” image) respec-
tively heated in the CAMs of “car” and “train” (confusing
classes) are missing in the CAM of “bus” (ground truth),
which means the classifier de-activates those regions for
“bus” as it is likely to recognize them as “car” or “train”.

Technically, for each class, we use two factors to com-
pute CAM: 1) the feature map block after the last conv layer,
and 2) the weight of the classifier for that class. As afore-
mentioned, the second factor is often biased to discrimina-
tive features. Our intuition is to replace it with a non-biased
one. The question becomes how to derive a non-biased clas-
sifier from a biased classification model, where non-biased
means representing all local semantics of the class. We find
the biased classifier is due to incomplete features, i.e., only
discriminative local features fed into the classifier, and the
non-discriminative ones are kicked out by the global aver-
age pooling (GAP) after the last conv layer. To let the model
pay attention to non-discriminative features as well, we pro-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3135



SMU Classification: Restricted

Image CAM CAM of confusing classes LPCAM(b) (c) (d)

𝑓(𝒙) ⋅ 𝐰,-./0𝑓(𝒙) ⋅ 𝐰1-2 𝑓 𝒙 ⋅ 𝐰134𝑓(𝒙) ⋅ 𝐰56778

𝑓(𝒙) ⋅ 𝐰9:5

𝑓(𝒙) ⋅ 𝐰;<=>?

𝑓 𝒙 ⋅ 𝐰87<5@?𝑓 𝒙 ⋅ 𝐰;<=>?𝑓 𝒙 ⋅ 𝐰A=<

𝑓(𝒙) ⋅ 𝐰=7<@8B=?7 𝑓 𝒙 ⋅ 𝐰A=< 𝑓 𝒙 ⋅ 𝐰C@;@<9>D7

(a)

sheep

bus

train

1.Revise the notations: F is for foreground but not for feature. Please use the 
formal notations we defined in method sections. If some of the needed 
notations are not defined in method sections, please given them here and 
explain them in the caption of this fig.

Figure 1. The CAM of image x is computed by f(x) · wc, where f(x) is the feature map block (before the last pooling layer of the
multi-label classification model) and wc denotes the classifier weights of class c. (a) Input images. (b) CAMs generated from the classifier
weights of ground truth class. (c) CAMs generated from the classifier weights of confusing classes. (d) LPCAM (our method).

pose to omit GAP, derive a prototype-based classifier by
clustering all local features (collected across all spatial lo-
cations on the feature map blocks of all training samples in
the class) into K local prototypes each representing a local
semantic of the class. In Section 3, we give a detailed justi-
fication that this prototype-based classifier is able to capture
both discriminative and non-discriminative features.

Then, the question is how to use local prototypes on the
feature map block (i.e., the 1st factor) to generate CAM.
We propose to apply them one-by-one on the feature map
block to generate K similarity maps (e.g., by using cosine
distance), each aiming to capture the local regions that con-
tain similar semantics to one of the prototypes. We high-
light that this “one-by-one” is important to preserve non-
discriminative regions as the normalization on each similar-
ity map is independent. We provide a detailed justification
from the perspective of normalization in Section 3.2. Then,
we average across all normalized similarity maps to get a
single map—we call Local Prototype CAM (LPCAM). In
addition, we extend LPCAM by using the local prototypes
of contexts as well. We subtract the context similarity maps
(computed between the feature map block and the clustered
context prototypes) from LPCAM. The idea is to remove the
false positive pixels (e.g., the “rail” of “train” [25]). There-
fore, our LPCAM not only captures the missing local fea-
tures of the object but also mitigates the spurious features
caused by confusing contexts.

LPCAM is a new operation to compute class activa-
tion maps based on clustered local prototypes. In princi-
ple, it can be taken as a generic substitute of the conven-
tional CAM in CAM-based WSSS methods. To evaluate

LPCAM on different WSSS methods (as they use different
backbones, pre-training strategies or extra data), we conduct
extensive experiments by plugging it in multiple methods:
the popular refinement method IRN [1], the top-performing
AMN [26], the saliency-map-based EDAM [39], and the
transformer-arch-based MCTformer [45], on two popu-
lar benchmarks of semantic segmentation, PASCAL VOC
2012 [11] and MS COCO 2014 [30].
Our Contributions in this paper are thus two-fold. 1) A
novel method LPCAM that leverages non-discriminative lo-
cal features and context features (in addition to discrimina-
tive ones) to generate class activation maps with better cov-
erage on the complete object. 2) Extensive evaluations of
LPCAM by plugging it in multiple WSSS methods, on two
popular WSSS benchmarks.

2. Related Works

Image classification models are optimized to capture
only the discriminative local regions (features) of objects,
leading to the poor coverage of its CAM on the objects.
While the ideal pseudo labels (extended from CAM) to train
WSSS models should cover all parts of the object regardless
of dicriminativeness. To this end, many efforts have been
made in the field of WSSS. Below, we introduce only the
variants for seed generation and mask refinement.
Seed Generation One direction is the erasing-based meth-
ods. AE-PSL [37] is an adversarial erasing strategy running
in an iterative manner. It masks out the discriminative re-
gions in the current iteration, to explicitly force the model
to discover new regions in the next iteration. ACoL [48] is

3136



an improved method. It is based on an end-to-end learn-
ing framework composed of two branches. One branch ap-
plies a feature-level masking on the other. However, these
two methods have an over-erasing problem, especially for
small objects. CSE [21] is a class-specific erasing method.
It masks out a random object class based on CAM and then
explicitly penalizes the prediction of the erased class. In
this way, it gradually approaches to the boundary of the
object on the image. It can not only discover more non-
discriminative regions but also alleviate the over-erasing
problem (of the above two methods) since it also penalizes
over-erased regions. However, erasing-based methods have
the low-efficiency problem as they have to feed forward an
image multiple times.

