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Abstract

Existing imitation learning (IL) methods such as inverse
reinforcement learning (IRL) usually have a double-loop
training process, alternating between learning a reward
function and a policy and tend to suffer long training time
and high variance. In this work, we identify the benefits
of differentiable physics simulators and propose a new IL
method, i.e., Imitation Learning as State Matching via Dif-
ferentiable Physics (ILD), which gets rid of the double-loop
design and achieves significant improvements in final per-
formance, convergence speed, and stability. The proposed
ILD incorporates the differentiable physics simulator as a
physics prior into its computational graph for policy learn-
ing. ILD unrolls the dynamics by sampling actions from a
parameterized policy and minimizing the distance between
the expert trajectory and the agent trajectory. It back-
propagates the gradient into the policy via temporal physics
operators, which improves the transferability to unseen en-
vironments and yields higher final performance. ILD has a
single-loop structure that stabilizes and speeds up training.
It dynamically selects learning objectives for each state dur-
ing optimization to simplify the complex optimization land-
scape. Experiments show that ILD outperforms state-of-the-
art methods in continuous control tasks with Brax, and can
be applied to deformable object manipulation tasks, gener-
alized to unseen configurations. 1

1. Introduction
In a variety of applications ranging from games to real-

world robotic tasks [13, 18, 38], imitation learning (IL) is
popularly applied. However, collecting high-quality expert
data is expensive, and existing IL methods tend to suffer
long training time, unstable training process, high variance
of learned IL policies, and suboptimal final performance.

Classical behavioral cloning (BC) methods learn poli-
cies directly from labeled data, but often suffer the covari-
ate shift problem. This problem can be tackled in DAG-

‡This work is completed at the SEA AI Lab.
1The link to the code: https://github.com/sail-sg/ILD

GER [32] by interacting with the environment and querying
experts online, which however requires significant human
effort to label the actions. Other IL methods mainly include
inverse reinforcement learning (IRL), adversarial imitation
learning (AIL), and combinations of them. IRL learns a re-
ward function to match expert demonstrations [11, 19, 41],
and AIL learns a discriminator to identify whether the ac-
tion comes from an expert demonstration [18,24]. However,
both IRL and AIL learn an additional intermediate signal,
which introduces three main limitations: 1) the intermedi-
ate signal learning leads to a double-loop training process,
which means long training time and complex implementa-
tion; 2) the learning signal is a noisy and frequently updated
moving target, and as a result, the policy learning tends to
have a high variance; 3) the intermediate signal, e.g., the re-
ward function in IRL, inevitably loses the rich information
embedded in the trajectories, e.g., environment dynamics.

In this work, we propose a new approach to IL, named
Imitation Learning as State Matching via Differentiable
Physics (ILD), which recovers expert behavior by exploiting
the Differentiable Physics Simulator (DPS) [12,20]. Differ-
ent from standard environments, DPS implements low-level
physics operations with a differentiable function and allows
the gradients to flow through the dynamics. ILD takes ad-
vantage of DPSs by considering the environment dynamics
as a physics prior and incorporating it into its computational
graph during back-propagation of the policy, such that the
learned policy fully captures both the expert demonstration
and the environment specifications. To achieve this, ILD
simply minimizes the state-wise distance of a rollout tra-
jectory generated by a parameterized policy to the expert
demonstration, which also gives a single-loop design and
avoids learning intermediate signals. Nevertheless, the gra-
dients of physics operators are highly non-convex, which
often introduces a complex optimization landscape, and
consequently, a naive implementation is often stuck in local
minimum [12]. To alleviate this issue, we introduce a sim-
ple yet effective Chamfer-α distance for trajectory match-
ing. For each state in the rollout trajectory, instead of ex-
actly matching the corresponding expert state, we dynami-
cally select the easiest local goal as the optimization target
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Table 1. Useful Properties among IL Methods

Property / Method Family IRL AIL ILD (ours)

Layers of training loop Double-loop Double-loop Single-loop
Source of the learning signal Reward function Discriminator Differentiable dynamics
Transferability in changing dynamics Depends No Yes

and gradually proceed to the harder ones as training pro-
gresses. Chamfer-α distance naturally forms a curriculum
learning setup, simplifies the optimization task, and eventu-
ally gives better final performance.

