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Abstract

We present a new loss function for joint disparity and
uncertainty estimation in deep stereo matching. Our work
is motivated by the need for precise uncertainty estimates
and the observation that multi-task learning often leads to
improved performance in all tasks. We show that this can
be achieved by requiring the distribution of uncertainty to
match the distribution of disparity errors via a KL diver-
gence term in the network’s loss function. A differentiable
soft-histogramming technique is used to approximate the
distributions so that they can be used in the loss. We exper-
imentally assess the effectiveness of our approach and ob-
serve significant improvements in both disparity and uncer-
tainty prediction on large datasets. Our code is available at
https://github.com/lly00412/SEDNet.git.

1. Introduction
Many computer vision problems can be formulated as

estimation tasks. Considering, however, that even high-
performing estimators are not error-free, associating con-
fidence or uncertainty with their estimates is of great im-
portance, particularly in critical applications. In this paper,
we focus on disparity estimation via stereo matching, but
we are confident that our approach is applicable to other
pixel-wise regression tasks after minor modifications.

We distinguish between confidence and uncertainty: the
former refers to a probability or likelihood of correctness,
while the latter is related to the magnitude of the expected
error of an estimate. Confidence can be used to reject es-
timates that are suspected to be incorrect, or to rank them
from most to least reliable. We argue that uncertainty is
more valuable because it can also used for fusing multiple
observations, e.g. in a Kalman filtering framework. Most
research has focused on confidence estimation for stereo
matching [12, 30]. Moreover, most methods estimate confi-
dence for pre-computed disparities that are not further im-
proved. Joint estimation of disparity and confidence, which
benefits both due to multi-task learning, is addressed infre-
quently [19, 20, 26, 34].

Our work is partially inspired by the joint treatment
of epistemic and aleatoric uncertainty by Kendall and Gal
[14], who propose novel loss functions that give rise to un-
certainty estimates in pixel-wise vision tasks. Results on
semantic segmentation and single-image depth estimation
demonstrate how the primary task benefits from simulta-
neous uncertainty estimation. Kendall and Gal argue that
“in many big data regimes (such as the ones common to
deep learning with image data), it is most effective to model
aleatoric uncertainty,” while epistemic uncertainty can be
reduced when large amounts of data are available. Here, we
restrict our attention to aleatoric uncertainty.

Our motivation is that ideally we should be able to pre-
dict the magnitude of the estimator’s error at each pixel. Of
course, this is unrealistic, since if it was possible, we could
drive all errors down to zero. A feasible objective is to train
an uncertainty estimator whose outputs follow the same dis-
tribution as the true errors of the disparity estimator.

In this paper, we present an implementation of this con-
cept via a deep network that jointly estimates disparity and
its uncertainty from a pair of rectified images. We named
the network SEDNet, for Stereo Error Distribution Net-
work. SEDNet includes a novel, lightweight uncertainty es-
timation subnetwork that predicts the aleatoric uncertainty

Left Image Predicted Disparity

Figure 1. Examples of left images and predicted disparity maps by
SEDNet on DrivingStereo [36]. The first example is taken around
sunset with over-exposure. The second example is taken on a rainy
day with under-exposure. In both challenge cases, SEDNet pre-
dicts accurate disparity.
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of stereo matching, and a new loss to match the distribution
of uncertainties with that of disparity errors. To generate
the inputs to this new loss, we approximate the distributions
from the samples of disparity errors and uncertainty values
in a differentiable way via a soft-histogramming technique.

We present extensive experimental validation of SED-
Net’s performance in disparity estimation and uncertainty
prediction on large datasets with ground truth. SEDNet is
superior to baselines with similar, even identical, architec-
ture, but without the proposed loss function. Our main con-
tributions are:

• a novel uncertainty estimation subnetwork that extracts
information from the intermediate multi-resolution
disparity maps generated by the disparity subnetwork,

• a differentiable soft-histogramming technique used to
approximate the distributions of disparity errors and
estimated uncertainties,

• a loss based on KL divergence applied on histograms
obtained with the above technique.

2. Related Work
We refer readers to recent surveys on deep stereo match-

ing [32] and on confidence estimation [30]. Here we sum-
marize the most relevant publications to our work.

