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Abstract

Everyone is unique. Given the same visual stimuli, peo-
ple’s attention is driven by both salient visual cues and their
own inherent preferences. Knowledge of visual preferences
not only facilitates understanding of fine-grained attention
patterns of diverse users, but also has the potential of ben-
efiting the development of customized applications. Never-
theless, existing saliency models typically limit their scope
to attention as it applies to the general population and ig-
nore the variability between users’ behaviors. In this paper,
we identify the critical roles of visual preferences in atten-
tion modeling, and for the first time study the problem of
user-aware saliency modeling. Our work aims to advance
attention research from three distinct perspectives: (1) We
present a new model with the flexibility to capture atten-
tion patterns of various combinations of users, so that we
can adaptively predict personalized attention, user group
attention, and general saliency at the same time with one
single model; (2) To augment models with knowledge about
the composition of attention from different users, we further
propose a principled learning method to understand visual
attention in a progressive manner; and (3) We carry out ex-
tensive analyses on publicly available saliency datasets to
shed light on the roles of visual preferences. Experimen-
tal results on diverse stimuli, including naturalistic images
and web pages, demonstrate the advantages of our method
in capturing the distinct visual behaviors of different users
and the general saliency of visual stimuli.

1. Introduction
With the pervasiveness of a visual attention network in

the brain, attention has become an important interface for
understanding people’s behavioral patterns. A collection
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Figure 1. A hierarchy for user-aware saliency modeling, where
each level focuses on a different perspective of attention.

of studies focus on leveraging human attention to optimize
graphical designs [7, 16, 36], web page layouts [8, 37, 45],
and user experience in immersive environments [22,38,44].
They demonstrate its usefulness for a broad range of ap-
plications, and more importantly, highlight the intertwined
nature between attention and users’ preferences [11]. As
shown in Figure 1, attention modeling can be formulated as
a hierarchy of tasks, i.e., from a sophisticated understanding
of individuals’ behaviors (personalized attention), to model-
ing the visual behaviors of larger groups (user-group atten-
tion), and the saliency of visual stimuli (general saliency).
With the great diversity in attentional behaviors among dif-
ferent groups (e.g., attention of users with diverse character-
istics, children vs elderly, male vs female, etc.), knowledge
of visual preferences can play an essential role in enabling
a more fine-grained understanding of attention.

To accurately capture human attention on visual stimuli,
considerable efforts have been placed on building saliency
prediction models [10, 19, 21, 29, 30]. While achieving op-
timistic results for modeling attention of the general popu-
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lation, there are two key challenges remaining largely unre-
solved: (1) Existing models ignore the variability of users’
visual behaviors, and hence do not have the ability to iden-
tify fine-grained attention patterns of distinct users; and (2)
Apart from the shortage of models for user-aware saliency
modeling, there has also been no attempt to formulate a
training paradigm to understand the composition of atten-
tion, which hampers the integration of attention from di-
verse users. To fill the gap, we concentrate on a new re-
search problem for modeling attention of adaptively se-
lected users, and tackle the challenge with a new compu-
tational model together with a progressive learning method.

At the heart of our saliency model is the incorporation
of visual preferences with personalized filters and adap-
tive user masks. Unlike conventional methods designed
for predicting a single saliency map representing attention
of all users, it takes advantage of personalized filters to
encode individuals’ attention patterns. The attention pat-
terns are adaptively integrated based on a user mask indicat-
ing the presence of users in the current sample, which en-
ables attention prediction for various combinations of users.
The aforementioned paradigm serves as the foundation for
bridging individuals’ preferences with visual saliency, and
augments models with more abundant information about
fine-grained visual behaviors. It not only shows promise
in modeling attention of specific users, but also benefits the
inference of the general saliency.

A key challenge in user-aware saliency modeling is the
lack of understanding when aggregating attention from di-
verse users. The issue becomes more critical when further
considering the joint effects of stimuli and user preferences
on visual attention [11], where the former factor may over-
shadow the impacts of the latter one, leading to difficul-
ties in capturing the variability of users’ attention. Inspired
by human learning that acquires knowledge through a set
of carefully designed curricula [2], we propose to tackle
the aforementioned issues with a progressive learning ap-
proach. The essence of our method is to encourage a model
to learn the composition of attention from a dynamic set
of users, from individuals to user groups representing the
general population. Through optimizing on dynamically
evolving annotations, it provides opportunities for models
to learn both the unique attention patterns of different users
and the saliency of visual stimuli.