Besides of erasing, there are other advanced methods re-
cently. RIB [22] interpreted the poor coverage problem of
CAM in an information bottleneck principle. It re-trains
the multi-label classifier by omitting the activation function
in the last layer to encourage the information transmission
of information non-discriminative regions to the classifica-
tion. Jiang et al. [18] empirically observed that classifica-
tion models can discover more discriminative regions when
taking local image patches rather than whole input image
as input. They proposed a local-to-global attention transfer
method contains a local network that produces local atten-
tions with rich object details for local views as well as a
global network that receives the global view as input and
aims to distill the discriminative attention knowledge from
the local network. Some other researchers explore to utiliz-
ing contrastive learning [10,51], graph neural network [29],
and self-supervised learning [3, 36] to discover more non-
discriminative regions.

Compared to aforementioned methods, our method have
the following advantages: 1) it does not require additional
training on the basis of CAM; and 2) it can be taken as a
generic substitute of the conventional CAM and plugged
into many CAM-based WSSS frameworks.
Mask Refinement One category of refinement methods [1,
2, 4, 44] propagate the object regions in the seed to seman-
tically similar pixels in the neighborhood. It is achieved
by the random walk [33] on a transition matrix where each
element is an affinity score. The related methods have dif-
ferent designs of this matrix. PSA [2] is an AffinityNet to
predict semantic affinities between adjacent pixels. IRN [1]
is an inter-pixel relation network to estimate class bound-
ary maps based on which it computes affinities. Another
method is BES [4] that learns to predict boundary maps by
using CAM as pseudo ground truth. All these methods in-
troduced additional network modules to vanilla CAM. An-
other category of refinement methods [16, 17, 23, 27, 39]
utilize saliency maps [15, 49] to extract background cues
and combine them with object cues. EPS [27] proposed a
joint training strategy to combine CAM and saliency maps.

EDAM [39] introduced a post-processing method to inte-
grate the confident areas in the saliency map into CAM.
Our LPCAM is orthogonal to them and can be plugged into
those methods.

3. Method
In Section 3.1, we introduce the pipeline of generating

LPCAM using a collection of class-wise prototypes includ-
ing class prototypes and context prototypes, without any re-
training on the classification model. The step-by-step illus-
tration is shown in Figure 2, demonstrating the steps of gen-
erating local prototypes from all images of a class and using
these prototypes to extract LPCAM for each single image.
In Section 3.2, we justify 1) the advantages of using clus-
tered local prototypes in LPCAM; and 2) the effectiveness
of LPCAM from the perspective of map normalization.

3.1. LPCAM Pipeline

Backbone and Features. We use a standard ResNet-
50 [14] as the network backbone (i.e., feature encoder) of
the multi-label classification model to extract features, fol-
lowing related works [1, 8, 22, 24, 26, 46]. Given an input
image x, and its multi-hot class label y ∈ {0, 1}N , we de-
note the output of the trained feature encoder as f(x) ∈
RW×H×C . C denotes the number of channels, H and W
are the height and width, respectively, and N is the total
number of foreground classes in the dataset.
Extracting CAM. Before clustering local prototypes of
class as well as context, we need the rough location infor-
mation of foreground and background. We use the conven-
tional CAM to achieve this. We extract it for each individual
class n given the feature f(x) and the corresponding clas-
sifier weights wn in the FC layer, as follows,

CAMn(x) =
ReLU (An)

max (ReLU (An))
, An = w⊤

n f(x).

(1)
Clustering. We perform clustering for every individual
class. Here we discuss the details for class n. Given an im-
age sample x of class n, we divide the feature block f(x)
spatially into two sets, F and B, based on CAM:

f(x)i,j ∈

{
F , if CAMi,j

n (x) ≥ τ

B, otherwise
(2)

where f(x)i,j ∈ RC denotes the local feature at spatial lo-
cation (i, j). τ is the threshold to generate a 0-1 mask from
CAMn(x). F denotes the set of foreground local features,
and B for the set of background (context) local features.

Similarly, we can collect F to contain the foreground
features of all samples1 in class n, and B for all background

1We use a random subset of samples for each class in the real imple-
mentation, to reduce the computation costs of clustering.

3137



SMU Classification: Restricted

selected

All training
images

Image
features

Aggregation

Leg

Body

Rock

Grass

Local
prototypes

Selecting PrototypesFeature

extractor

Similarity
maps

(a) Generating local prototypes (b) Generating LPCAM

𝑭!

𝑭"

𝑩!

𝑩"

𝑭#

𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑩𝟏 𝑩𝟐

Feature
extractor

Local prototypes

Cosine similarity

Weighted sum

Classifier weights

CAM

LPCAM

An image

Eq. (5)

Eq. (6)

Eq. (1)

Clusters
Clustering Eq. (3) and Eq. (4)

Generating
LPCAM

Head

？

Dividing FG/BG Eq. (2)

FG Clusters

BG Clusters
sheep

selected
selected

selected

rejected

CAM is given for 
comparison only.