Stereo matching networks operate on a cost volume,
which aggregates 2D features at each potential disparity
for every pixel, and can be constructed via correlation or
concatenation. Correlation-based networks such as Disp-
NetC [25], iResNet [24] and SegStereo [38], generate a
single-channel correlation map between features extracted
from the two views at each disparity level, favoring com-
putation efficiency at the expense of losing the structural
and semantic information in the feature representation.
Concatenation-based networks, such as GCNet [16], PSM-
Net [2] and GANet [39], assemble features from both views
at the disparity specified by the corresponding element of
the cost volume. This promotes learning of contextual fea-
tures but requires more parameters and a subsequent aggre-
gation network.

We select GwcNet [11] as the foundation of our net-
work. GwcNet takes a hybrid approach by reducing the
dimension of the unary feature channels before concatena-
tion in the cost volume. This is accomplished by a Group
Wise Correlation layer, which takes as input Nc unary fea-
ture channels, divides them into Ng groups, computes the
correlation between channels in each group at all disparity
levels, and uses the resulting correlation scores to form the
cost volume. This reduces the size of the cost volume and
the computational cost of 3D convolutions by a factor of
Nc : Ng , with Ng much smaller than Nc, but still provides
rich similarity-measure features to the disparity estimator.

Researchers have also focused on model reliability. In
Bayesian Neural Networks (BNNs), different models are

sampled from the distribution of weights to estimate the
mean and variance of the target distribution in an empiri-
cal manner, yielding estimates of uncertainty [7, 27]. Ad-
ditional empirical strategies such as Bootstrapped Ensem-
bles [23] and Monte Carlo Dropout [8] also sample from
the distribution of weights. On the other hand, Graves [10]
and Blundell et al. [1] proposed to replace the sampling with
variational inference.

Due to the high cost of training BNNs, methods for mod-
eling the uncertainty or confidence in a predictive manner
have also attracted interest. We distinguish between con-
fidence and uncertainty: confidence is a binary variable
trained with the BCE loss, while uncertainty is a continuous
variable trained with L1 or L2 loss. Nix and Weigend [28]
introduce NNs with one output for model prediction and
one for data noise (aleatoric uncertainty). In addition to
aleatoric uncertainty which captures the data noise of the
observations, epistemic uncertainty, which accounts for the
uncertainty of the model parameters, can also be modeled
[3]. To capture both types, Kendall et al. [14, 15] pro-
posed to combine empirical and predictive methods in a
joint framework.

CNNs have been used to estimate confidence in stereo
matching. The Confidence CNN (CCNN) [31], Patch Based
Confidence Prediction (PBCP) [33], the Early Fusion Net-
work (EFN) and the Late Fusion Network (LFN) [4] and
Multi Modal CNN (MMC) [5] only use small patches of
the disparity maps. Conversely, the Global Confidence Net-
work (ConfNet) and the Local-Global Confidence Network
(LGC) [35] introduce U-Net like architectures and take both
the image and disparity map as inputs. As a baseline, we
use the Locally Adaptive Fusion Network (LAF) [18] which
predicts the confidence map based on tri-modal inputs: the
cost and disparity maps and the color image. An extension
based on knowledge distillation has also been published
[17]. These strategies are effective and cheaper than the
empirical ones, since they only require one forward pass.

Only a subset of the confidence estimation literature has
focused on joint disparity and confidence estimation. The
Reflective Confidence Network (RCN) [34] is the first to
combine a disparity and a confidence loss. The Unified
Confidence Network (UCN) [19] and the Adversarial Confi-
dence Network (ACN) [20] jointly estimate confidence and
disparity from pre-computed cost volumes. UCN is self-
supervised, while ACN combines a generative cost aggre-
gation network and a discriminative confidence estimation
network in an adversarial manner. Mehltretter [26] presents
an approach that predicts both epistemic and aleatoric un-
certainty using a Bayesian Neural Network, based on GC-
Net [16]. KL divergence is used to measure the distance
between the approximation of the distribution of network
parameters estimated by variational difference and the ex-
act posterior distribution. (It should be noted that we use
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KL divergence for a completely different purpose on the
distribution of disparity errors.)

Relevant research in adjacent areas of computer vision
includes the work of Poggi et al. [29] who comprehensively
evaluate uncertainty estimation for self-supervised monoc-
ular depth estimation. Ilg et al. [13] study empirical ensem-
bles, predictive models and predictive ensembles as uncer-
tainty models for optical flow estimation.