To summarize, our major contributions are as follows:

• We identify the significance of characterizing visual
preferences for attention modeling, and develop a
novel model that can predict attention of various users.

• We present a progressive learning method to under-
stand the composition of attention and capture its vari-
ability between different users.

• We perform extensive experiments and analyses to in-

vestigate the roles of visual preferences on tackling
the challenges of user-aware and general saliency, and
addressing the issues of incomplete users. Results
demonstrate that user-aware saliency modeling is ad-
vantageous in all the above three aspects.

2. Related Works
Our work is most related to previous efforts on visual

saliency prediction, which make contributions in both data
collection and computational modeling.

Saliency prediction datasets. With the overarching
goal of facilitating the development of attention modeling
methods, many studies have contributed saliency predic-
tion datasets with diverse visual stimuli. The pioneering
work [25] presents a gaze estimation dataset for naturalis-
tic images together with an online benchmark [24]. Several
subsequent studies propose to characterize images into finer
categories based on visual scenes [3], visual semantics [41],
or sentiments [14]. To overcome the difficulties of large-
scale data collection, Jiang et al. [23] use mouse-tracking as
a substitute for gaze estimation and construct currently the
largest saliency prediction dataset. In addition to the afore-
mentioned works that study attention on naturalistic images,
several studies focus on attention for broader types of vi-
sual stimuli, including graphical designs [7, 16, 36], web
pages [8, 37, 45], and immersive environments [22, 38, 44].
There are also attempts that go beyond attention collected
during free-viewing, and study goal-directed attention when
performing various tasks such as driving [1] and visual rea-
soning [9]. These data efforts enable the developments of a
series of computational methods for attention modeling.

Saliency prediction models. To estimate attention dis-
tribution on different visual stimuli, a large body of research
concentrates on building saliency prediction models. Early
studies leverage handcrafted features that encode high- and
low-level visual cues [5,17,20,40]. More recent approaches
opt to automatically learn discriminative features based on
deep neural networks. In particular, Huang et al. [19] uti-
lize a convolution neural network (CNN) with multi-scale
inputs to model the coarse-to-fine semantics. Kümmerer et
al. [28] demonstrate the usefulness of deep features learned
from image recognition for saliency prediction. Cornia et
al. [10] develop a recurrent neural network to iteratively re-
fine the visual features for saliency prediction. Jia et al. [21]
augment model with rich visual semantics extracted from
multiple levels of a CNN. Lou et al. [30] investigate the ef-
fectiveness of vision Transformers [13] for saliency predic-
tion. Apart from the studies on general saliency prediction,
a few works [32, 42, 43] attempt to tackle the problem of
personalized saliency, which involves predicting attention
of different users on naturalistic images. They adopt a sim-
plified setting which only takes into account individuals’ at-
tention and assumes that the general saliency maps are given
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Figure 2. An overview of the proposed framework. The top figure illustrates the architectural design of our saliency model for predicting
attention of diverse users, while the bottom one outlines our progressive learning method for understanding the composition of attention.

as inputs. While showing usefulness in capturing visual at-
tention, the aforementioned methods either consider only
attention aggregated from all users (i.e., general saliency) or
rely on assumptions that are inapplicable to less-constrained
real-world scenarios. They also utilize diverse paradigms
for modeling different types of attention, which prevents a
joint reasoning on the variability of users’ visual behaviors.

Our study differentiates from prior research in three key
aspects: (1) We identify the significance of visual prefer-
ences for attention modeling, and for the first time tackle
the challenge of user-aware saliency modeling. The new
problem unifies previous studies on general and personal-
ized saliency prediction, with the number of users being
a dynamic factor; (2) Without imposing constraints on in-
puts (e.g., availability of general saliency maps [32, 42, 43]
and naturalistic images as visual stimuli [10, 21, 28]), our
model directly infers attention from visual stimuli and is
able to generalize to broader scenarios (e.g., naturalistic im-
ages and web pages); and (3) In addition to a novel compu-
tational model, we also present a progressive learning ap-
proach to understand the composition of attention and cap-
ture the variability of attention.