Figure 2. The pipeline for generating LPCAM. (a) Generating local prototypes from all training images of an individual class, e.g., “sheep”.
(b) Generating LPCAM by sliding both class prototypes and context prototypes over the feature block of the input image, and aggregating
the obtained similarity maps. In the gray block, the generation process of CAM is shown for comparison.

features, where the subscript n is omitted for brevity. After
that, we perform K-Means clustering, respectively, for F
and B, to obtain K class centers in each of them, where
K is a hyperparameter. We denote the foreground cluster
centers as F = {F1, · · · ,FK} and the background cluster
centers as B = {B1, · · · ,BK}.
Selecting Prototypes. The masks of conventional CAM are
not accurate or complete, e.g., background features could be
grouped into F . To solve this issue, we need an “evaluator”
to check the eligibility of cluster centers to be used as pro-
totypes. The intuitive way is to use the classifier wn as an
auto “evaluator”: using it to compute the prediction score
of each cluster center Fi in F by:

zi =
exp(Fi ·wn)∑
j exp(Fi ·wj)

. (3)

Then, we select those centers with high confidence: zi >
µf , where µf is a threshold—usually a very high value like
0.9. We denote selected ones as F′ = {F′

1, · · · ,F′
K′

1
}.

Intuitively, confident predictions indicate strong local fea-
tures, i.e., prototypes, of the class.

Before using these local prototypes to generate LPCAM,
we highlight that in our implementation of LPCAM, we
not only preserve the non-discriminative features but also
suppress strong context features (i.e., false positive), as
the extraction and application of context prototypes are
convenient—similar to class prototypes but in a reversed
manner. We elaborate these in the following. For each Bi in
the context cluster center set B, we apply the same method
(as for Fi) to compute a prediction score:

zi =
exp(Bi ·wn)∑
j exp(Bi ·wj)

. (4)

Intuitively, if the model is well-trained on class labels, its
prediction on context features should be extremely low.
Therefore, we select the centers with zi < µb (where µb

is usually a value like 0.5), and denote them as B′ =
{B′

1, · · · ,B′
K′

2
}. It is worth noting that our method is

not sensitive to the values of the hyperparameters µf and
µb, given reasonable ranges, e.g., µf should have a large
value around 0.9. We show an empirical validation for this
in Section 4.
Generating LPCAM. Each of the prototypes represents a
local visual pattern in the class: F′

i for class-related pattern
(e.g., the “leg” of “sheep” class) and B′

i for context-related
pattern (e.g., the “grassland” in “sheep” images) where the
context often correlates with the class. Here we introduce
how to apply these prototypes on the feature map block to
generate LPCAM. LPCAM can be taken as a substitute of
CAM. In Subsection 3.2, we will justify why LPCAM is
superior to CAM from two perspectives: Global Average
Pooling (GAP) and Normalization.

For each prototype, we slide it over all spatial positions
on the feature map block, and compute its similarity to the
local feature at each position. We adopt cosine similarity as
we used it for K-Means. In the end, we get a cosine simi-
larity map between prototype and feature. After computing
all similarity maps (by sliding all local prototypes), we ag-
gregate them as follows,

FGn =
1

K ′
1

∑
F′

i∈F′

sim(f(x),F′
i),

BGn =
1

K ′
2

∑
B′

i∈B′

sim(f(x),B′
i),

(5)

where sim() denotes cosine similarity. As sim() value is

3138



always within the range of [−1, 1], each pixel on the maps
of FGn and BGn has a normalized value, i.e., FGn and
BGn are normalized. Intuitively, FGn highlights the class
regions in the input image correlated to the n-th prototype,
while BGn highlights the context regions. The former
needs to be preserved and the latter (e.g., pixels highly cor-
related to backgrounds) should to be removed. Therefore,
we can formulate LPCAM as follows:

LPCAMn(x) =
ReLU (An)

max (ReLU (An))
,

An = FGn −BGn,

(6)

where the first formula is the application of the maximum-
value based normalization (the same as in CAM).

3.2. Justifications

SMU Classification: Restricted

Head Leg

𝑋#=[0.2, 0.4, 0.1]
𝑋!=[3.6, 0.0, 0.2] 𝑋" =[0.1, 0.0, 0.6]

𝑋' =[0.1, 0.4, 0.3]

Cosine 𝐹! 𝐹" 𝐹#

𝑋! 0.99 0.25 0.25

𝑋" 0.16 0.27 0.98

𝑋# 0.49 0.98 0.46

𝑋' 0.25 0.92 0.75

𝑍 0.95 0.47 0.49

𝑍= GAP(𝑋! ,X" ,X# ,X' )=[1.0, 0.2, 0.3]𝑋! 𝑋"
𝑋# 𝑋$

𝐹!=[1.5, 0.1, 0.0] 𝐹"=[0.1, 0.4, 0.1]

𝐹#=[0.1, 0.1, 0.5]

Body

𝒙𝟏

𝒙𝟐

𝒙𝟑

After Normalization

Before Normalization
𝒙𝟏 𝒙𝟐 𝒙𝟑

CAM 130 35 2

𝒙𝟏 𝒙𝟐 𝒙𝟑
head 1.0 0.1 0.0

tail 0.2 0.9 0.1

sky 0.0 0.0 0.9

LPCAM 0.60 0.50 -0.85

𝒙𝟏 𝒙𝟐 𝒙𝟑
CAM 1.00 0.27 0.02

LPCAM 1.00 0.83 0.00

Head Tail

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝑓$%& = Average(𝑓(𝒙𝟏), 𝑓(𝒙𝟐), 𝑓(𝒙𝟑)) = [12, 5, 4]

(a) (b)

𝒘𝒃𝒊𝒓𝒅=[4, 1, 1]
𝑓(𝒙𝟑)=[0, 0, 2]

CAM Eq. (1)

Lo
ca

l p
ro

to
ty

pe
s

Classifier weights

Figure 3. Justifying the advantages of LPCAM over CAM from
two perspectives: (a) clustering and (b) normalization. For sim-
plicity, in (a), we consider only three local regions on a “bird”
image: x1: “head”, x2: “tail”, x3: “sky”. In (b), we assume
two class prototypes (“head” and “tail”), and one context proto-
type (“sky”) are selected after local feature clustering.