A short comparison of some useful properties of the IL
methods can be found in Table 1. In contrast to the IRL
and AIL methods, ILD does not introduce new intermediate
signals and therefore requires no switching between policy
learning and intermediate signal learning. In terms of the
learning paradigm, IRL learns a reward function, AIL learns
a discriminator, and ILD uses the differentiable dynamics
which makes the learned policy aware of the environment
dynamics and transferable to unseen environment configu-
rations.

Empirically, we validate ILD on a set of MuJoCo-like
continuous control tasks from Brax [12] and a challeng-
ing cloth manipulation task. We show that ILD achieves
significant improvements over the state-of-the-art IRL and
AIL methods in terms of convergence time, training stabil-
ity, and final performance. Given a fixed one-hour training
time, ILD achieves 36% higher performance based on the
normalized score over all the tasks and baselines.

2. Related Works
Imitation Learning. Classical imitation learning meth-

ods directly imitate the expert demonstrations via Be-
haviour Cloning [28,31]. However, they often suffer covari-
ant shift problems due to insufficient expert training data.
The modern approach GAIL [18] uses the idea of genera-
tive adversarial networks to learn a discriminator that distin-
guishes between learner trajectories and expert trajectories.
The agent explores the environment and learns to mimic the
expert’s trajectory. SAM [33] and DAC [24] continue the
idea of GAIL and address the sample efficiency problem.
OPOLO [40] also proposes a sample efficient learning from
the observation (LfO) approach that allows for non-policy-
based optimization.

Inverse Reinforcement Learning (IRL). IRL is a type
of imitation learning that learns policies by recovering re-
ward functions to match the trajectories demonstrated by
experts [3]. Early IRL methods such as MaxEntIRL [4, 41]
minimize the KL divergence between the learner trajec-
tory distribution and the expert trajectory distribution in
the maximum entropy RL framework. However, those
IRL methods often involve a double-loop learning process

in which the outer loop learns the reward function and
the inner loop solves the forward RL learning problem.
AIRL [13] builds on the adversarial learning idea of GAIL
by learning a reward function for reinforcement learning.
Moreover, OPIRL [19] learns an off-policy reward func-
tion and solves the sample inefficiency problem. Recently,
PWIL [11] proposes to learn the reward function by mea-
suring the Wasserstein distance between the learner and the
expert, achieving state-of-the-art results.

Differentiable Dynamics for Policy Learning. The dif-
ferentiability of dynamics models has been explored to im-
prove the stability and sample efficiency of policy learn-
ing. A commonly used paradigm is to learn a parameterized
generative dynamics model by reconstructing the trajectory
observations and train a policy by “imagined” trajectories
with the learned generative model [10, 14, 15, 27]. How-
ever, built upon a learned model, they suffer temporal ac-
cumulative model error and long training time by switching
over two loops for model learning and policy learning [37].
Recent advances in differentiable physics have shown their
potential for policy learning by back-propagating the gradi-
ents through the physics operators [12, 20, 21, 25]. Differ-
ent from a learned model, differentiable physics provides
a ground-truth understanding of the environment dynam-
ics and naturally guarantees a good generalization. Nev-
ertheless, the back-propagation through long temporal non-
convex physics operators introduces a complex optimiza-
tion landscape for policy learning, and as a result, a learned
policy tends to be stuck at local minimums [12].

In contrast to existing methods, ILD avoids learning in-
termediate signals by computing the analytical learning gra-
dient directly from the expert demonstration through dif-
ferentiable physics. The analytical gradients carry rich in-
formation about both the expert intentions, i.e., the reward,
and the specifications of the environment dynamics. Mean-
while, ILD dynamically selects local optimization goals for
each state in the rollout trajectory, which gives a simpler
optimization landscape for policy learning.