3. Methodology
Attention modeling would benefit from the knowledge

about individuals’ visual preferences and the capability to
adaptively integrate them. This section presents an integral

framework consisting of two important components: (1) A
new saliency prediction model that encodes visual prefer-
ences and dynamically predicts attention patterns of diverse
combinations of users (Section 3.1), and (2) A principled
approach for learning the composition of attention in a pro-
gressive manner (Section 3.2).

3.1. Encoding Visual Preferences with Personalized
Filters

A primary goal of our study is to endow models with the
flexibility to predict attention for various users. We tackle
the challenge with a new model paradigm that leverages a
collection of personalized filters to identify individuals’ vi-
sual preferences, and decomposes the overall attention pat-
terns into fine-grained ones for different users. The key
differentiators of our model lie in its (1) applicability to
broader scenarios (e.g., from general saliency to attention
of diverse users) and (2) flexibility to different settings (e.g.,
without assuming the availability of general saliency maps).

Figure 2 (top) provides an overview of the proposed
model. The principal idea behind our model is to take ad-
vantage of personalized filters to encode attention patterns
of different users, and adaptively incorporate them based on
the selection of users. Specifically, we build our model on
top of the state-of-the-art EML-Net [21], which is a top-
performing model on the MIT saliency benchmark [24].
Given an input image, our model extracts multi-scale fea-
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tures from different layers of a convolutional neural net-
work pretrained on ImageNet [12], encoding both high- and
low-level visual cues. The raw features of different scales
Vt ∈ RD×H×W (D, H and W correspond to the feature
channel, height, and width, t denotes index for scales) are
processed independently with their corresponding attention
decoders fα

t consisting of a sequence of convolutional and
upsampling layers (see Section 4.1 for details), and then
the decoded attention features V α

t are aggregated across all
scales to form the unregularized attention maps Sraw:

V α
t = fα

t (Vt) (1)

Sraw =
∑
t

V α
t (2)

Different from conventional methods [10,19,21,28] that
directly predict a single saliency map for the general pop-
ulation (i.e., Sraw ∈ RH×W ), our method takes into ac-
count discriminative attention patterns of each individual
user (i.e., Sraw ∈ RN×H×W , where N is the total num-
ber of users). We achieve the goal by expanding the fil-
ters in the last convolutional layer of each attention decoder,
i.e., from a single filter to N personalized filters. To adap-
tively predict the visual attention for various combinations
of users, our model takes in a user mask M in addition to
the visual stimuli as input. The user mask is a binary vec-
tor M ∈ [0, 1]N representing the presence of users, where
Mn = 1 implies that attention of the nth user is considered
in the current sample. It plays the role as an indicator for in-
tegrating the unregularized attention maps from the selected
users and generating the final saliency map S ∈ RH×W :

S = softmax(
∑
n

Mn · Sraw
n ) (3)

where · denotes the element-wise multiplication.
To bridge individuals’ visual preferences with the overall

attention, we optimize our model with supervision on both
the intermediate per-user predictions and the final output.
We follow [10] and define the loss function Lsal as a com-
bination of saliency metrics including Normalized Scan-
path Saliency [33], Correlation Coefficient [31] and KL-
Divergence [27] (see [10] and our supplementary materi-
als). For per-user supervision, we apply a softmax activa-
tion function independently on unregularized attention map
of each user to obtain their corresponding predictions:

Suser
n = softmax(Sraw

n ) (4)

Our overall objective simultaneously optimizes both the in-
termediate per-user predictions and the final output:

L = Lsal(S, Sal, F ix)

+ λ
∑
n

Lsal(S
user
n , Salusern , F ixuser

n ) (5)

where Sal and Fix are the ground truth saliency and fix-
ation maps aggregated from selected users, Salusern and
Fixuser

n are those for individual user n. Note that only users
selected in the user mask (i.e., Mn = 1) will be considered
for optimization. λ is the balancing factor.