We justify the effectiveness of LPCAM from two per-
spectives: clustering and normalization. We use the “bird”
example shown in Figure 3. In (a), we consider only three
local regions (x1, x2 and x3), for simplicity. Their seman-
tics are respectively: x1 as “head” (a discriminative object
region), x2 as “tail” (a non-discriminative region), and x3

as “sky” (a context region). We suppose f(x1), f(x2), and
f(x3) are 3-dimensional local features (2048-dimensional
features in our real implementation) respectively extracted
from the three regions, where the three dimensions repre-
sent the attributes of “head”, “tail” and “sky”, respectively.
The discriminativeness is reflected as follows. First, f(x1)
extracted on the head region x1 has a significantly higher
value of the first dimension than f(x2) and f(x3). Sec-
ond, f(x2) has the highest value on the second dimension
but this value is lower than the first dimension of f(x1),
because “tail” (x2) is less discriminative than “head” (x1)

for recognizing “bird”. In (b), we assume three local class
prototypes (“head”, “tail”, and “sky”) are selected.
Clustering. As shown in Figure 3(a), in LPCAM, x1 and
x2 go to different clusters. This is determined by their dom-
inant feature dimensions, i.e., the first dimension in f(x1)
and the second dimension in f(x2). Given all samples
of “bird”, their features clustered into the “head” cluster
all have high values in the first dimension, and features in
the “tail” have high values in the second dimension. The
centers of these clusters are taken as local prototypes and
equally used for generating LPCAM. Sliding each of pro-
totypes over the feature map block (of an input image) can
highlight the corresponding local region. The intuition is
each prototype works like a spatial-wise filter that amplifies
similar regions and suppresses dissimilar regions.

However, in CAM, the heatmap computation uses the
classifier weights biased on discriminative dimensions2. It
is because the classifier is learned from the global aver-
age pooling features, e.g., fGAP = 1

3 (f(x1) + f(x2) +
f(x3)) = [12, 5, 4] biased to the “head” dimension. As a
result, only discriminative regions (like “head” for the class
of “bird”) are highlighted on the heatmap of CAM.
Normalization. We justify the effectiveness of LPCAM by
presenting the normalization details in Figure 3(b). We de-
note the two class prototypes (“head” and “tail”) as F′

1,F
′
2

and the context prototype (“sky”) as B′
1. Based on Eq. 5

and Eq. 6, we have A(x) = 1
2

∑2
i=1 sim(f(x),F′

i) −
sim(f(x),B′

1), where x denotes any local region. For sim-
plicity, we use the first term for explanation: the prototype
“head” F′

1 has the highest similarity (1.0) to region x1 and
the prototype “tail” F′

2 has the highest similarity (0.9) to
x2. 0.9 and 1.0 are very close. After the final maximum-
value based normalization (as in the first formula of Eq. 6),
they become 1.00 and 0.83, i.e., only a small gap between
discriminative (x1) and non-discriminative (x2) regions.
However, CAM (Eq. 1) uses w⊤f(x), resulting a much
higher activation value of x1 than x2, as w is obviously
biased to “head”, i.e., 130 vs. 35 (“tail”). After the final
maximum-value based normalization, there is no change
to this bias: 1.00 and 0.27—a large gap. In other words,
the non-discriminative feature is closer to background x3,
making the boundary between foreground and background
blurry, and hard to find a threshold to separate them.

One may argue that “separate x2 and x3” can be
achieved in either CAM or LPCAM if the threshold is care-
fully selected in each method. However, it is not realistic
to do such “careful selection” for every input image. The
general way in WSSS is to use a common threshold for all
images. Our LPCAM makes it easier to find such a thresh-
old, since its heatmap has a much clearer boundary between
foreground and background. We conduct a threshold sensi-
tivity analysis in experiments to validate this.

2We empirically validate this in the supplementary materials.

3139



4. Experiments

4.1. Datasets and Implementation Details

Datasets are the commonly used WSSS datasets: PAS-
CAL VOC 2012 [11] and MS COCO 2014 [30]. PASCAL
VOC 2012 contains 20 foreground object categories and
1 background category with 1, 464 train images, 1, 449
val images, and 1, 456 test images. Following related
works [1, 8, 10, 24, 26, 51], we use the enlarged training
set with 10, 582 training images provided by SBD [13].
MS COCO 2014 dataset consists of 80 foreground cate-
gories and 1 background category, with 82, 783 and 40, 504
images in train and val sets, respectively.
Evaluation Metrics. To evaluate the quality of seed mask
and pseudo mask, we first generate them for every image in
the train set and then use the ground truth masks to com-
pute mIoU. For semantic segmentation, we train the seg-
mentation model, use it to predict masks for the images in
val and test sets, and compute mIoU based on ground
truth masks.
Implementation Details. We follow [1,8,24,26,46] to use
ResNet-50 [14] pre-trained on ImageNet [9] as the back-
bone of multi-label classification model. For fair compar-
ison with related works, we also follow [10, 36, 51] to use
WideResNet-38 [40] as backbone and follow EDAM [39]
to use saliency maps [31] to refine CAM.
Extra Hyperparameters. For K-Means clustering, we set K
as 12 and 20 for VOC and MS COCO, respectively. The
threshold τ in Eq. 2 is set to 0.1 for VOC and 0.25 for
MS COCO. For the selection of prototypes, µf is set to
0.9 on both datasets, and µb is 0.9 and 0.5 on VOC and
MS COCO, respectively. We conduct the sensitivity analy-
sis on these four hyperparameters to show that LPCAM is
not sensitive to any of them.
Common Hyperparameter (in CAM methods). The hard
threshold used to generate 0-1 seed mask is 0.3 for LP-
CAM on both datasets. Please note that we follow previous
works [8, 10, 22, 24, 26, 46] to select this threshold by using
the ground truth masks in the training set as “validation”.
Time Costs. In K-Means clustering, we use all train set
on VOC and sample 100 images per class on MS COCO
(to control time costs). If taking the time cost of train-
ing a multi-label classification model as unit 1, our extra
time cost (for clustering) is about 0.9 and 1.1 on VOC and
MS COCO, respectively.
For Semantic Segmentation. When using DeepLabV2 [5]
for semantic segmentation, we follow the common settings
[1,8,10,22,24,26] as follows. The backbone of DeepLabV2
model is ResNet-101 [14] and is pre-trained on ImageNet
[9]. We crop each training image to the size of 321 × 321
and use horizontal flipping and random crop for data aug-
mentation. We train the model for 20k and 100k iterations
on VOC and MS COCO, respectively, with the respective