3. Method
The objective of our work is to jointly estimate the dis-

parity and its uncertainty. An important benefit of this joint
formulation is that the multi-task network learns to predict
more accurate disparities than the standalone disparity es-
timator when the uncertainty subnetwork is added. Given
a stereo image pair X = {xl,xr}, with image dimensions
H×W , and the corresponding ground truth disparity d, the
prediction d̂ of a stereo-matching network fθ can be repre-
sented as d̂ = fθ(xl,xr). For each pixel i, the error ϵ(i) of
the prediction is calculated using the L1 loss.

Kendall and Gal [14] use the negative log-likelihood of
the prediction model as the loss function to be minimized in
pixel-wise tasks.

We take the formulation a step further by requiring that
the network generate a distribution of uncertainties that
matches the distribution of errors. To this end, we propose
to minimize the divergence D between the distributions of
predicted uncertainty and actual disparity error.

In the following subsections, we present aleatoric uncer-
tainty estimation (Section 3.1), the proposed KL divergence
loss (Section 3.2), our network architecture (Section 3.3),
and the combined loss function (Section 3.4).

3.1. Aleatoric Uncertainty Estimation

In order to predict uncertainty and reduce the impact of
noise, Kendall and Gal [14] minimize the pixel-wise nega-
tive log-likelihood of the prediction model, assuming that it
follows a Gaussian distribution. The subsequent work of Ilg
et al. [13] shows that the predicted distribution can be mod-
eled as either Laplacian or Gaussian depending on whether
the L1 or L2 loss is used for disparity estimation. Since we
use the former, we can write the prediction model as:

p(d|fθ(X)) = Laplace(fθ(X), σ) (1)

where the mean is given by the model output and σ is the
observation noise scalar.

To model aleatoric uncertainty, Kendall and Gal [14] in-
troduce pixel-specific noise parameters σ(i). We follow the
approach of Ilg et al. [13], who do the same for a Laplacian
model, and obtain the following pixel-wise loss function:

Llog =
1

n

n∑
i=1

|d̂(i) − d(i)|
exp(s(i))

+
1

n

n∑
i=1

s(i) (2)

where d̂(i) and d(i) are the predicted and ground truth dis-
parity for pixel i, s(i) is the log of the observation noise
scalar σ(i), and n is equal to the total number of the pixels.
Equation (2) may be viewed as a robust loss function where
the residual loss for a pixel is attenuated by its uncertainty,
while the second term acts as a regularizer. We follow the
authors’ suggestion and train the network to predict the log
of the observation noise scalar, s, for numerical stability.

3.2. Matching the Distribution of Errors

Training a model using Eq. (2) as the loss improves dis-
parity estimation accuracy and favors uncertainty estimates
correlated with the errors. Ideally, we would like each un-
certainty estimate to be a precise predictor of the corre-
sponding disparity error. Since this is infeasible, we would
like the distribution of uncertainties to match the distribu-
tion of errors.

The Kullback-Leibler (KL) divergence [22] is a natural
choice for measuring the dissimilarity between the distribu-
tion of ϵ and that of σ. Since the KL divergence is asymmet-
ric, we choose the distribution of ϵ as the reference. There-
fore, our network should also minimize the following ob-
jective function:

Ldiv = D(Pσ(d))∥Qϵ(d)) =

∫ dmax

0

Pσ(d) log
Pσ(d)

Qϵ(d)
dd

(3)
where d spans the disparity range. Since the network re-
gresses disparity, the continuous formulation of KL diver-
gence is appropriate.

Minimizing Eq. (3) directly requires closed form expres-
sions for the two distributions, which are not available to
us. They could be modeled as Laplace distributions, but the
maximum likelihood estimator is not differentiable. More-
over, fitting models to the data may be imprecise at the tails
of the distributions. Therefore we choose non-parametric
representations in the form of histograms.

Histogramming is also not a differentiable operation,
leading us to soft-histogramming as a differentiable alter-
native. We specify a set of bins for the histograms based
on the statistics of the errors ϵ, since their distribution is
the one that should be matched by the distribution of uncer-
tainty estimates σ. Since the L1 loss, and our network in
general, does not discriminate between positive and nega-
tive errors, we work with absolute values of ϵ and σ.