3. Method
We propose Imitation Learning as State Matching via

Differentiable Physics (ILD), which learns from expert
demonstrations via differentiable physics without any addi-
tional intermediate signals, e.g., reward functions in IRL.
We assume that the underlying transition function of the
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(a) MDP Computation Graph (b) ILD Computation Graph

Figure 1. Computational graph of MDP and ILD. A typical Markov decision process (MDP) includes a reward function to evaluate
the performance of a policy and provide learning signals to the learner agent. In our approach, we eschew the reward function and use
differentiable dynamics to dynamically match expert states and make gradients flow back into the action. This design provides two main
benefits: 1) we move away from the double-loop design in IRL and AIL, avoiding the process of alternating between learning rewards and
learning policies; 2) the analytic gradient from the dynamics provides richer information than a single reward number, which guides the
improvement of actions in local regions, bringing less variance in training and better performance.

task is built on a set of physics rules so that the cumula-
tive compound error is small compared to a dynamics model
learned from data. Take a point-mass system as an example:

xt+1 = xt +∆t · vt vt+1 = vt +∆t · f

m

where the force f is the action input to the system, vt is
the speed and xt is the position of the point with mass m.
The new position xt+1 can be computed analytically based
on the physics properties such as the mass m. More impor-
tantly, such a system is differentiable and can carry the gra-
dient from the output state xt+1 directly to the input force
f . The same idea generalizes to more complex physics sys-
tems such as dynamics of deformable objects like cloth and
liquid. For simplicity, we abuse the notation of physics and
dynamics in this work. The gist of ILD is to consider the
differentiable dynamics as a physics prior and incorporate it
into the computational graph for policy learning. With dif-
ferentiable dynamics, future states in the trajectory can exert
influence on early actions. In this way, ILD can leverage the
rich information from future states and learn a policy that
is aware of the environment specifications. However, hav-
ing a rich set of information does not necessarily lead to an
optimal policy due to the complex optimization landscape
through BPTT [12]. Therefore, we further decompose the
optimization problem into many small and simple sub-steps
by selecting suitable local learning such that each local goal
can be effectively learned via differentiable dynamics.

3.1. Differentiable Physics as Computational
Graphs

The computation graph of our method can be found in
Fig. 1. In a detailed view, our method ILD first rolls out
the dynamics with the learner agent πθ to interact with the
environment to collect state trajectories. At each step t the

learner policy πθ(at|st) outputs the means and variances for
all the action dimensions to sample actions, and the repa-
rameterization trick [23] is used to allow the gradient to flow
through the sampling process. By iteratively unrolling the
dynamics with the learner policy πθ, we observe a trajectory
τθ in the form of a list of states s0:H and a list of actions
a0:H . Treating the environment dynamics as a function
T (st+1|st, at), we can view the trajectory unrolling pro-
cess as a temporal computation graph, s1:H = G(s0, a0:H),
where s0 and a0:H are the inputs and s1:H denotes the out-
puts. Therefore, we can compute gradients regarding the
action inputs. Since actions at are conditioned on the pol-
icy parameters θ, the entire computation graph G can be
reduced to s1:H = G(s0, θ) that outputs a list of states s1:H
and a list of actions a0:H . Most importantly, by the virtue
of differentiable dynamics, the entire computation graph G
crossing multiple steps is fully differentiable.

In contrast to BC that minimizes the action distance
Da(a ∼ πθ||a∗ ∼ πexp) between the learner and the expert,
we are minimizing the state distance Ds(s ∼ τθ||g ∼ τexp)
between the learner agent trajectory and the expert trajec-
tory by differentiating through the temporal computation
graph G. Such a design choice enables ILD with self-
supervision in the unseen environment and hence addresses
the covariant shift issue. To minimize the distance between
the learner agent trajectories and the expert demonstrations,
the first option is to apply a direct L2 loss between them,
and back-propagate the gradient through the differentiable
dynamics:

argmin
θ

X

s∼τθ

TX

t=0

(gt − st)
2.

Based on the L2 loss objective function, each state gt in
expert demonstrations can be considered as a local learn-
ing goal at the time step t for the leaner agent to achieve.

