
From Node Interaction to Hop Interaction: New Effective and Scalable Graph
Learning Paradigm

Jie Chen1 Zilong Li1 Yin Zhu1 Junping Zhang1 Jian Pu2∗

1 Shanghai Key Lab of Intelligent Information Processing, School of Computer Science,
Fudan University, Shanghai 200433, China

2 Institute of Science and Technology for Brain-Inspired Intelligence,
Fudan University, Shanghai 200433, China

{chenj19, yinzhu20, jpzhang, jianpu}@fudan.edu.cn, zilongli21@m.fudan.edu.cn

Abstract

Existing Graph Neural Networks (GNNs) follow the
message-passing mechanism that conducts information in-
teraction among nodes iteratively. While considerable
progress has been made, such node interaction paradigms
still have the following limitation. First, the scalability lim-
itation precludes the broad application of GNNs in large-
scale industrial settings since the node interaction among
rapidly expanding neighbors incurs high computation and
memory costs. Second, the over-smoothing problem re-
stricts the discrimination ability of nodes, i.e., node rep-
resentations of different classes will converge to indistin-
guishable after repeated node interactions. In this work, we
propose a novel hop interaction paradigm to address these
limitations simultaneously. The core idea is to convert the
interaction target among nodes to pre-processed multi-hop
features inside each node. We design a simple yet effective
HopGNN framework that can easily utilize existing GNNs to
achieve hop interaction. Furthermore, we propose a multi-
task learning strategy with a self-supervised learning ob-
jective to enhance HopGNN. We conduct extensive exper-
iments on 12 benchmark datasets in a wide range of do-
mains, scales, and smoothness of graphs. Experimental re-
sults show that our methods achieve superior performance
while maintaining high scalability and efficiency. The code
is at https://github.com/JC-202/HopGNN .

1. Introduction
Graph Neural Networks (GNNs) have recently become

very popular and have demonstrated great results in a
wide range of graph applications, including social net-
works [38], point cloud analysis [37] and recommenda-
tion systems [21]. The core success of GNNs lies in the
message-passing mechanism that iteratively conducts infor-

Figure 1. Comparison of node interaction and hop interaction.
The hop interaction first pre-computes multi-hop features and then
conducts non-linear interaction among different hops via GNNs,
which enjoy high efficiency and effectiveness.

mation interaction among nodes [8, 17, 18]. Each node in
a graph convolution layer first aggregates information from
local neighbors and combines them with non-linear trans-
formation to update the self-representation [20, 27, 42]. Af-
ter stacking K layers, nodes can capture long-range K-hop
neighbor information and obtain representative representa-
tions for downstream tasks [29, 45]. However, despite the
success of such popular node interaction paradigms, the
number of neighbors for each node would grow exponen-
tially with layers [2, 40], resulting in the well-known scala-
bility and over-smoothing limitation of GNNs.

The scalability limitation precludes the broad applica-
tion of GNNs in large-scale industrial settings since the
node interaction among rapidly expanding neighbors in-
curs high computation and memory costs [15, 51]. Al-
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though we can reduce the size of neighbors by sampling
techniques [9, 20], it still executes node interaction itera-
tively during training, and the performance is highly sensi-
tive to the sampling quality [15]. Recently, scalable GNNs
that focus on simplifying or decoupling node interactions
have emerged [16, 43, 52]. Such decoupled GNNs first pre-
compute the linear aggregation of K-hop neighbors to gen-
erate node features and then utilize the MLP to each node
without considering the graph structure during training and
inference. However, despite high efficiency and scalability,
such methods lead to suboptimal results due to the lack of
nonlinear interactions among nodes.

Another limitation is over-smoothing, which restricts the
discriminative ability of nodes, i.e., node representations
will converge to indistinguishable after repeated node in-
teractions [5, 31]. On one hand, it causes performance de-
generation when increasing layers of GNNs [27, 33]. On
the other hand, in some heterophily graphs where con-
nected nodes are usually from different classes, shallow
GNNs are also surprisingly inferior to pure Multi-ayer Per-
ceptrons (MLPs) [36, 53]. The reason is the interaction
among massive local inter-class neighbors would blur class
boundaries of nodes [6, 22, 53]. Recently, to carefully con-
sider the neighbor influence and maintain the node dis-
crimination, emerging advanced node interaction GNNs,
such as deep GNNs with residual connections [11, 29] and
heterophilic-graph-oriented GNNs with adaptive aggrega-
tion [4, 35, 39, 46], have achieved promising results. How-
ever, these advanced node interactions suffer high compu-
tational costs and fail to handle large-scale datasets.