batch size of 5 and 10. The weight decay is set to 5e-4 on
both datasets and the learning rate is 2.5e-4 and 2e-4 on
VOC and MS COCO, respectively.

When using UperNet, we follow ReCAM [8]. We resize
the input images to 2, 048×512 with a ratio range from 0.5
to 2.0, and then crop them to 512 × 512 randomly. Data
augmentation includes horizontal flipping and color jitter.
We train the models for 40k and 80k iterations on VOC and
MS COCO datasets, respectively, with a batch size of 16.
We deploy AdamW [32] solver with an initial learning rate
6e−5 and weight decay as 0.01. The learning rate is decayed
by a power of 1.0 according to polynomial decay schedule.

4.2. Results and Analyses

Ablation Study. We conduct an ablation study on the VOC
dataset to evaluate the two terms of LPCAM in Eq. 6: fore-
ground term FGn and background term BGn that accord
to class and context prototypes, respectively. In Table 1,
we show the mIoU results (of seed masks), false positive
(FP), false negative (FN), precision, and recall. We can
see that our methods of using class prototypes (LPCAM-
F and LPCAM) greatly improve the recalls—11.4% and
12.0% higher than CAM, reducing the rates of FN a lot.
This validates the ability of our methods to capture non-
discriminative regions of the image. We also notice that
LPCAM-F increases the rate of FP over CAM. The rea-
son is that confusing context features (e.g., “railroad” for
“train”) may be wrongly taken as class features. Fortu-
nately, when we explicitly resolve this issue by applying
the negative context term −BGn in LPCAM, this rate can
be reduced (by 3.3% for VOC), and the overall performance
(mIoU) can be improved (by 2.8% for VOC). We are thus
confident to take LPCAM as a generic substitute of CAM
in WSSS methods (see empirical validations below).

FP FN mIoU Prec. Recall

CAM 26.5 26.2 48.8 65.0 65.2
LPCAM-F 33.1+6.6 16.2-10.0 52.1+3.3 61.3-3.7 76.6+11.4

LPCAM 29.8+3.3 16.7-9.5 54.9+6.1 64.9-0.1 77.2+12.0

Table 1. An ablation study on VOC dataset. “-F” denotes only
the “Foreground” term FGn is used in Eq. 6. Please refer to the
supplementary materials for the results on MS COCO.

Generality of LPCAM. We validate the generality of
LPCAM based on multiple WSSS methods, the popular
IRN [1], the top-performing AMN [26], the saliency-map-
based EDAM [39], and the transformer-arch-based MCT-
former [45]), by simply replacing CAM with LPCAM. Ta-
ble 2 and Table 3 show the consistent superiority of LP-
CAM. For example, on the first row of Table 2 (plugging
LPCAM in IRN), LPCAM outperforms CAM by 6.1% on
seed masks and 4.7% on pseudo masks. These margins are
almost maintained when using pseudo masks to train se-

3140



SMU Classification: Restricted

Teddy Bear Dog Surfboard Train (failure)

GT

CAM

LPCAM

AMN

AMN+
LPCAM

Figure 4. Qualitative results on MS COCO. In each example pair, the left is heatmap and the right is seed mask. Please refer to the
supplementary materials for the qualitative results on VOC.

Methods Seed Mask Pseudo Mask

CAM LPCAM CAM LPCAM

V
O

C

IRN [1] 48.8 54.9+6.1 66.5 71.2+4.7

EDAM [39] 52.8 54.9+2.1 68.1 69.6+1.5

MCTformer [45] 61.7 63.5+1.8 69.1 70.8+1.7

AMN [26] 62.1 65.3+3.2 72.2 72.7+0.5

C
O

C
O IRN [1] 33.1 35.8+2.7 42.5 46.8+4.3

AMN [26] 40.3 42.5+2.2 46.7 47.7+1.0

Table 2. Taking LPCAM as a substitute of CAM in state-of-the-art
WSSS methods. Except MCTformer [45] using DeiT-S [35], other
methods all use ResNet-50 as feature extractor.

mantic segmentation models in Table 3. The improvements
on the large-scale dataset MS COCO are also obvious and
consistent, e.g., 2.7% and 2.2% for generating seed masks
in IRN and AMN, respectively.