7848



Expert Trajecory

Learner Trajecory

Expert Trajecory

Learner Trajecory

Expert Trajecory

Learner Trajecory

(a) L2 Loss (b) Deviation Loss (c) Coverage Loss

Figure 2. Illustration of different loss functions. Both green dots and blue dots are the states in their trajectories. The L2 loss has a one-to-
one matching, but the learning goal can be extremely difficult when later states deviate too much from the expert trajectory. The deviation
loss only matches the closest state in the expert trajectory to reduce the difficulty of the learning goals, constraining the exploration space
to be close to the expert trajectory. The coverage loss pulls the nearest states in the learner trajectory to be close to every state in the expert
trajectory.

However, the objective function above suffers an issue of
enforcing exact match between the state st in leaner pol-
icy trajectories and the state gt. The corresponding learning
goal gt for each st may be impractical to achieve as the st
and gt can be far away at the beginning of the training state.
However, such impractical goals exceed the capability that
the differentiable dynamics can offer and hence often result
in local optima.

Algorithm 1 Imitation Learning as State Matching via Dif-
ferentiable Physics

Require: I Optimization Iteration
Ensure: The best estimated policy

1: Collect J = 1 expert demonstrations.
2: Initialize the stochastic policy as πθ.
3: Pretraining πθ using Behaviour Cloning.
4: for optimization iteration i = 1 · · · I do

# Evaluate and optimize policy
5: Roll out trajectories τθ
6: Compute loss function L:

L =
1

|τexp|
X

gt∈τexp

min
s∈τθ

∥gt−s∥22+α
1

|τθ|
X

st∈τθ

min
g∈τexp

∥g−st∥22

7: Update the policy πθ with analytical gradient ▽θL.
8: end for
9: Return the policy πθ.

3.2. Imitation Learning via Differentiable Physics

Considering the impractical learning goals in the L2 ob-
jective, we develop a new approach called Imitation Learn-
ing as State Matching via Differentiable Physics (ILD). ILD
considers the states in the imitation learning task as a set
of unordered points and matches them to the expert demon-
stration. We introduce Chamfer-α loss for trajectory match-

ing with the expert. Instead of selecting those faraway cor-
rect but impractical goals, ILD dynamically selects the near-
est local goals to the demonstrated states, which gives a sim-
pler optimization landscape. Specifically, Chamfer-α loss
can be separated into two parts, deviation loss and coverage
loss.

Deviation loss. The Equation (1) shows the deviation
loss function Ld for selecting the suitable goals. For each
state s ∈ τθ, we treat it as a local optimization problem
and set the learning goal to the nearest state g ∈ τexp. The
intention is to select the easier goals for the agent to fol-
low. Concretely, this helps to constrain the gradient scale
such that we can obtain a more stable optimization process
during the BPTT with physics operators. The summation
term measures the deviation loss between the learner policy
roll-outs and expert demonstration. The intuition is that the
learned policy should produce states similar to those from
the expert policy and not deviate too much. We present the
deviation loss as follows:

Ld =
1

|τθ|
X

st∈τθ

min
g∈τexp

∥g − st∥22. (1)

However, deviation loss alone may cause the “state col-
lapse” issue. For example, it is possible that all st ∈ τθ are
close to a small subset of τexp with low deviation cost. As
a result, deviation loss provides no coverage to the expert
trajectory and is hence sub-optimal. Therefore, the ultimate
goal is to learn πθ that covers all the states of a trajectory
τexp and at the same time stays close to the expert states.

Coverage loss. To ensure all states in the expert trajec-
tory are covered by the learner policy, we introduce an extra
coverage loss in Eqn. 2:

Lg =
1

|τexp|
X

gt∈τexp

min
s∈τπ

∥gt − s∥22. (2)

Intuitively, the coverage loss guarantees that each state
in the expert trajectory be close to the rollout trajectory