These two limitations have typically been studied sepa-
rately, as addressing one often necessitates compromising
the other. However, can we bridge the two worlds, enjoying
the low-latency, node-interaction-free of decoupled GNNs
and the high discrimination ability of advanced node inter-
action GNNs simultaneously? We argue that it is possible
to transform the node interaction into a new hop interaction
paradigm without losing performance, but drastically reduc-
ing the computational cost. As shown in Figure 1, the core
idea of hop interaction is to decouple the whole node in-
teraction into two parts, the non-parameter hop feature pre-
processing and non-linear interaction among hops. Inspired
by the recommendation system, the non-linear interaction
among different semantic features can enhance discrimina-
tion [19], e.g., model the co-occurrence of career, sex and
age of a user to identify its interest. By treating the precom-
puted L hop neighbors as L semantic features within each
node, we can consider node classification as a feature inter-
action problem, i.e., model the non-linear hop interaction to
obtain discriminative node representations.

To this end, we design a simple yet effective HopGNN
framework to address the above limitation simultaneously.
It first pre-computes the multi-hop representation accord-

ing to the graph structure. Then, without loss of generality,
we can utilize GNNs over a multi-hop feature graph inside
each node to achieve hop interaction flexibly and explicitly.
Specifically, we implement an attention-based interaction
layer and average pooling for the HopGNN to fuse multi-
hop features and generate the final prediction. Furthermore,
to show the generality and flexibility of our framework,
we provide a multi-task learning strategy that combines the
self-supervised objective to enhance performance.

Our contributions are summarized as follows:
1. New perspective: We propose a new graph learn-

ing paradigm going from node to hop interaction. It con-
ducts non-linear interactions among pre-processed multi-
hop neighbor features inside each node.

2. General and flexible framework: We design a simple
yet effective HopGNN framework for hop interaction. Be-
sides, the HopGNN is general and flexible to combine the
self-supervised objective to easily enhance performance.

3. State-of-the-art performance: Experimental results
show HopGNN achieves state-of-the-art performance on 12
graph datasets of diverse domains, sizes and smoothness
while maintaining high scalability and efficiency.

2. Background and Related Works
2.1. Notation and Node Classification Problem

Consider a graph G = (V, E), with N nodes and E
edges. Let A ∈ RN×N be the adjacency matrix, with
Ai,j = 1 if edge(i, j) ∈ E , and 0 otherwise. X ∈ RN×d

and Y ∈ RN×c represent the features and labels of nodes,
repsectively. Given a set of labeled nodes VL, the task of
node classification is to predict the labels of the unlabeled
nodes by exploiting the graph structure A and features X.

Besides, the notion of homophily and heterophily cor-
responds to the smoothness of the signal Y on the graph
G. The edge homophily ratio of the graph is defined
as Hedge =

|{(u,v):(u,v)∈E∧yu=yv}|
|E| , while Hedge tends to 1

means high homophily and low heterophily, and vice versa.

2.2. Graph Neural Networks

Standard node interaction GNNs. Each layer of
most node interaction GNNs follows the message-
passing mechanism [18] that is composed of two
steps: (1) aggregate information from neighbors:
ml

i = AGGREGATE(hj
l, vj ∈ Ni); (2) update rep-

resentation: hi
l+1 = UPDATE(hi

l,ml
i). To capture

long-range information, standard node interaction GNNs
alternately stack graph convolutions, linear layers and
non-linear activation functions to generate representative
representations of nodes [44]. Without loss of generality,
the widely used GNNs follow the following form:

HL = Â σ
(
· · ·σ

(
ÂXW

)
· · ·

)
WL−1 (1)
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where Â is a normalized weighted matrix for feature prop-
agation, Wl is a learnable weight matrix and σ is a non-
linear activation function Relu. For example, the GCN [27]
utilizes the symmetric normalized adjacent matrix as Â,
GraphSAGE [20] utilizes the random walk normalized ver-
sion, and the GAT [42] applies the attention mechanism [41]
to obtain a learnable weighted Â.
Advanced node interaction GNNs. To avoid over-
smoothing and heterophily problems that arise from simply
stacking graph convolution layers [31, 36], most advanced
node interaction GNNs adopt residual connections [30, 45]
or adaptive aggregation strategies [7, 32, 36, 53] to extend
standard GNNs. For instance, GCNII [11] is the SOTA deep
GNN that combines GCN with initial connection and iden-
tity mapping. Geom-GCN [36] and WRGAT [39] transform
the original graph by discovering the non-local semantic
similarity neighbor. H2GCN [53] utilizes ego and neigh-
bor separation and higher-order combination to improve the
performance of GNNs under heterophily. GGCN [46] adopt
signed messages from nodes’ local neighbors and a degree
correction mechanism for node-wise rescaling. FAGCN [4]
and ACM-GCN [35] apply low-pass and high-pass filters in
each graph convolution layer. Despite the high expressive-
ness of these advanced GNNs, they suffer from high compu-
tational costs and limited scalability to large-scale graphs.
Sampling-based GNNs. Sampling-based GNNs reduce
memory consumption by sampling and minibatch training
to approximate the full-batch GNNs. There are three cat-
egories of widely-used sampling strategies: 1) Node-wise
sampling, GraphSAGE [20] randomly samples a fixed-size
set of neighbors for each node in every layer, and VR-
GCN [10] further analyzes the variance reduction for node
sampling. 2) Layer-wise sampling, Fast-GCN [9] samples
a fixed number of nodes at each layer, and ASGCN [24]
proposes adaptive layer-wise sampling with better variance
control. 3) Graph-wise sampling, ClusterGCN [13] first
partitions the entire graph into clusters and then samples
the nodes in the clusters, and GraphSAINT [49] directly
samples a subgraph for mini-batch training. However, these
sampling strategies still conduct node interactions that face
high communication costs during training, and the model
performance is highly sensitive to sampling quality [15].
Decoupled GNNs. Unlike standard GNNs, which se-
quentially stack non-linear graph convolution layers, de-
coupled GNNs simplify the graph convolution by decou-
pling the model into two steps: hop feature propagation
and an MLP classifier for prediction. Depending on the
propagation order, there are two typical ways to decou-
ple these two operations: (1) Pre-processing that first pre-
computes the feature propagation, e.g., X =