For each batch during training, we compute the mean and
standard deviation of the error, µϵ and bϵ, set C0 = µϵ as the
center of the first bin, and Cm = µϵ+αmbϵ as the center of
the last bin. (We use bϵ for the standard deviation to avoid
overloading σ or s. Also note that the last bin extends to the
disparity range, which is also the maximum possible error.)
We then define m − 1 centers evenly spaced in a linear or
logarithmic scale between the first and last center.
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Figure 2. An illustration of SEDNet. The stereo matching subnetwork consists of the feature extractor, cost volume generator and disparity
estimator. It takes a rectified pair of images as input and predicts disparity maps at multiple resolutions. The uncertainty estimation
subnetwork takes the predicted disparity maps as input and predicts corresponding uncertainty maps. The error maps, between the ground
truth and predicted disparity, are used to supervise uncertainty estimation. During training, the network keeps the output at all resolutions,
but returns only the highest resolution disparity and uncertainty maps during testing.

Given the bin centers, we compute a soft-histogram for
the errors and one for the uncertainties as follows, consid-
ering all pixels with ground truth disparity, and error val-
ues. We present the steps for ϵ here. For each error ϵ(i), we
compute weights for every bin center which are inversely
proportional to the distance.

wj(ϵ
(i)) = λ1 · exp(−

(µϵ + αjbϵ − ϵ(i))2

λ2
) (4)

where λ1 and λ2 are hyper-parameters. Softmax is then
applied to favor the nearest bins and the contributions of n
pixels are accumulated in the bins of the histogram Hϵ.

Hϵ(j) =
1

n

n∑
i=1

exp(wj(ϵ
(i)))∑m

j=0 exp(wj(ϵ(i)))
, j ∈ [0,m] (5)

The histogram for σ, Hσ , is obtained similarly. (Note that
the bins of both histograms are defined in terms of bϵ.)

The loss representing the discrete form of the KL diver-
gence between the two histograms is given by:

Ldiv =

m∑
j=0

Hϵ(j) log
Hϵ(j)

Hσ(j)
(6)

3.3. SEDNet

Our network architecture, named SEDNet, includes a
disparity estimation subnetwork, an uncertainty estimation
subnetwork, and is shown in Figure 2. In all experiments,
we have adopted GwcNet [11] as the disparity estimation
subnetwork, among other options, and we have designed

a novel uncertainty estimation subnetwork that interfaces
with GwcNet. It is worth noting that the uncertainty sub-
network is extremely small.

The GwcNet subnetwork extracts features from the im-
ages using a ResNet-like feature extractor, generates the
cost volume, and assigns disparities to pixels using the soft-
argmax operator [16]. The output module of the disparity
predictor generates K disparity maps at different resolu-
tions.

We propose a new uncertainty estimator integrated with
the stereo matching network. The uncertainty estimation
subnetwork learns to predict the log of the observation
noise scalar, the error, at each pixel. The proposed sub-
network takes the multi-resolution disparity predictions as
input, computes the pairwise differences vector (PDV) and
passes it to a pixel-wise MLP to regress the uncertainty
maps. Specifically, the disparity estimator outputs K dis-
parity maps at different resolutions d̂ = {d̂1, ..., d̂K},
which are first upsampled to full-resolution and then un-
dergo pairwise differencing to form the PVD, which con-
sists of

(
K
2

)
elements. The output set of uncertainty maps

S also contains K resolutions to match the disparity maps.
We use K = 4 in all experiments.

3.4. Loss Function

Our loss function combines two parts: (1) the log-
likelihood loss to optimize the error and uncertainty, (2) the
KL divergence loss to match the distribution of uncertainty
with the error. The total loss considers all disparity and un-
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certainty maps upsampled to the highest resolution:

L =

K∑
k=1

ck · (Llog,k + Ldiv,k) (7)

where ck denotes the coefficients for the kth resolution
level, Llog,k and Ldiv,k are computed by Eq. (2) and Eq. (6)
on the prediction of the corresponding resolution level.

4. Experiment Results
In this section, we present our experimental setup and

results on within-domain and cross-domain experiments.
Datasets, evaluation metrics and baselines are described in
Section 4.1, implementation details in Section 4.2, and ex-
perimental results in Sections 4.3 and 4.4. Additionally,
a synthetic-to-real transfer evaluation is presented in Sec-
tion 4.5. We provide more quantitative and qualitative re-
sults, extending Section 4, in the Supplement, which also
includes ablation studies on several aspects of SEDNet and
the baselines, as well as disparity, error, and uncertainty
maps of difficult examples.