7849



� � � � �

���

�

���

���

���

���

��� ��� ��� ��� ���

��

���

���

���

���

������

� � � � � ��

���

���

���

���

���

���

��������

���� ���� ���� ���� ���� ���� ����

���

���

���

���

���

��

��

��

�������

��� ��� ��� ��� ��� ��� ��� ���

��

��

��

���

���

���

���

���

���
��������

��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

�

�

�

�������

��� ��� ��� ��� ���

���

���

���

���

���

���

���

�����������������

���� ���� ���� ���� ���� ���� ����

�����

��

��

���

���

���

���

���

�
�
�
�
�
�

�������

���

����

����

Figure 3. Relative wall time performance. We evaluate ILD on the Brax MuJoCo [12] tasks and only one expert demonstration is provided
to all the IL methods. The results show that our method generally outperforms the SOTA methods, with a much faster convergence speed,
a more stable learning process, and smaller variance. The differentiable dynamics gives a single-loop training process and avoids the
noisy intermediate signal. In addition, in difficult tasks such as ant, walker2d and humanoid, ILD outperforms the other baselines by a
large margin given limited training time, because the differentiable physics helps to reserve more information embedded in the trajectories.
Given an hour of training time (indicated by the vertical dashed line), we achieve 36% higher performance on average over all the tasks
and baselines.

generated by the learner policy. This naturally alleviates
the “state collapse” issue introduced by the deviation loss.
Combining the deviation loss and coverage loss, we intro-
duce Chamfer-α loss function for ILD:

LChf-α = Ld + αLg

=
1

|τexp|
X

gt∈τexp

min
s∈τθ

∥gt − s∥22 + α
1

|τθ|
X

st∈τθ

min
g∈τexp

∥g − st∥22.

(3)

Although derived from different objectives, Eqn. 3 resem-
bles the Chamfer distance for measuring the distance be-
tween two sets, which is widely used in computer vi-
sion [6,9,26]. Thus, we name our loss as Chamfer-α, which
balances the ratio between deviation and coverage loss with
a hyper-parameter α. In our experiments, we observe that
having a lower α can shape the learned policy to imitate
the expert at a global level and hence has a faster conver-
gence. However, there is a trade-off between the conver-
gence speed and final performance as the larger deviation
factor converges slower but the final performance can be
better. A visual illustration of Chamfer-α loss is shown in
Fig. 2.

We summarize our method in Algorithm 1. We first col-
lect J = 1 episode expert demonstration and use the stan-
dard supervised behavior cloning to bootstrap the policy
learning using the expert demonstration. Next, we roll out
the dynamics with a large batch of learner policy trajecto-
ries in parallel to speed up the training. With the objective

function (3) defined above, we compute the loss and update
the policy parameters θ.

4. Experiment
We evaluate our method on Brax [12] environments, pro-

viding a variety of differentiable MuJoCo-like continuous
control tasks. In addition, we have developed a new robotic
deformable object manipulation task, which requires hang-
ing a piece of cloth on a stand, to demonstrate the generality
of our approach to changing environment dynamics.

We compare our approach with two state-of-the-art IL
methods, PWIL [11] from inverse reinforcement learning
(IRL) and DAC [24] from adversarial imitation learning
(AIL). In our experiments, we aim to answer the following
questions: 1) Can our method ILD recover expert behavior?
2) How fast does ILD converge? 3) Is ILD generalizable to
complex deformable object manipulation tasks with chang-
ing dynamics? 4) What are the core parameters that influ-
ence performance?

4.1. Brax Continuous Control Tasks

We evaluate our approach on the 8 Brax continuous con-
trol MuJoCo-like tasks: Ant, Hopper, Humanoid, Reacher,
Walker2d, Swimmer, Inverted Pendulum, and Acrobot. For
each task, we train a PPO [34] agent to act as an expert. The
episode length for all tasks is 128, and we collect only one
expert episode for each task, which is used to train the IL
agent. Each number reported in the result table is evaluated
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Table 2. Brax MuJoCo Task Results