Sensitivity Analysis for Hyperparameters. In Figure 5,
we show the quality (mIoU) of generated seed masks when
plugging LPCAM in AMN on VOC dataset. We perform
hyperparameter sensitivity analyses by changing the values
of (a) the threshold τ for dividing foreground and back-
ground local features, (b) the threshold µf for selecting
class prototypes and the threshold µb for selecting context
prototypes, (c) the number of clusters K in K-Means, and
(d) the threshold used to generate 0-1 seed mask (a common
hyperparameter in all CAM-based methods). Figure 5(a)

(d) Threshold

(a) 𝜏 (b) µ𝒇 and µ𝒃

(c) K

63
64
65
66
67

0.05 0.1 0.15 0.2

63

64

65

66

67

5 10 15 20 25

m
Io

U
 (%

)

0

20

40

60

80

0 0.2 0.4 0.6 0.8

 CAM
 LPCAM

63
64
65
66
67

0.1 0.3 0.5 0.7 0.9

µ!
µ"

m
Io

U
 (%

)

Figure 5. Sensitivity analysis on VOC, in terms of (a) τ for divid-
ing foreground and background local features, (b) µf for selecting
class prototypes and µb for selecting context prototypes, (c) the
number of clusters K in k-Means, and (d) the threshold used to
generate 0-1 seed masks from heatmaps (a common hyperparame-
ter in all CAM-based methods). Please refer to the supplementary
materials for the results on MS COCO.

shows that the optimal value of τ is 0.1. Adding a small
change does not make any significant effect on the results,
e.g., the drop is less than 1% if increasing τ to 0.2. Fig-
ure 5(b) shows that the optimal values of µf and µb are
both 0.9. The gentle curves show that LPCAM is little sen-
sitive to µf and µb. This is because classification models
(trained in the first step of WSSS) often produce overcon-

3141



Methods

VOC MS COCO

DeepLabV2 UperNet-Swin DeepLabV2 UperNet-Swin

CAM LPCAM CAM LPCAM CAM LPCAM CAM LPCAM

val test val test val test val test val val val val
IRN [1] 63.5 64.8 68.6+5.1 68.7+3.9 65.9 67.7 71.1+5.2 71.8+4.1 42.0 44.5+2.5 44.0 47.0+3.0

AMN [26] 69.5 69.6 70.1+0.6 70.4+0.8 71.7 71.8 73.1+1.4 73.4+1.6 44.7 45.5+0.8 47.1 48.3+1.2

EDAM [39] 70.9∗ 70.6∗ 71.8∗+0.9 72.1∗+1.5 71.2 71.0 72.7+1.6 72.5+1.5 40.6 42.1+1.5 41.7 43.0+1.3

MCTformer [45] 71.9† 71.6† 72.6†+0.7 72.4†+0.8 70.6 70.3 72.0+1.4 72.5+2.2 - - - -

Table 3. The mIoU results (%) of WSSS using different segmentation models on VOC and MS COCO. Seed masks are generated by either
CAM or LPCAM, and mask refinement methods are row titles. * denotes the segmentation model (ResNet-101 based DeepLabV2) is
pre-trained on MS COCO. † denotes the segmentation model (WideResNet-38 based DeepLabV2) is pre-trained on VOC.

Methods Sal.
VOC MS COCO

val test val

R
es

N
et

-5
0

IRN [1] CVPR’19 63.5 64.8 42.0
LayerCAM [19]TIP’21 63.0 64.5 -
AdvCAM [24] CVPR’21 68.1 68.0 44.2
RIB [22] NeurIPS’21 68.3 68.6 44.2
ReCAM [8] CVPR’22 68.5 68.4 42.9
IRN+LPCAM 68.6 68.7 44.5
SIPE [7] CVPR’22 68.8 69.7 40.6
OOD [25]+Adv CVPR’22 69.8 69.9 -
AMN [26] CVPR’22 69.5 69.6 44.7
AMN+LPCAM 70.1 70.4 45.5
ESOL [28] NeurIPS’22 69.9∗ 69.3∗ 42.6
CLIMS [42] CVPR’22 70.4∗ 70.0∗ -
EDAM [39] CVPR’21 ✓ 70.9∗ 71.8∗ -
EDAM+LPCAM ✓ 71.8∗ 72.1∗ 42.1

W
id

eR
es

N
et

-3
8

Spatial-BCE [38] ECCV’22 70.0 71.3 35.2
BDM [43] ACMMM’22 ✓ 71.0 71.0 36.7
RCA [51]+OOA CVPR’22 ✓ 71.1 71.6 35.7
RCA [51]+EPS CVPR’22 ✓ 72.2 72.8 36.8
HGNN [47] ACMMM’22 ✓ 70.5∗ 71.0∗ 34.5
EPS [27] CVPR’21 ✓ 70.9∗ 70.8∗ -
RPIM [34] ACMMM’22 ✓ 71.4∗ 71.4∗ -
L2G [18] CVPR’22 ✓ 72.1∗ 71.7∗ 44.2

D
ei

T-
S MCTformer [45] CVPR’22 71.9† 71.6† 42.0

MCTformer+LPCAM 72.6† 72.4† 42.8

Table 4. The mIoU results (%) based on DeepLabV2 on VOC
and MS COCO. The side column shows three backbones of multi-
label classification model. “Sal.” denotes using saliency maps. *
denotes the segmentation model is pre-trained on MS COCO. †

denotes the segmentation model is pre-trained on VOC.

fident (sharp) predictions [12], i.e., output probabilities are
often close to 0 or 1. It is easy to set thresholds (µf and
µb) on such sharp values. In Figure 5(c), the best mIoU of
seed mask is 65.3% when K=12, and it drops by only 0.7
percentage points when K goes up to 20. In Figure 5(d),
LPCAM shows much gentler slopes than CAM around their
respective optimal points, indicating its lower sensitivity to
the changes of this threshold.