4.1. Datasets and evaluation metrics

SceneFlow [25] is a collection of three synthetic stereo
datasets: FlyingThings3D, Driving, Monkaa. The datasets
provide 35, 454 training and 4, 370 test stereo pairs in
960 × 540 pixel resolution with dense ground-truth dispar-
ity maps. We use the finalpass versions of the rendered im-
ages which are more realistic because of the motion blur
and depth of field effect.
Virtual KITTI 2 (VK2) [6] is a synthetic clone of
KITTI [9]. It consists of 21, 260 synthetic 1, 242 × 375
stereo pairs from 6 driving scenes with 10 different imaging
and weather conditions. Scene 006 (VK2-S6) is specified as
the test set by the authors of the dataset. Since the car with
the cameras is stopped for a long part of Scene 006 and only
other cars move in the images, we split the last part of the
scene where the car moves and denote it as VK2-S6-Moving.
We report results separately on this subset. Since results on
VK2-S6-Moving do not suffer from bias due to the almost
constant background of the first part of the scene, evaluation
on VK2-S6-Moving is more informative and fair.
DrivingStereo [37] is a large real-world autonomous driv-
ing dataset. It contains 174, 437 training and 7, 751 test
stereo pairs at 881× 400 pixel resolution. The dataset pro-
vides sparse ground truth disparity as well as a challeng-
ing subset (DS-Weather) of 2, 000 stereo pairs in 4 different
weather conditions.

For all datasets above, we exclude pixels with disparities
d > 192 in training.
Metrics. To evaluate disparity estimation, we compute the
endpoint error (EPE) and the percentage of outliers (D1)

(i.e., the percentage of pixels with EPE > 3px or ≥ 5% of
the true depth).

To evaluate uncertainty estimation, we use density-EPE
ROC curves and the area under the curve (AUC) [12,18,30].
The ROC curves in our case measure EPE (not binary cor-
rectness) at increasing disparity map density by succes-
sively adding pixels in increasing order of uncertainty. The
optimal AUC is obtained by adding pixels in order of in-
creasing EPE and is therefore the lowest value any algo-
rithm could achieve given the set of EPE values, while the
estimated AUC is sorted by predicted uncertainty. To eval-
uate the precision of uncertainty estimation, we also intro-
duce the absolute prediction error (APE), which is the aver-
age L1 distance between the error and the observation noise
scalar, σ. We report the average and median APE over all
pixels.
Baselines. Since we use GwcNet [11] as the disparity
estimation subnetwork of SEDNet, we compare SEDNet
with three baselines: (1) the original GwcNet trained with
smooth L1 loss. (2) LAF-Net [18] trained under the BCE
loss on the left RGB images, the cost volumes and predicted
disparity maps of GwcNet at the highest resolution. (3)
SEDNet but only trained with the log-likelihood loss, there-
fore similar to Kendall and Gal’s model [14]. We use Llog

in tables and figures for this baseline. We selected Gwc-
Net because it is the backbone of SEDNet, and LAF-Net as
the confidence estimation baseline due to its strong perfor-
mance within the training domain according to [30].

4.2. Implementation Details

We implemented all networks in PyTorch and used the
Adam optimizer [21] with β1 = 0.9 and β2 = 0.999 for
all experiments. Training of all models was stopped before
overfitting occurred.

Experiments on the VK2 dataset were performed on two
NVIDIA RTX A6000 GPUs, each with 48 GB of RAM.
For this dataset, we trained all models from scratch with an
initial learning rate of 0.0001, down-scaled by 5 every 10
epochs. During training, we randomly cropped 512 × 256
patches from the images. During testing, we evaluated at
the full resolution of VK2.

Experiments on the DrivingStereo dataset (DS) were
also performed on two NVIDIA RTX A6000 GPUs. For
this dataset, we did two experiments using the models pre-
trained on VK2: (1) we finetuned on the DS training set
with a learning rate starting from 0.0001, down-scaled by
2 every 3 epochs after epoch 10, then performed in-domain
evaluation on the DS test set; (2) we skipped the finetun-
ing step and performed cross-domain evaluation on DS-
Weather subset. During training, we randomly cropped the
inputs to be the same size as in the VK2 experiments. Dur-
ing testing, we padded the test samples to be the same reso-
lution as VK2.
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Dataset Method Loss Inliers Disparity↓ APE↓ AUC↓
BCE L1 Log KL Bins Scale Def. Pct(%) EPE D1(%) Avg. Median Opt. Est.