∑L
i=0 θiÂ

iX,
and then applies the MLP classifier for each node represen-
tation XL individually. SGC [43] simplifies GNNs into a
linear model Y = ÂLXW, which achieves faster com-

putation. However, it only considers the L hop features,
and the linear layer limits its expressiveness. S2GC [52]
extends the SGC by using the simple spectral graph con-
volution to average the propagated features in multi-hop.
It also proposes utilizing MLP as a classifier. Different
from S2GC, SIGN [16] uses the concatenation of multi-
hop features, with an individual W for each hop transfor-
mation, to achieve better performance. (2) Post-processing
that propagates multi-hop features after an MLP predictor:
Y =

∑L
i=0 θiÂ

i MLP(X). To this end, APPNP [28] uti-
lizes the approximate personal PageRank filter as a feature
propagator, while GPRGNN [14] further utilizes a learnable
generalized PageRank for the weights of theta to enhance
performance. However, such post-processing still needs
to propagate high-cost features during training, limiting its
scalability compared to pre-processing.

Although decoupled GNNs efficiently propagate fea-
tures, they usually suffer suboptimal results in heterophilic
graphs due to the lack of non-linear node interactions. Our
proposed approach builds on the efficiency of pre-computed
hop features, as in decoupled GNNs. However, we intro-
duce a novel paradigm that explicitly considers the non-
linear interactions among hops, which is more expressive
and discriminative without sophisticated node interactions.

3. Methodology
3.1. HopGNN

As illustrated in Figure 2, our proposed HopGNN frame-
work is composed of four steps, namely, hop preprocessing,
hop encoding, hop interaction, hop fusion and prediction.
We introduce them one by one in detail.
Hop Pre-processing. Extracting information from long-
range neighbors is crucial for nodes to achieve represen-
tative representation [1, 45]. Unlike the node interaction
GNNs, which stack L layers to reach L-hop neighbors
and suffer high computational costs with limited scala-
bility [51], our proposed framework is built upon a hop-
information pre-processing step. It pre-computes multi-hop
node information from the node’s original feature vectors
and the l-hop feature can be simplified as:

X̃ = [Xp;X
1
p...;X

L
p ], Xl

p = ÂlX, (2)

where Â is the normalized adjacent matrix, and X̃ contains
the multi-hop neighbor information. This pre-processing
does not require any learnable parameters and only needs
to be computed once in a CPU or distributed system for
large-scale graphs. As a result, it can make models naturally
support mini-batch training and easily scale to large datasets
since it eliminates the computational complexity of node
aggregation during training and inference.
Hop Encoding. To obtain sufficient expressive power, it
is necessary to have at least one learnable linear trans-

7878



Hop Interaciton via GNNs Hop Encoding with

0

1

2

3

4

Hop Fusion and Prediction

0

1

2

3

4

Hop Pre-processing

 3-hop

0-hop

1-hop

2-hop

1

0

4

2 3

Figure 2. Overview of the proposed HopGNN framework with four steps, illustration with four hops. The core idea of HopGNN is to
convert the interaction target of standard GNNs from nodes to pre-processed multi-hop features inside each node, which can enhance the
nodes’ discriminative power without node interaction.

formation to transform the input hop features into higher-
level hop embedding. For parameter efficiency, we apply a
shared parametered linear layer f to encode all hops. More-
over, to incorporate the semantic order information of the
hops, we add a 1D learnable hop-order encoding vector
Eorder ∈ R1×L×d to each node hop embedding.