Qualitative Results. Figure 4 shows qualitative exam-
ples where LPCAM leverages both discriminative and non-
discriminative local features to generate heatmaps and 0-1
masks. In the leftmost two examples, CAM focuses on only
discriminative features, e.g., the “head” regions of “teddy
bear” and “dog”, while our LPCAM has better coverage on
the non-discriminative feature, e.g., the “leg”, “body” and
“tail” regions. In the “surfboard” example, the context pro-
totype term −BGn in Eq. 6 helps to remove the context
“waves”. In the rightmost example, we show a failure case:
LPCAM succeeds in capturing more object parts of “train”
but unnecessarily covers more on the context “railroad”. We
think the reason is the strong co-occurrence of “train” and
“railroad” in the images of “train”.
Comparing to Related Works. We compare LPCAM
with state-of-the-art methods in WSSS. As shown in Ta-
ble 4, on the common setting (ResNet-50 based classifica-
tion model, and ResNet-101 based DeepLabV2 segmenta-
tion model pre-trained on ImageNet), our AMN+LPCAM
achieves the state-of-the-art results on VOC (70.1% mIoU
on val and 70.4% on test). On the more challeng-
ing MS COCO dataset, our AMN+LPCAM (ResNet-50 as
backbone) outperforms the state-of-the-art result AMN and
all related works based on WRN-38.

5. Conclusions

We pointed out that the crux behind the poor coverage of
the conventional CAM is that the global classifier captures
only the discriminative features of objects. We proposed a
novel method dubbed LPCAM to leverage both discrimi-
native and non-discriminative local prototypes to generate
activation maps with complete coverage on objects. Our
extensive experiments and studies on two popular WSSS
benchmarks showed the superiority of LPCAM over CAM.
Acknowledgments The author gratefully acknowledges
the support of the Lee Kong Chian (LKC) Fellow-
ship fund awarded by Singapore Management University,
and the A*STAR under its AME YIRG Grant (Project
No.A20E6c0101).

3142



References
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly su-

pervised learning of instance segmentation with inter-pixel
relations. In CVPR, pages 2209–2218, 2019. 1, 2, 3, 6, 7, 8

[2] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic
affinity with image-level supervision for weakly supervised
semantic segmentation. In CVPR, pages 4981–4990, 2018.
3

[3] Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson
Piramuthu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Weakly-
supervised semantic segmentation via sub-category explo-
ration. In CVPR, pages 8991–9000, 2020. 3

[4] Liyi Chen, Weiwei Wu, Chenchen Fu, Xiao Han, and Yun-
tao Zhang. Weakly supervised semantic segmentation with
boundary exploration. In ECCV, pages 347–362, 2020. 3

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. TPAMI, 40(4):834–848, 2017.
1, 6

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, pages 801–818, 2018. 1

[7] Qi Chen, Lingxiao Yang, Jian-Huang Lai, and Xiaohua
Xie. Self-supervised image-specific prototype exploration
for weakly supervised semantic segmentation. In CVPR,
pages 4288–4298, 2022. 8

[8] Zhaozheng Chen, Tan Wang, Xiongwei Wu, Xian-Sheng
Hua, Hanwang Zhang, and Qianru Sun. Class re-activation
maps for weakly-supervised semantic segmentation. In
CVPR, 2022. 1, 3, 6, 8

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6

[10] Ye Du, Zehua Fu, Qingjie Liu, and Yunhong Wang. Weakly
supervised semantic segmentation by pixel-to-prototype
contrast. In CVPR, pages 4320–4329, 2022. 3, 6

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88(2):303–338, 2010. 2, 6

[12] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In ICML, pages
1321–1330, 2017. 8

[13] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In ICCV, pages 991–998. IEEE, 2011. 6

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 3, 6

[15] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,
Zhuowen Tu, and Philip HS Torr. Deeply supervised salient
object detection with short connections. In CVPR, pages
3203–3212, 2017. 3

[16] Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu, and
Jingdong Wang. Weakly-supervised semantic segmentation

network with deep seeded region growing. In CVPR, pages
7014–7023, 2018. 3

[17] Peng-Tao Jiang, Qibin Hou, Yang Cao, Ming-Ming Cheng,
Yunchao Wei, and Hong-Kai Xiong. Integral object mining
via online attention accumulation. In ICCV, pages 2070–
2079, 2019. 3

[18] Peng-Tao Jiang, Yuqi Yang, Qibin Hou, and Yunchao Wei.
L2g: A simple local-to-global knowledge transfer frame-
work for weakly supervised semantic segmentation. In
CVPR, 2022. 3, 8

[19] Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming
Cheng, and Yunchao Wei. Layercam: Exploring hierarchical
class activation maps for localization. TIP, 30:5875–5888,
2021. 8

[20] Alexander Kolesnikov and Christoph H Lampert. Seed, ex-
pand and constrain: Three principles for weakly-supervised
image segmentation. In ECCV, pages 695–711, 2016. 1

[21] Hyeokjun Kweon, Sung-Hoon Yoon, Hyeonseong Kim,
Daehee Park, and Kuk-Jin Yoon. Unlocking the poten-
tial of ordinary classifier: Class-specific adversarial erasing
framework for weakly supervised semantic segmentation. In
ICCV, pages 6994–7003, 2021. 3

[22] Jungbeom Lee, Jooyoung Choi, Jisoo Mok, and Sungroh
Yoon. Reducing information bottleneck for weakly super-
vised semantic segmentation. In NeurIPS, pages 27408–
27421, 2021. 1, 3, 6, 8