Ant Hopper Humanoid Reacher Walker2d Swimmer Inverted pendulum Acrobot

DAC 393.57 220.54 256.63 -21.52 93.19 4.52 128.00 185.26
PWIL -1.98 205.72 722.41 -47.19 205.78 1.98 128.00 157.03

ILD(ours) 594.88 243.93 736.87 -22.86 214.17 4.54 128.00 202.74

Expert 624.34 292.83 933.24 -22.49 289.14 4.29 128.00 200.80

with 3 different seeds.
Implementation Details. In contrast to the IRL and AIL

methods, our method ILD has only one policy network con-
sisting of three MLP layers with Swish activation. The
number of their hidden neurons is 512, 256, and the cor-
responding action dimension of the task, respectively. We
clip the gradients with a maximum gradient norm value of
0.3 to regularize the learning process. To speed up the con-
vergence, we use a batch size of 360 on an NVIDIA A100
graphics card. The deviation factor α and gradient trun-
cation length are set to 1 and 10, respectively. We train our
policy network with an Adam optimizer with a learning rate
of 0.001 for 5,000 updates. The entire script is written by
Flax [16] and JAX [5]. For a fair comparison, all methods
use the same amount of computational resources.

Results and Discussions. The overall performance is
presented in Table 2 and the detailed training curves are
given in Fig. 3. We observe that ILD outperforms the
SOTA methods on 6 out of 8 tasks, and achieves compara-
ble performance on the remaining 2 tasks. Also, with only
one expert demonstration, ILD generally recovers the ex-
pert behavior and mostly achieves comparable performance.
Specifically, we notice that the performance gain of ILD in-
creases as the complexity of the task increases. For exam-
ple, ILD achieves comparable performance with the base-
lines on the relatively easy task of Inverted Pendulum but
outperforms the baselines on Ant environment. In addition,
Fig. 3 shows that ILD has much lower variance and a more
stable training curve compared with the SOTA methods. We
believe both of the above advantages come from the bene-
fits of differentiable physics. By back-propagating the gra-
dients from states directly to the policy, ILD avoids the dy-
namic target introduced by the intermediate signals and sta-
bilizes the training process; by considering the physics prior
for policy learning, ILD obtains a policy that generalizes
better to complex dynamics.

Moreover, although AIL and IRL methods benefit from
the sample efficiency of the small number of interactions
with the environment, they often suffer long training time
due to the double-loop structure. Such a double-loop struc-
ture involves additional computations and slows down the
training process. In contrast, ILD has a single-loop design
and allows the policy to be optimized directly with the dif-
ferentiable dynamics. In Fig. 3, we observe that ILD con-
verges significantly faster than both DAC and PWIL with a

(a) Initial State (b) Goal State

Figure 4. Deformable cloth manipulation. The task is to control
two grippers (dark color) to hang the piece of cloth on the pole.
Image (a) shows the initial state and image (b) shows the target
state. This task is challenging because the dynamics are complex
and the observation space is huge, with 1,736 dimensions.

much smoother and stable training curve.

4.2. Robot Cloth Manipulation

In this section, we test whether our approach can be gen-
eralized to a more complex robotic deformable object ma-
nipulation task, where a piece of cloth is to be hung on a
pole. A visualization of this task can be found in Fig. 4. The
main challenge of this deformable object manipulation task
is the changing dynamics, where the testing dynamics are
different from the demonstrating dynamics. Specifically,
we add additional bias and noise to the input actions of the
test environment, making the dynamics of the test environ-
ment different from the dynamics demonstrated by experts.
As a result, we obtain an environment with noisy dynam-
ics and fixed goals. In addition, the high-dimensional state
space of deformable objects makes it hard to extract useful
features for policy learning. To collect demonstrations, we
use a handcrafted policy as the expert policy. Similarly, only
one trajectory is used as the demonstration. Implementation
details can be found in Appendix.

Implementation Details. We develop a cloth dynamics
engine in JAX following the implementation of Taichi [20].
The observation space for this task has 1,736 dimensions
and consists of 288 key nodes on the cloth and 2 gripper
states. The action space consists of 6 dimensions that con-
trol the speed of the two grasps. We assume that the two
grippers have grabbed the two corners of the cloth. To fa-
cilitate the evaluation, we define a reward function that is 1
if the cloth is on the pole at the last step and 0 otherwise.
This reward function also indicates the success rate of the
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Table 3. Brax MuJoCo Ablation Results