H =
[
f(Xp); f(X

1
p); · · · ; f(XL

p )
]
+Eorder. (3)

The hop embedding H ∈ RN×L×d contains multi-hop
neighbor information. The Eorder can help the following
order-insensitive hop interaction layer to capture hop-order
information, which is important for the heterophily datasets,
as further discussed in Section 4.3.
Hop Interaction. Inspired by [19], we argue that the un-
derlying co-occurrence among different hop features inside
each node contains the clue for its discrimination. There-
fore, our goal is to model the non-linear interaction among
hops to enhance discrimination without node interaction.
Since message-passing is widely used in GNNs for non-
linear interactions among nodes [18], to achieve hop inter-
action, we take advantage of well-designed GNNs by shift-
ing the interaction target from nodes to multi-hop features
inside each node. Specifically, for node vi, we construct a
fully-connected hop feature graph Ghop

i , where each node
v′l in Ghop

i corresponds to an l-th hop feature of the original
node vi. Then, by leveraging any standard GNNs to model
node interactions on the feature graph Ghop

i , we can effec-
tively capture multi-hop feature interactions of node vi. To
model high-order interactions among hops, we can stack K
hop interaction layers with residual connections as follows:

Hk
i = GNN(Ghop

i ,Hk−1
i ) +Hk−1

i , k = 1 · · ·K, (4)

where Hk
i ∈ RL×d is the L hop features of node vi after

the k-th hop interaction. In practice, we do not need to ex-
plicitly construct the hop feature graph Ghop for each node.
Instead, without loss of generality, we implement the hop
interaction GNN in Eq. (4) with a standard multi-head self-
attention mechanism [41, 42] to capture the complex de-
pendencies between hop features, i.e., pairwise interactions

between two hop features in different semantic subspaces.
Specifically, the single head of self-attention on node vi is
calculated as follows:

Ahop
i = softmax

(
HiWQ(HiWK)⊤√

d

)
, (5)

GNN(Ghop
i ,Hi) = Ahop

i HiWV, (6)

where we omit the superscript k of layers for simplicity.
Here, the WQ, WK, and WV are learnable projection ma-
trices in each interaction layer. The resulting Ahop

i can be
interpreted as a weighted feature interaction graph that cap-
tures the interaction strength among multi-hop features.

Using the multi-head attention for hop interaction can
be regarded as applying the GAT [42] as the hop interac-
tion GNN over the hop feature graph Ghop

i in Eq (4). We
also compared other GNN architectures [20, 27] to model
hop interactions in Section 4.3 and found that they can also
achieve comparable performance, which validates the gen-
erality and flexibility of our hop interaction framework.
Hop Fusion and Prediction. After hop interaction, we
apply a fusion and prediction function g for each node to
generate the final output. We first apply a mean fusion to
average all hop representations HK ∈ RN×L×d into a sin-
gle representation Z ∈ RN×d. Here, we have tested other
fusion mechanisms, but we did not observe noticeable im-
provements. Then, we utilize another simple linear layer
with softmax activation for the final prediction Ŷ ∈ RN×c.

Z = fusion(HK), Ŷ = softmax(linear(Z)). (7)

The training objective of HopGNN is the cross-entropy loss
between the ground truth labels Y and the prediction Ŷ:

Lce = −
∑
i∈VL

c∑
j=1

Yij ln Ŷij . (8)

Although training HopGNN with only Lce achieves com-
petitive results, to show the generality and flexibility of our
framework, we will discuss how to combine HopGNN with
self-supervised objectives [11, 48] in the following section.
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Table 1. Time and memory complexities. We consider time complexity for the feature propagation and transformation in the network and
memory complexity for storing the activations of node embeddings (we ignore model weights since they are negligible compared to the
activations). L and K are the number of hops and the non-linear transformation, respectively, and d is the feature dimension (assumed to
be fixed for all layers). N , |E| and s are the numbers of nodes, edges, and sampling neighborhoods, respectively. b is the minibatch size.

Category Method Minibatch Pre-Processing Time Training Time Training Memory
Standard GCN/GCNII/... × - O(LEd + LNd2) O(LNd)

Sampling

Node GraphSAGE ✓ O(sLN) O(sLNd2) O(bsLd)

Layer FastGCN/AS-GCN ✓ - O(sLNd2) O(bsLd)

Graph Cluster-GCN ✓ O(E) O(LEd + LNd2) O(bLd)

Graph GraphSAINT ✓ O(sN) O(LEd + LNd2) O(bLd)

Decoupling
Pre SGC/S2GC ✓ O(LEd) O(Nd2) O(bd)

Pre SIGN ✓ O(LEd) O(KNd2) O(bLd)

Post APPNP/GPRGNN × - O(KNd2 + LEd) O(LNd)

Hop Interaction HopGNN ✓ O(LEd) O(KNd2 + KNL2d) O(bLd)