[23] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and
Sungroh Yoon. Ficklenet: Weakly and semi-supervised se-
mantic image segmentation using stochastic inference. In
CVPR, pages 5267–5276, 2019. 3

[24] Jungbeom Lee, Eunji Kim, and Sungroh Yoon. Anti-
adversarially manipulated attributions for weakly and semi-
supervised semantic segmentation. In CVPR, pages 4071–
4080, 2021. 1, 3, 6, 8

[25] Jungbeom Lee, Seong Joon Oh, Sangdoo Yun, Junsuk Choe,
Eunji Kim, and Sungroh Yoon. Weakly supervised semantic
segmentation using out-of-distribution data. In CVPR, 2022.
2, 8

[26] Minhyun Lee, Dongseob Kim, and Hyunjung Shim. Thresh-
old matters in wsss: Manipulating the activation for the ro-
bust and accurate segmentation model against thresholds. In
CVPR, 2022. 1, 2, 3, 6, 7, 8

[27] Seungho Lee, Minhyun Lee, Jongwuk Lee, and Hyunjung
Shim. Railroad is not a train: Saliency as pseudo-pixel su-
pervision for weakly supervised semantic segmentation. In
CVPR, pages 5495–5505, 2021. 3, 8

[28] Jinlong Li, Zequn Jie, Xu Wang, Xiaolin Wei, and Lin
Ma. Expansion and shrinkage of localization for weakly-
supervised semantic segmentation. In NeurIPS, 2022. 8

[29] Xueyi Li, Tianfei Zhou, Jianwu Li, Yi Zhou, and Zhaoxiang
Zhang. Group-wise semantic mining for weakly supervised
semantic segmentation. In AAAI, volume 35, pages 1984–
1992, 2021. 3

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. 2, 6

3143



[31] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi Feng,
and Jianmin Jiang. A simple pooling-based design for real-
time salient object detection. In CVPR, pages 3917–3926,
2019. 6

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. ICLR, 2019. 6

[33] László Lovász. Random walks on graphs. Combinatorics,
Paul erdos is eighty, 2(1-46):4, 1993. 3

[34] Chen Qian and Hui Zhang. Region-based pixels integration
mechanism for weakly supervised semantic segmentation. In
ACMMM, pages 6165–6173, 2022. 8

[35] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357, 2021. 7

[36] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and
Xilin Chen. Self-supervised equivariant attention mech-
anism for weakly supervised semantic segmentation. In
CVPR, pages 12275–12284, 2020. 3, 6

[37] Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming
Cheng, Yao Zhao, and Shuicheng Yan. Object region mining
with adversarial erasing: A simple classification to semantic
segmentation approach. In CVPR, pages 1568–1576, 2017.
1, 2

[38] Tong Wu, Guangyu Gao, Junshi Huang, Xiaolin Wei, Xi-
aoming Wei, and Chi Harold Liu. Adaptive spatial-bce loss
for weakly supervised semantic segmentation. In ECCV,
pages 199–216, 2022. 8

[39] Tong Wu, Junshi Huang, Guangyu Gao, Xiaoming Wei, Xi-
aolin Wei, Xuan Luo, and Chi Harold Liu. Embedded dis-
criminative attention mechanism for weakly supervised se-
mantic segmentation. In CVPR, pages 16765–16774, 2021.
2, 3, 6, 7, 8

[40] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel.
Wider or deeper: Revisiting the resnet model for visual
recognition. Pattern Recognition, 90:119–133, 2019. 6

[41] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, pages 418–434, 2018. 1

[42] Jinheng Xie, Xianxu Hou, Kai Ye, and Linlin Shen. Cross
language image matching for weakly supervised semantic
segmentation. In CVPR, pages 4483–4492, 2022. 8

[43] Jianjun Xu, Hongtao Xie, Hai Xu, Yuxin Wang, Sun-ao Liu,
and Yongdong Zhang. Boat in the sky: Background decou-
pling and object-aware pooling for weakly supervised se-
mantic segmentation. In ACMMM, pages 5783–5792, 2022.
8

[44] Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid
Boussaid, Ferdous Sohel, and Dan Xu. Leveraging auxiliary
tasks with affinity learning for weakly supervised semantic
segmentation. In ICCV, pages 6984–6993, 2021. 3

[45] Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid
Boussaid, and Dan Xu. Multi-class token transformer for
weakly supervised semantic segmentation. In CVPR, pages
4310–4319, 2022. 1, 2, 6, 7, 8

[46] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xiansheng Hua,
and Qianru Sun. Causal intervention for weakly-supervised

semantic segmentation. In NeurIPS, pages 655–666, 2020.
1, 3, 6

[47] Meijie Zhang, Jianwu Li, and Tianfei Zhou. Multi-granular
semantic mining for weakly supervised semantic segmenta-
tion. In ACMMM, pages 6019–6028, 2022. 8

[48] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and
Thomas S Huang. Adversarial complementary learning for
weakly supervised object localization. In CVPR, pages
1325–1334, 2018. 1, 2

[49] Ting Zhao and Xiangqian Wu. Pyramid feature attention net-
work for saliency detection. In CVPR, pages 3085–3094,
2019. 3

[50] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, pages 2921–2929, 2016. 1

[51] Tianfei Zhou, Meijie Zhang, Fang Zhao, and Jianwu Li. Re-
gional semantic contrast and aggregation for weakly super-
vised semantic segmentation. In CVPR, pages 4299–4309,
2022. 3, 6, 8

3144