Loss Trunc Length Deviation Factor

Chamfer-α L2 1 10 30 100 0 0.2 1 5

ant 583.77 514.07 110.07 583.77 -15.50 -16.29 560.95 583.77 594.88 552.25
hopper 242.27 173.39 53.45 242.27 217.87 144.95 239.96 242.27 243.93 248.76

humanoid 715.14 542.94 331.27 715.14 788.84 355.09 704.96 715.14 736.87 710.12
reacher -23.18 -22.02 -31.72 -23.18 -23.24 -21.99 -75.36 -23.18 -22.86 -22.95

training agent. The episode length for this task is 80 and
a single expert demonstration is provided for all methods.
We use the same implementation as the Brax environment
with 3 MLP layers. In the complex task setting, we reduce
the batch size from 360 to 50 due to hardware memory lim-
itations. The learning rate is set to 1e−4 and the rest is the
same. More details of the cloth simulation can be found in
Appendix.

Results and Discussions. The results of the cloth ma-
nipulation can be found in Fig. 5. The results show that
our method can learn a stable policy in changing dynam-
ics under complex observation conditions. We outperform
the other two baselines, completing the task with a success
rate of 1. Specifically, ILD achieves fairly stable perfor-
mance with low variance even if the environment dynamics
are constantly changing. The success of ILD comes from
the physics prior implicitly encoded in the learner policy,
which learns a distribution of the environment specifications
and can recover the expert behavior even with unseen con-
figurations. The other two baselines fail in the task, even
though we have tried hard to tune the parameters such as
reducing their learning rate. It is probably because they
have learned a dynamics-coupled reward function or dis-
criminator. When the dynamics change, the reward func-
tion/discriminator they have learned cannot be transferred,
thus causing the failure. In contrast, our approach is not
coupled with specific dynamics and thus has better general-
ization.

With the recent advances and growing interests in differ-
entiable robot simulators, such as PlasticineLab [21], Di-
SECt [17], and Scalable Diff [29], we believe our method
could be a good starting point for exploiting the differen-
tiability of physics simulators to boost the development of
robot learning algorithms.

4.3. Ablation Study

In this section, we discuss the core hyperparameters and
algorithm choices that may influence performance. The re-
sults can be found in Table 3. The reported values in Ta-
ble 2 are trained using the Chamfer-α loss with a truncation
length of 10, batch size of 360, and deviation factor of 0.2.

Loss Function. We first compare the loss functions.
We replace the original Chamfer-α loss with a simple step-
wise L2 loss to compute the distance between the expert
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Figure 5. Deformable cloth manipulation Results. The task of
manipulating the cloth has a very sparse reward: if the cloth is on
the pole at the last step, the reward is 1; otherwise, all steps are
0. Therefore, the average reward can be interpreted as the task
success rate. Compared to the expert demonstration environment,
additional noise is added to the test environment, so the dynamics
of the test environment change. Despite the dynamic change, our
method ILD converges quickly and adapts to the new environment,
while the other two baselines cannot be transferred in the dynamic
change.

trajectory and the rollout trajectory. The results show that
the performance of L2 loss is significantly lower compared
to our method. This is because L2 loss simply performs
a step-wise matching and ignores the actual distance be-
tween the states. As a result, this often introduces goals
that are faraway from the current states and increases the
optimization difficulty, especially through the BPTT over
complex physics operators. Thus, it leads to suboptimal be-
haviors, which is a consistent observation with Freeman et
al. [12]. In contrast, the proposed Chamfer-α distance se-
lects the local goal that matches each state, thus reducing
the complexity of learning and giving a smoother optimiza-
tion landscape.

Truncation Length. We test with different gradient
truncation lengths. As shown in the ablation results ta-
ble, we find that short truncation lengths such as 1 usu-
ally lead to poor performance because in this case, the pol-
icy is trained by one-step signal and ignores the multi-step
dynamics of the environment. However, large truncation
lengths tend to lead to gradient explosion and in the end hin-
der the stability of the learning process. Nevertheless, when
developing the cloth simulation environment, we observe
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Table 4. Assumptions of Different Methods

Training Phase Testing Phase

RL IRL Planning ILD (ours) RL IRL Planning ILD (ours)

Dynamics Model ✓ ✓ – ✓ ✗ ✗ ✓ ✗
Expert Demo ✗ ✓ – ✓ ✗ ✗ ✗ ✗
Reward Function ✓ ✗ – ✗ ✗ ✗ ✓ ✗
Ground Truth State ✗ ✗ – ✓ ✗ ✗ ✓ ✗
Observation ✓ ✓ – ✓ ✓ ✓ ✗ ✓

that if with step-wise gradient normalization, the gradient
explosion issue can be significantly alleviated and the per-
formance of ILD can be generally improved. Empirically,
a truncation length of 10 is a safe choice and often brings
good performance.