3.2. Self-Supervised Enhancement

In this subsection, we show that it can easily incorpo-
rate the self-supervised learning (SSL) objective to further
enhance the performance of HopGNN. Recall that the key
idea of HopGNN is to conduct interactions among multi-
hops to enhance the discrimination of nodes. The desired
interaction would help nodes to capture the task-relevant
features and drop task-irrelevant features. To encourage
such property, recent feature-level SSL studies aim to max-
imize feature invariance between two views and minimize
the redundancy between dimensions [48, 50]. Formally,
in Barlow Twins [48], given the cross-correlation matrix
C ∈ {−1, 1}d×d between two views, the SSL objective is:

Lssl ≜
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+ α
∑
i

∑
j ̸=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

, (9)

where α is a scalar to control the decorrelation strength.
Inspired by them, we further use multi-task learning to train
the HopGNN, with the Lce as the main task and Lssl as the
auxiliary task, and the overall training objective is:

Lfinal = Lce + λLssl . (10)

In our case, as shown in Figure 3, the additional SSL
objective is applied after the hop interaction to enhance
the discrimination. To generate two views of hop inter-
action features, distinguished from the previous works to
adopt sophisticated augmentation [11, 34], we simply for-
ward HopGNN twice with different dropout units as aug-
mentations to obtain HK and H′K . Since the training of
our model is independent of the graph structure, complex
graph-based data augmentation operations are not needed.
Then, we not only calculate Lce with fusion and prediction
steps on both views but also flatten and normalize them to

GNN

Hop Encoding Hop Interaction Fusion Preidiction

GNN

Hop Encoding Hop Interaction Fusion Preidiction

Dropout

Dropout

Dropout in both sides
1

Figure 3. Multi-task learning with SSL for HopGNN. Illustration
inspired by Barlow Twins [48].

calculate the cross-correlation matrix C for Lssl. Optimiz-
ing such the SSL objective can maximize the task-relevant
mutual information and minimize the task-irrelevant infor-
mation [50]. It would help the learned hop interaction repre-
sentation HK to extract minimal and sufficient information
about downstream tasks from multi-hop neighbors.

Compared with other instance-level contrastive learn-
ing [12, 25], the memory costs of the feature-level Lssl do
not increase with the graph size since it focuses on the fea-
ture dimension, which is scalable and efficient. We also
provide the result of HopGNN with contrastive learning in
the Appendix.

3.3. Discussions

Connection to decoupled GNNs. From the perspective of
hop interaction, the decoupled GNNs learn a fixed linear
combination of multi-hop features for all nodes, which is
equivalent to applying fixed hop attention coefficients with
diagonal parts and remaining off-diagonal as 0. However,
such fixed coefficients ignoring the pairwise hop interaction
would cause sub-optimal results since each hop’s contribu-
tion for different nodes may be different. In contrast, our
proposed HopGNN utilizes the self-attention mechanism to
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learn the representations of different-hop neighbors based
on their semantic correlation for each node, which helps the
model learn more informative node representations.
Complexity analysis. Table 1 provides a detailed asymp-
totic complexity comparison between HopGNN and other
representative GNN methods. 1) The standard node inter-
action GNNs need full-batch training, and the time com-
plexity contains the feature propagation part O(LEd) over
edges and feature transformation O(LNd2) over nodes.
Moreover, for memory complexity, we need to store the
activation of node embedding in each layer, which has
O(LNd). Note that we ignore the memory usage of model
weights here since they are negligible compared to the ac-
tivations [15]. The time and memory complexity of full-
batch node interaction GNNs are highly correlated to the
size of the graphs and result in the scalability problem. 2)
Most sampling GNNs reduce the training time and mem-
ory cost via mini-batching with the corresponding sampling
neighbor size s. 3) For pre-computed decoupled GNNs,
thanks to the pre-processing of feature propagation, the
training complexity is the same as the traditional mini-batch
training, e.g., MLPs with feature transformation, which is
usually smaller than the sampling methods. However, the
post-computed decoupled GNNs still require feature prop-
agation during training, leading to a cost similar to that of
full-batch GNNs. 4) The computational cost of HopGNN
is similar to that of the pre-computed decoupled GNN,
which is also scalable to large-scale graphs. Compared with
SIGN, the HopGNN explicitly conducts non-linear interac-
tions among L hops, which is more expressive and requires
O(KNL2d) additional time complexity of K interactions.