Scene Flow

GwcNet -
√

- - - - - - 0.7758 4.127 - - 10.9291 -
+LAF

√
- - - - - - - 0.7758 4.127 - - 10.9291 20.0813

+Llog -
√ √

- - - EPE<5 96.96 0.7611 4.131 0.6999 0.0728 5.7449 12.1121
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 98.42 0.6754 3.963 0.5797 0.0432 4.9134 8.7195

VK2-S6

GwcNet -
√

- - - - - - 0.4125 1.763 - - 6.0962 -
+Llog -

√ √
- - - EPE<5 98.86 0.3899 1.584 0.4136 0.1753 4.6872 12.5320

+SEDNet -
√ √ √

11 log EPE<µϵ+3bϵ 99.24 0.3109 1.392 0.5234 0.1454 4.1726 9.7637
+SEDNet -

√ √ √
11 log EPE<µϵ+5bϵ 99.68 0.3236 1.427 0.3561 0.1096 4.2767 9.9843

VK2-S6-Moving

GwcNet -
√

- - - - - - 0.4253 1.689 - - 5.9184 -
+Llog -

√ √
- - - EPE<5 98.91 0.4231 1.537 0.4575 0.1890 4.3663 11.3532

+SEDNet -
√ √ √

11 log EPE<µϵ+3bϵ 99.62 0.3577 1.389 0.5958 0.1573 3.9012 8.8339
+SEDNet -

√ √ √
11 log EPE<µϵ+5bϵ 99.76 0.3862 1.420 0.4002 0.1164 4.0423 9.0631

DrivingStereo +Llog(FT) -
√ √

- - - - - 0.5332 0.2641 0.3449 0.2297 21.7002 45.7096
+SEDNet(FT) -

√ √ √
11 log EPE<µϵ+5bϵ 99.86 0.5264 0.2439 0.3324 0.2267 21.2856 44.3297

DS-Weather

GwcNet -
√

- - - - - - 1.6962 8.313 - - 44.4896 -
+Llog -

√ √
- - - EPE<5 95.78 2.3944 6.666 2.1443 0.4383 41.1909 95.4264

+SEDNet -
√ √ √

11 log EPE<µϵ+3bϵ 98.95 1.5637 6.508 2.3406 0.5309 38.4871 86.1118
+SEDNet -

√ √ √
11 log EPE<µϵ+5bϵ 99.41 1.7051 6.057 1.5842 0.6104 39.8057 87.1882

Table 1. Quantitative results: (1) within-domain on SceneFlow, VK2-S6 and VK2-S6-Moving; (2) after finetuning (FT) on DrivingStereo;
(3) cross-domain on DS-Weather. The best results in each category in each experiment are in bold typeface. SEDNet outperforms the
baselines with respect to disparity and uncertainty metrics in the majority of experiments.

Left Image Llog Disparity Llog Uncertainty

Right Image SEDNet Disparity SEDNet Uncertainty

Figure 3. Example from VK2-S6. In a rainy scene with poor illumination, recognizing objects far away from the camera is even difficult
for human observers. Llog fails to predict the disparity of objects, such as the traffic sign near the left street light. On the other hand,
SEDNet accurately predicts the disparity of these challenging objects, while its uncertainty map also captures more information, such as
the trees in the background, the traffic light near the trees and the street lights.

Experiments on the SceneFlow dataset were performed
on an Nvidia TITAN RTX GPU with 24 GB memory.
We trained all models from scratch on 256 × 128 patches
cropped from half-resolution images to limit memory con-
sumption. We set the initial learning rate to 0.001 and
down-scaled it by 2 every 2 epochs after epoch 10.

For all the experiments above, we applied an inlier fil-
tering strategy during training, which only back-propagates
from the inliers. See the last paragraph of Section 4.3 for

Architecture Params MACs(G)
GwcNet 6,909,728 1075.82
SEDNet 6,909,918 1075.91

Table 2. Comparison on number of parameters and computa-
tional complexity. MAC stands for multiply–accumulate opera-
tions. SEDNet only adds a 3-layer MLP, with 190 parameters, as
an uncertainty decoder to GwcNet.

details. Table 2 shows the number of parameters and com-
putational complexity of GwcNet and SEDNet.