Deviation Factor. We evaluate the influence of differ-
ent deviation factors, which balance the deviation loss and
coverage loss. We observe that the best performance is
achieved with a deviation factor 1. However, we also ob-
serve that the smaller the factor is, the faster the global con-
vergence will be, which introduces the trade-off between
the final performance and the convergence speed. In our
reported values, we use a deviation factor of 1, but the de-
viation factor 0.2 produces a comparable performance with
a faster convergence speed, which could be considered for
time sensitive applications. More details are available in the
appendix.

4.4. Additional Discussions

We classify and compare different assumptions of dif-
ferent methods, including RL, IRL, planning, and ILD in
Table 4. In contrast to RL, ILD and IRL do not require re-
ward engineering, which is challenging and critical in many
robotics and control tasks. In contrast to planning meth-
ods, ILD and RL methods are end-to-end policies that can
handle image inputs during the testing phase, while typical
planning methods have great difficulties in planning over
image observations.

We then discuss the limitations of our method in the fol-
lowing aspects. First, there is a reduced the applicability of
our method due to the assumption of differentiable dynam-
ics. Many games, such as Atari games and board games,
are not differentiable and thus cannot be applied. However,
many valuable robotic tasks are indeed differentiable, be-
cause the underlying physics laws are differentiable. Trends
in differentiable physics engines have emerged, such as
PlasticineLab [21] for robotic deformable object manipu-
lation, DiSECt [17] for robotic knife cutting, and Scalable
Diff [29]. If we can apply our approach to the above fields,
we have taken a step towards the ultimate intelligent robot,
despite the fact that more differentiable simulations will
emerge in the future.

Finally, the domain mismatch between the simulation
and the real world poses a real challenge. This challenge

is precisely related to the sim-to-real problem, i.e., poli-
cies learned in simulations that are transferred to the real
world. Since the sim-to-real problem is not our focus, we
can apply existing methods to facilitate sim-to-real trans-
fer, including: 1) Domain randomization [1, 8, 35]. For ex-
ample, OpenAI [1] learns a policy in simulation only, but
solves a Rubik’s cube with real robot hands. The key idea is
domain randomization, which randomizes textures, masses,
object sizes, etc.. 2) Domain adaptation. It [7, 22] con-
verts real-world observations into a similar form for policy
trained in simulations. 3) System identification. Fast model
identification [39] and Tunenet [2] identify environmental
parameters and build more realistic dynamics models. In
addition, differentiable dynamics has great potential to bet-
ter estimate the simulator parameters using analytical gradi-
ents. We leave the sim-to-real problem using differentiable
dynamics for future study.

5. Conclusion
In this work, we identify the benefits of differentiable dy-

namics and propose to use differentiable dynamics to learn
IL agents. The core advantage of our approach is to move
away from the traditional double-loop learning design and
avoid the noisy intermediate learning signal. The differen-
tiable dynamics provides us with a new type of IL algo-
rithm and brings better performance and remarkably lower
variance of the learned IL agent. The use of Chamfer-α
distance enables dynamic selection of local targets, signifi-
cantly reducing the learning difficulty and giving better per-
formance. In future work, we will further address the sam-
ple efficiency issue by using small batches and short roll-
out trajectories. At the same time, we should target more
challenging tasks, such as manipulation tasks of various
robotic deformable objects. We conclude that our IL learn-
ing method has only a single learning loop, but outperforms
other IL baselines. In addition, we demonstrate that our ap-
proach has great potential for more challenging but valuable
robotic deformable manipulation tasks.
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