4. Experiments

4.1. Setup

Datasets. We comprehensively evaluate the performance of
HopGNN on 12 benchmark datasets. These datasets vary in
domain, size and smoothness, including three standard ho-
mophily citation datasets [27], six well-known heterophily
datasets [36], two large-scale inductive datasets [49] and a
large-scale transductive OGB products dataset [23]. For the
homophily and heterophily benchmark datasets, we use the
same 10 public fixed training/validation/test splits as pro-
vided in [36,53]. For large-scale datasets, we use their pub-
lic splits in [23,49]. The statistics of these datasets are sum-
marized in Tables 2 and 3. Details on these datasets can be
found in Appendix.
Baselines. We compare HopGNN with various baselines,
including (1) MLP; (2) standard node-interaction GNN
methods: GCN [27], GAT [42], GraphSAGE [20] and GC-
NII [11]; (3) heterophilic GNNs with adaptive node in-
teraction: H2GCN [53], WRGAT [39], ACM-GCN [35],
GGCN [46] (4) sampling GNNs: FastGCN [9], AS-

GCN [24], ClusterGNN [13], GraphSAINT [49]; and (5)
decoupled GNNs: S2GC [52], SIGN [16], APPNP [28],
GPRGNN [14]. We report results from previous works with
the same experimental setup if available. If the results are
not previously reported and codes are provided, we imple-
ment them based on the official codes and conduct a hyper-
parameter search. We provide more baseline results in the
Appendix due to space limits.
Implementation Details. Following the standard set-
ting [4,23], we set the hidden dimension of HopGNN as 128
for the nine small-scale datasets and 256 for the three large-
scale datasets. Although tuning the hops and layers usually
leads to better results, for simplicity, we fix the number of
hops as 6 and the interaction layer as 2 of HopGNNs for all
datasets in Table 2 and 3. We use Adam [26] for optimiza-
tion and LayerNorm [3] of each layer and tune the other
hyper-parameters. Details can be found in the Appendix.

4.2. Overall Performance

Results on Homophily and Heterophily. From Table 2,
we make the following observations: 1) Standard node in-
teractions are sometimes inferior to MLP, such as Actor
and Cornell, indicating that simply stacking node interac-
tion may fail in the heterophily datasets. However, the het-
erophilic GNNs achieve better performance in general, e.g.,
their average performance over nine datasets is all larger
than 70. The reason is that such advanced node interac-
tion can adaptively consider the influence of neighbors in
each hop. 2) Compared with heterophilic GNNs, decoupled
GNNs achieve sub-optimal results, i.e., their overall per-
formance is less than 70, due to missing the non-linear in-
teraction among nodes. 3) HopGNN achieves significantly
better performance than decouple GNN and is comparable
with the SOTA heterophilic GNNs. Such results show that
even without complex node interactions, the non-linear in-
teraction among hops can enhance node discrimination in
both homophily and heterophily. This validates the effec-
tiveness and generality of the hop interaction paradigm. (4)
Moreover, combining the SSL, the HopGNN+ consistently
outperforms HopGNN and achieves the best overall perfor-
mance, validating the effectiveness of the multi-task learn-
ing strategy and the compatibility of HopGNN.
Results on Large-scale Datasets. We compare the
HopGNN with scalable GNNs, including pre-processing
decoupled GNNs and sampling-based GNNs in Table 3,
and find that: 1) The decoupled SIGN performs better in
the inductive setting, and the subgraph-based GraphSAINT
outperforms other baselines in the large-scale transductive
product dataset. 2) HopGNN consistently outperforms all
the baseline methods in these large-scale datasets. The re-
sults in the inductive setting of Flickr and Reddit substan-
tiate the ability of HopGNN to generalize to unseen nodes.
Moreover, the HopGNN+ combined feature-level SSL ob-
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Table 2. Mean test accuracy ± stdev on 6 heterophily and 3 homophily real-world datasets over 10 public splits (48%/32%/20% of nodes
for training/validation/test). The best performance is highlighted. ‡ denotes the results obtained from previous works [46, 53]

Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora Avg
Hedge 0.11 0.21 0.22 0.22 0.23 0.3 0.74 0.8 0.81 -
#Nodes 183 251 7,600 5,201 2,277 183 3,327 19,717 2,708 -
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278 -
#Classes 5 5 5 5 5 5 7 3 6 -

MLP‡ 81.89±4.78 85.29±3.61 35.76±0.98 29.68±1.81 46.36±2.52 81.08±6.37 72.41±2.18 86.65±0.35 74.75±2.22 65.99

GCN‡ 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.90±1.04 62.76
GAT‡ 52.14±5.16 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 86.33±0.48 87.30±1.10 60.23
GraphSAGE‡ 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04 69.50
GCNII‡ 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25 70.16

H2GCN-1‡ 84.86±6.77 86.67±4.69 35.86±1.03 36.42±1.89 57.11±1.58 82.16±4.80 77.07±1.64 89.40±0.34 86.92±1.37 70.72
H2GCN-2‡ 82.16±5.28 85.88±4.22 35.62±1.30 37.90±2.02 59.39±1.98 82.16±6.00 76.88±1.77 89.59±0.33 87.81±1.35 70.87
ACM-GCN‡ 87.84±4.40 88.43±3.22 36.28±1.09 54.40±1.88 66.93±1.85 85.14±6.07 77.32±1.70 90.00±0.52 87.91±0.95 74.92
WRGAT‡ 83.62±5.50 86.98±3.78 36.53±0.77 48.85±0.78 65.24±0.87 81.62±3.90 76.81±1.89 88.52±0.92 87.95±1.18 72.90
GGCN‡ 84.86±4.55 86.86±3.29 37.54±1.56 55.17±1.58 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05 75.05