The aforementioned model illustrates a general
paradigm for connecting user preferences and visual
saliency. It serves as the foundation for user-aware saliency
modeling, and supports the development of our progressive
learning method, as detailed in the next subsection.

3.2. Learning the Composition of Attention

Visual attention is driven by both salient regions that
most people find attractive and individuals’ unique inter-
ests. Understanding how to incorporate attention patterns
of different users is an important challenge for user-aware
saliency modeling. Without such knowledge, a model can
overfit to attention driven by visual stimuli, and has diffi-
culties learning the variability of users’ attention. For in-
stance, as there exists a considerable overlap between atten-
tion of different users, a model can exploit such a shortcut
and predict an averaged attention map (of all users) regard-
less of the selection of users (see supplementary materials).
To tackle the challenge, we propose a principled learning
method that augments our saliency model with understand-
ing of the composition of attention.

Drawing inspirations from human learning, which is
highly organized and based on curricula that gradually in-
troduce diverse concepts, our method emphasizes progres-
sive learning with dynamically evolving objectives. As il-
lustrated in Figure 2 (bottom), it can be viewed as a three-
phase training procedure: (1) As the initial step of learn-
ing, the model is encouraged to establish the correspon-
dence between personalized modules and individuals’ vi-
sual preference; (2) Later on, in the second phase, it is
driven to take advantage of the learned preferences and con-
struct saliency maps for diverse selections of users; (3) In
the final phase, we allow the model to refine its prediction
on attention of broader users, unifying personalized [42]
and general saliency prediction [23, 25, 41]. Instead of di-
viding the learning into three separate stages (e.g., with a
sequence of pretraining and fine-tuning), we instantiate the
aforementioned paradigm by manipulating the characteris-
tics of training samples throughout the learning process.
Specifically, we first sample the number of users K from
a specific range, and then randomly select of fixations K
users (with a uniform distribution) to construct the ground
truth fixation and saliency maps on the fly.

Through controlling the number of users sampled among
different training epochs, our method allows a continuous
and progressive learning of the composition of attention:
(1) We start with annotations from a small number of users
(e.g., 1-4 users) and adaptively optimizing different compo-
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nents of the networks (e.g., personalized filters indicated by
the input user masks), which allows the model to encode in-
dividuals’ visual preferences. It also attenuates the effects
of overfitting to attention driven by visual stimuli, as the
model has no access to annotations from all users and thus
can not exploit the correlation between individuals’ atten-
tion and the averaged one; (2) With the progress of training,
we gradually increase both the lower and the upper bounds
for sampling range of K (e.g., from 1-4 to 5-9 users). Note
that the users are randomly selected on a sample basis for
every training iteration (i.e., one sample in a single batch).
The scheme facilitates understanding of how to combine vi-
sual preferences of each individual to the attention patterns
of different user groups; (3) During the last several training
epochs, we fix the bounds for sampling to relatively large
values (e.g., 80%−100% users), allowing the refinement of
predictions for the general saliency.

Our learning paradigm enables a smooth transition from
individuals’ preferences to attention of a broad range of
users. Together with the proposed model, our full method
shows promise in capturing attention of both diverse users
(Section 4.2) and the general population (Section 4.3)

4. Experiment
In this section, we present the implementation details

(Section 4.1), and carry out extensive experiments to study
the effectiveness of the proposed framework. Our experi-
ments and analyses aim to shed light on the following re-
search questions that have yet to be answered:

• Does learning the composition of attention help cap-
ture attention of diverse users? (Section 4.2)

• Are visual preferences beneficial for general saliency
prediction? (Section 4.3)

• Can user-aware saliency modeling overcome the issues
of incomplete users? (Section 4.4)

We also include additional analyses and ablation studies
in the supplementary materials.