S2GC 68.65±8.05 71.57±9.01 34.17±0.92 41.63±0.98 58.55±5.15 75.25±7.82 76.08±0.45 88.31±0.38 87.73±2.90 66.88
SIGN 75.14±7.94 80.59±3.75 36.14±1.01 40.16±2.12 60.48±2.10 78.11±4.67 76.53±1.76 89.58±0.45 86.72±1.37 69.27
APPNP 78.37±6.01 81.42±4.34 34.64±1.51 33.51±2.02 47.50±1.76 77.02±7.01 77.06±1.73 87.94±0.56 87.71±1.34 67.24
GPRGNN 82.12±7.72 81.16±3.17 33.29±1.39 43.29±1.66 61.82±2.39 81.08±6.59 75.56±1.62 86.85±0.46 86.98±1.33 70.15

HopGNN 81.35±4.31 84.96±4.11 36.66±1.39 60.95±1.65 70.13±1.39 83.70±6.52 76.16±1.53 89.98±0.39 87.12±1.35 74.56
HopGNN+ 82.97±5.12 85.69±5.43 37.09±0.97 64.23±1.33 71.21±1.45 84.05±4.48 76.69±1.56 90.28±0.42 87.57±1.33 75.53

Table 3. Comparison over a large-scale dataset. ‡ denotes the
results obtained from previous works [47].

Flickr Reddit Products
Type Inductive Inductive Transductive
#Nodes 89,250 232,965 2,449,029
#Edges 899,756 11,606,919 61,859,140
#Classes 7 41 47
GCN‡ 49.2 ± 0.3 93.3 ± 0 75.64 ± 0.21
SGC‡ 50.2 ± 0.1 94.9 ± 0 74.87 ± 0.25
SIGN ‡ 51.4 ± 0.1 96.8 ± 0 77.60 ± 0.13
S2GC 50.48 ± 0.07 94.04 ± 0.03 76.84 ± 0.20

GraphSAGE‡ 50.1 ± 1.3 95.3 ± 0.1 78.29 ± 0.16
FastGCN ‡ 50.4 ± 0.1 92.4 ± 0.1 73.46 ± 0.20
AS-GCN‡ 50.4 ± 0.2 96.4 ± 0.1 -
ClusterGCN‡ 48.1 ± 0.5 95.4 ± 0.1 78.97 ± 0.33
GraphSAINT‡ 51.1 ± 0.1 96.6 ± 0.1 79.08 ± 0.24

HopGNN 52.49 ± 0.15 96.92 ± 0.05 79.96 ± 0.11
HopGNN+ 52.68 ± 0.16 96.98 ± 0.04 80.08 ± 0.08

jective still works well in large-scale scenarios.

4.3. Ablation Study

In this part, we study the role of the hop-order embed-
ding Eorder, hop interaction and hop fusion type to validate
the effectiveness of each component and the generality of
the whole framework. Due to space limits, we report the av-
erage test accuracy of these variants across three homophilic
and six heterophilic datasets, as shown in Table 4.
Hop-order embedding. Without hop-order embedding, the
performance drops slightly in homophily (0.46) but dramat-

Table 4. Ablation studies on order embedding, fusion and interac-
tion types for heterophily and homophily graphs.

Heterophily Homophily
HopGNN 69.63 84.42

w/o Eorder 60.93 ↓8.70 83.96 ↓0.46

Fusion
Attention 69.81 ↑0.18 84.60 ↑0.18
Max 69.50 ↓0.13 84.39 ↓0.03

Interaction

None 65.59 ↓4.04 84.35 ↓0.07
MLP 67.21 ↓2.42 84.41 ↓0.01
GCN 68.18 ↓1.45 84.38 ↓0.04
SAGE 69.11 ↓0.52 84.45 ↑0.03

ically in heterophily (8.7). This indicates that hop-order
information is more crucial for order-insensitive hop inter-
actions in challenging heterophilic scenarios. The reason
may be that the contribution varies in different order hop
of neighbors, which is also discussed in H2GNN [53] that
high-order neighbors are expected to be homophily domi-
nant and useful for heterophilic datasets.
Hop fusion. We also test the effects of max- and attention-
based fusion mechanisms in HopGNN and observe their
similar performance under both heterophily and homophily.
Although the attention-based fusion achieves slightly higher
results, we still choose the mean fusion as the default due to
its simplicity and efficiency.
Hop interaction. For the hop interaction layer, we test the
variant of no interaction, interaction with GCN and SAGE,
and interaction with MLP. We make the following obser-
vations: 1) They perform closely under homophily since
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Figure 4. Classification accuracy with different layers/hops.