4.1. Implementation

Dataset. We demonstrate the effectiveness of our
method with two types of visual stimuli, i.e., naturalistic im-
ages and web pages. Since most saliency datasets only of-
fer aggregated fixation annotations, we choose two publicly
available saliency datasets, OSIE [39,41] and FiWI [37], as
our testbeds, which provide per-user annotations for user-
aware saliency modeling. OSIE contains eye-tracking data
collected on 700 naturalistic images with rich semantics.
We use the version collected in [39], which has more diverse
attention patterns from 32 users (about 14 users are pre-
sented with each sample) due to their less constrained ex-
perimental settings. FiWI is a popular eye-tracking dataset

for web pages, which contains data from 11 users on 149
samples. We also conduct experiments on the recently in-
troduced web page saliency dataset [8] with 450 samples,
and report the results in our supplementary materials.

Evaluation. Saliency prediction is typically evaluated
with multiple metrics [6]. Following [8, 19, 21, 30], we
adopt seven popular saliency metrics, including Normalized
Scanpath Saliency (NSS) [33], KL-Divergence (KLD) [27],
Similarity (SIM) [35], Correlation Coefficient (CC) [31],
Area Under the ROC Curve (AUC) [15], AUC-Judd [25],
and shuffled AUC (sAUC) [4]. For the OSIE dataset, we
follow [41], and randomly split the samples into 600 and
100 for training and evaluation, respectively. In terms of the
FiWI dataset, following [37] and [8], we consider two eval-
uation settings, including 5-fold cross-validation and eval-
uation with fixed training/test sets. Besides estimating the
capability of our method on capturing the attention patterns
of diverse users (Section 4.2), we also study its usefulness
on general saliency prediction (Section 4.3).

Model Configuration. We build our method on the
state-of-the-art EML-Net [21] saliency model. We use
ResNet-50 [18] as the backbone, which is pretrained on Im-
ageNet classification [12] and offers profound understand-
ing of visual semantics. To show the generalizability of our
method, we also experiment with a different saliency model
(i.e., a variation of SimpleNet [34], see the supplementary
materials). Multi-scale features are extracted from 4 lay-
ers, where each corresponds to the end of a block inside the
backbone. The features are processed with a set of atten-
tion decoders, where the decoder of each scale contains two
consecutive convolutional layers with 16 and N filters (N is
the number of users), and an upsampling layer that rescales
features to have the same spatial resolution as the image.

Training. Following [10], we train models for 50 epochs
with batch size 10 using the Adam optimizer [26]. λ factor
in equation (5) is empirically set to 0.2. Learning rate is ini-
tially set to 10−4, and decayed by a factor of 0.8 for every 10
epochs. For our learning approach proposed in Section 3.2,
we set the initial bounds to [1, 4] and [1, 6] for FiWI and
OSIE, respectively, and increase both the upper and lower
bounds by 2 every 10 epochs. The bounds are fixed to [9,
11] and [11, 15] for FiWI and OSIE after reaching the corre-
sponding values. The aforementioned hyperparameters are
determined based on 5-fold cross-validation. For a fair com-
parison with the state-of-the-art [8, 37] and a more flexible
setting, we do not pretrain our models on external saliency
datasets like the SALICON [23] dataset.

4.2. Does Learning the Composition of Attention
Help Capture Attention of Diverse Users?

We first study the effectiveness of our method for captur-
ing the visual preferences of diverse users. Specifically, we
randomly sample K users (K=1, 3, 5) for each evaluation
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Figure 3. Qualitative results for predicting attention of diverse users. We show results for two different user groups for each sample, and
also consider variable numbers of users K = 1, 3, 5. Note that EML-Net is user-agnostic and predicts the same result for two groups.

image, and estimate the predictions with ground truth an-
notations aggregated from the selected users. We repeat the
procedure 5 times to reduce the variance of results, and re-
port the average performance. Following [41] and [37], we
use fixed training/test splits on the OSIE dataset and per-
form 5-fold cross-validation on the FiWI dataset. We com-
pare our full method (Ours) with three approaches, includ-
ing the user-agnostic EML-Net baseline [21], an ensemble
of EML-Net trained on individual users (Single-user, with
one model for each user), and our model without incorpo-
rating progressive learning (Ours*). Three key observations
can be made on the results reported in Table 1 and Table 2:

• There exist considerable discrepancies between
general and user-aware saliency modeling. Despite
the inter-user agreement on visual attention, the user-
agnostic EML-Net achieves inferior performance on
both datasets, especially FiWI with web pages asso-
ciated with richer semantics and more diverse viewing
behaviors. The observation highlights the significance
of visual preferences for attention modeling.