the nodes’ neighbors share similar information, resulting in
limited gain from interactions. 2) Removing the interac-
tion incurs a performance reduction of 4.04 in heterophily
datasets, and the interaction based on MLP also results in a
2.3 performance drop. These results are consistent with the
limited performance of decoupled GNNs using linear com-
bination or concatenation among hops. Such performance
degeneration further validates the importance of hop-level
interaction since it can investigate discriminative clues of
nodes for the classification in heterophily. 3) For the in-
teraction of GNN variants, both standard GCN and SAGE
achieve competitive results, demonstrating that our frame-
work is stable with different GNN-based hop interaction
mechanisms. We choose the multi-head attention mecha-
nism as the default due to its generalizability.

4.4. In-depth Analysis

Over-smoothing. To test the robustness of the models to
over-smoothing, we compared the HopGNN with the classi-
cal GCN and different kinds of SOTA, including GRPGNN
from decoupled GNNs, GCNII from deep GNNs, and
GCNN from heterophilic GNNs. From Figure 4, we have
the following observations: 1) The performance of the GCN
drops rapidly as the number of layers increases. However,
all the other models do not suffer over-smoothing in the ho-
mophilic datasets. 2) Both GCNII and GPRGNN signifi-
cantly underperform the GGCN and HopGNN under all lay-
ers in Chameleon. This means that although decoupling and
residual connection can solve the over-smoothing to some
extent, they are insufficient for heterophily. 3) The GGCN
conducts adaptive node interactions in each layer by care-
fully considering each hop neighbor’s information, which
is expressive but limits its scalability. Notability, without
node interaction, the HopGNN still achieves robustness un-
der different layers in both homophily and heterophily, val-
idating the superiority of the hop interaction paradigm.
Efficiency. In Figure 5, we use the evaluation methodol-
ogy from [15] to fairly compare the throughputs and actual
memory usage of various representative methods. Specifi-
cally, we compare the HopGNN with SAGE variants under
the same settings across layers during the training procedure

Figure 5. The comparison of throughput (left) and memory usage
(right) in the Products dataset, both y-axis are in the log scale.

on the largest Products dataset. We observe that: 1) The
basic GraphSAGE is significantly slower and costs a huge
amount of memory due to the neighbor explosion. Sub-
graph sampling makes GraphSAINT significantly reduce
time and memory costs. 2) The decoupled SIGN achieves
faster and smaller memory cost than GraphSAINT, but with
sub-optimal results as shown in Table 3. 3) HopGNN costs
slightly more memory than SIGN due to the additional hop
interaction phase, but HopGNN achieves the best perfor-
mance and is faster than GraphSAINT, which indicates a
better trade-off between performance and scalability. The
implementation details and training efficiency comparison
can be found in Appendix.

5. Conclusion
We have presented a novel hop interaction paradigm,

a practical solution to address the scalability and over-
smoothing problem of GNNs simultaneously. It shifts
the interaction target of GNNs from nodes to hops inside
each node. Specifically, we design a simple yet effective
HopGNN framework. It first pre-computes non-parameter
aggregation of multi-hop features to reduce the computa-
tional cost during training and inference. Then, it con-
ducts non-linear interactions among the multi-hop features
of each node via GNNs to enhance their discriminative abil-
ities. We also develop a multi-task learning strategy with the
self-supervised objective to enhance the performance of the
downstream task. Experiments on 12 benchmark datasets
show that HopGNN achieves state-of-the-art performance
while maintaining high scalability and efficiency. One fu-
ture work is to investigate advanced interaction mechanisms
among hops to enhance the performance of HopGNNs. It is
also interesting to apply the HopGNN to other downstream
tasks, such as graph classification and link prediction.
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Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In International Conference on Ma-
chine Learning, pages 12310–12320. PMLR, 2021. 4, 5

[49] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Raj-
gopal Kannan, and Viktor K. Prasanna. Graphsaint: Graph
sampling based inductive learning method. In 8th Interna-
tional Conference on Learning Representations, ICLR, 2020.
3, 6

[50] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and
Philip S Yu. From canonical correlation analysis to self-
supervised graph neural networks. Advances in Neural In-
formation Processing Systems, 34:76–89, 2021. 5

[51] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah.
Graph-less neural networks: Teaching old mlps new tricks
via distillation. In International Conference on Learning
Representations, 2022. 1, 3

[52] Hao Zhu and Piotr Koniusz. Simple spectral graph convolu-
tion. In International Conference on Learning Representa-
tions, 2020. 2, 3, 6

[53] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Le-
man Akoglu, and Danai Koutra. Beyond homophily in graph
neural networks: Current limitations and effective designs.
In Advances in Neural Information Processing Systems, vol-
ume 33, 2020. 2, 3, 6, 7

7885