• Learning how to integrate attention is important

Table 1. User-aware saliency results on FiWI [37].

K=1 K=3 K=5

NSS CC NSS CC NSS CC

EML-Net 1.481 0.307 1.506 0.454 1.498 0.519

Single-user 1.962 0.373 1.749 0.518 1.745 0.591

Ours* 1.908 0.366 1.785 0.526 1.784 0.609

Ours 2.059 0.392 1.829 0.540 1.815 0.620

Table 2. User-aware saliency results on OSIE data [39].

K=1 K=3 K=5

NSS CC NSS CC NSS CC

EML-Net 1.755 0.367 1.763 0.532 1.718 0.594

Single-user 1.456 0.314 1.565 0.492 1.574 0.566

Ours* 1.640 0.294 1.768 0.537 1.812 0.625

Ours 1.809 0.310 1.809 0.550 1.826 0.629
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Table 3. General saliency results on FiWI data [37].

NSS KLD CC AUC-Judd sAUC

DeepGaze II 1.229 - 0.488 0.797 0.625

SAM-ResNet 1.246 - 0.595 0.791 0.673

UMSI 0.938 - 0.457 0.755 0.675

AGD-F 1.606 - 0.735 0.767 0.748

EML-Net 1.653 0.603 0.661 0.847 0.675

EML-Net+SALICON 1.722 0.567 0.689 0.848 0.697

Ours 1.752 0.564 0.699 0.851 0.704

Table 4. General saliency results on OSIE data [39].

NSS KLD SIM CC AUC

SALICON 1.641 0.575 0.600 0.685 0.846

SAM-ResNet 1.811 0.480 0.648 0.758 0.860

UMSI 1.788 0.513 0.631 0.746 0.856

EML-Net 1.737 0.537 0.619 0.717 0.854

Ours 1.840 0.506 0.652 0.761 0.860

for capturing visual preferences. A key component
of our framework is the progressive learning method
for understanding the composition of attention. Ac-
cording to the comparative results between our meth-
ods with and without progressive learning, it helps
models better identify the attentional preferences of
both individuals (i.e., K=1) and user groups (i.e., K=3,
5). As illustrated in Figure 3, unlike EML-Net and our
method without progressive learning (Ours*) that fail
to capture the visual preferences and generate similar
attention maps regardless of the selection of users, our
full method is able to predict attention maps that accu-
rately reflect the regions of interest of diverse users.

• Additive ensemble falls short of modeling user-
aware attention. Training one model for each user of-
fers a straightforward way to model user preferences,
and slightly outperforms our method without progres-
sive learning when considering individuals’ attention
(i.e., K=1) on FiWI. However, without learning how to
integrate attention, it lacks the capability to predict at-
tention maps with multiple users and is outperformed
by our full method across all settings. Additionally,
such an additive ensemble also fails to benefit general
saliency prediction due to its high computational over-
head and the inability to jointly consider attention of
different users (see our supplementary materials).

These observations highlight the significance of model-
ing visual preferences and the composition of attention, and

demonstrate the advantages of our method for user-aware
saliency modeling. While we do not consider demographic
information in this study, our method is general and can be
extended to broader scenarios for customized applications.
For instance, instead of developing personalized filters, we
can cluster users based on certain criteria (e.g., gender, age,
personal interest) and optimize models to predict attentional
preferences of users of specific characteristics.

4.3. Are Visual Preferences Beneficial for General
Saliency Prediction?

General saliency prediction focuses on attention aggre-
gated from all users, and yet little attention has been paid to
the diversity of attention patterns between users. In this sub-
section, we further investigate if knowledge of visual prefer-
ences is beneficial for the task. We compare our user-aware
method with six state-of-the-art models, including SALI-
CON [19], Deep Gaze II [28], SAM [10], EML-Net [21],
UMSI [16], and AGD-F [8]. For a fair comparison, we
adopt the training and test sets provided in [8] for evalua-
tion on FiWI dataset. Table 3 and Table 4 report results on
the FiWI [37] and OSIE [39, 41] datasets.

Compared to the EML-Net baseline, our model that takes
into account visual preferences shows consistent improve-
ments among all settings. Its performance is also competi-
tive against existing state-of-the-art. As illustrated in Figure
4, the performance gain of our method can be attributed to
the capability to capture fine-grained attention patterns (i.e.,
focuses on the man, little girls, and woman in the three ex-
amples, respectively) in addition to the salient regions at-
tended by the majority of users (i.e., text, the food, and the
boy). Moreover, the advantages of our method is also a re-
sult of increased data efficiency. Comparative results show
that it outperforms EML-Net pretrained on the SALICON
[23] dataset with 15000 images (EML-Net+SALICON), de-
spite only relying on training samples in the FiWI dataset
with 149 images. Such a unique feature can play an im-
portant role in generalizing towards domains with diverse
characteristics (e.g., web page vs naturalistic image), where
suitable data for pretraining is not necessarily available.

4.4. Can User-aware Saliency Modeling Overcome
the Issues of Incomplete Users?

Collecting human behavioral data demands stringent
paradigms, and building large attention datasets has been
challenging for decades [23]. As a result, it is common for
saliency datasets to have samples associated with incom-
plete users. For instance, there are 32 users recruited in [39],
while only about 14 users are presented for each sample.
Different from prior works [19,21,28,30] that overlook the
issue, we examine if knowledge of visual preferences can
be helpful for tackling the problem.

Specifically, we randomly drop K∗ users for each train-
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Figure 4. Qualitative results for general saliency prediction.

Table 5. Results for saliency prediction with incomplete users on seen and unseen images.

K=1 K=3 K=5 Unseen

NSS CC NSS CC NSS CC NSS CC

K∗ = 5
EML-Net 1.733 0.359 1.719 0.518 1.712 0.589 1.616 0.601

Ours 1.759 0.341 1.781 0.530 1.797 0.614 1.698 0.632

K∗ = 7
EML-Net 1.662 0.342 1.659 0.501 1.658 0.573 1.584 0.551

Ours 1.723 0.330 1.734 0.512 1.739 0.594 1.708 0.589

ing sample in the FiWI dataset, and consider two evaluation
settings: (1) attention of missing users on seen samples (we
use different numbers of missing users, i.e., K=1, 3, 5), and
(2) attention of all users on unseen test samples (i.e., Un-
seen). The first setting is particularly useful for scenarios
where we are interested in comparing users’ preferences.
On the other hand, the second setting aims to study models’
robustness against the scarcity of annotations.

According to comparative results reported in Table 5, the
proposed user-aware method is advantageous in both evalu-
ation settings. Despite the slightly lower CC scores for indi-
viduals’ attention (K=1) on seen images, it achieves consid-
erable improvements among all other evaluation settings.
This is likely because predictions from the user-agnostic
EML-Net tend to have a broader coverage, which is favored
by CC metric emphasizing the overall distribution. Dif-
ferently, our method has the capability to more accurately
attend to regions of interest of different users, resulting in
higher NSS scores as well as CC scores for more users. It
also makes better use of the available data, and is more ro-
bust against the scarcity of annotations (i.e., higher general-

ization performance on unseen images).

5. Conclusion
This paper identifies the critical roles of user preferences

in visual attention, and for the first time tackles the chal-
lenge of user-aware saliency modeling. It unifies the con-
ventional tasks for predicting general and personalized at-
tention, and proposes an integral framework that jointly
solves attention modeling for individual users, different
groups of users, and the general population. By making
progress with both a novel saliency prediction model and
a progressive learning method, our framework illustrates
a principled paradigm for establishing the connections be-
tween user preferences and visual saliency. Experimental
results in diverse settings demonstrates the advantages of
the proposed method in inferring the attention patterns of a
variety of users, and highlights the significance of incorpo-
rating the variability of attention. We hope that our study
can open new avenues for attention research, and benefit
the development of new applications based on user-aware
saliency models.
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[24] Tilke Judd, Frédo Durand, and Antonio Torralba. A bench-
mark of computational models of saliency to predict human
fixations. In MIT Technical Report, 2012. 2, 3

[25] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Tor-
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