4.3. Qualitative and Quantitative Results

In Table 1, we present results: (1) within-domain on
SceneFlow and VK2; (2) on the DrivingStereo test set af-
ter finetuning the VK2 models on the DrivingStereo train-
ing set; (3) cross-domain on the DS-Weather challenge test
set by directly applying the model trained on VK2 without
finetuning.
Disparity Estimation. In all experiments, SEDNet
achieves lower errors than all the baselines. See the EPE
and D1 columns in Table 1. Even in extreme weather like
fog and rain, SEDNet predicts good disparity unaffected by
poor illumination and blur. See Figure 3.
Uncertainty Estimation. Our method outperforms the
baselines in all experiments according to the AUC metric,
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Left Image Llog Disparity Llog Uncertainty

Right Image SEDNet Disparity SEDNet Uncertainty

Figure 4. Example from DS-Weather. Unlike the synthetic data, the rainy-day real images do not only suffer from poor illumination, but
also pose challenges due to reflections in the water. In this example, the road is like a mirror, misleading the Llog model. Recall that the
LIDAR ground truth disparity is very sparse, and is even sparser in reflective regions. The disparity map of Llog fails to distinguish the car
and the reflection, but SEDNet is able to estimate the correct disparity and the uncertainty of the car.

as shown in the last two columns in Table 1. Compared
to Llog, SEDNet decreases the estimated AUC by 20% –
30% in the in-domain experiments, with a 10% decrease in
optimal AUC, which depends on EPE. In the cross-domain
evaluation, the advantage of SEDNet is even more evident.
Figure 4 shows uncertainty maps for real data, on which our
method captures details more faithfully. The ROC curves of
the best Llog and SEDNet models based on EPE on VK2-
S6-Moving are presented in Figure 5.

Figure 5. Comparison of density-EPE curves on VK2-S6-Moving.
”L log (EPE<5)” and ”SEDNet (3)” represent the Llog (with fixed
inliers) and the SEDNet (with adaptive inliers of EPE<µϵ+3bϵ)
of the VK2-S6-Moving experiment in Table 1. While their corre-
sponding optimal AUCs are almost equal, the advantage of SED-
Net in estimated AUC is significant.

Effects of Back-propagation from Inliers. We apply two
kinds of inlier filters: one with a fixed threshold that ex-
cludes all pixels that have an EPE larger than 5 from back-
propagation; and one with adaptive threshold which ex-
cludes pixels that have EPE greater than a specified num-
ber of bϵ from the mean error. Back-propagation from the

inliers only helps the network improve its performance on
both disparity and uncertainty estimation. We attribute this
to the suppression of harmful outliers that give rise to large
gradients. Quantitative results for the baselines and the
proposed method with different inlier settings are reported
in the Supplement. The results show that using adaptive
thresholds is better than fixed thresholds. Fixed thresholds
exclude more pixels, especially at lower resolutions and in
the early stages of training, preventing the network from
learning how to correct them.

4.4. Matching the Error Distribution.

Comparing the results of APE in all experiments in Ta-
ble 1 and Figure 6, the difference between the errors and
the predicted uncertainty is always close to the EPE, as ex-
pected. SEDNet, however, achieves lower APE, showing

Llog SEDNet

Figure 6. Distribution of error and predicted uncertainty. We pick
the best model of Llog and SEDNet in VK2-S6-Moving, then ran-
domly sample 5, 000, 000 points from the outputs of the two mod-
els. The distributions of error and σ of SEDNet are much closer
than those of the Llog model, especially in the first 5 bins that
contain more than 95% of the samples. The shorter tail of SED-
Net also indicates fewer gross errors.
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Dataset Method Loss Inliers Disparity↓ APE↓ AUC↓
BCE L1 Log KL Bins Scale Def. Pct(%) EPE D1(%) Avg. Median Opt. Est.

VK2-S6-Morning
GwcNet -

√
- - - - - - 0.4642 1.740 - - 6.1845 -

+Llog -
√ √

- - - EPE<5 98.82 0.4774 1.624 0.5067 0.1872 4.6698 12.5192
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 99.62 0.4003 1.442 0.6183 0.1553 4.1847 9.4063

VK2-S6-Sunset
GwcNet -

√
- - - - - - 0.4810 1.825 - - 6.6907

+Llog -
√ √

- - - EPE<5 98.84 0.4863 1.627 0.5060 0.1827 5.0075 13.7848
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 99.61 0.4108 1.475 0.6189 0.1509 4.5840 10.7946

VK2-S6-Fog
GwcNet -

√
- - - - - - 0.4660 1.812 - - 6.8355 -

+Llog -
√ √

- - - EPE<5 98.98 0.4425 1.448 0.4609 0.1865 4.8983 12.1305
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 99.71 0.3731 1.288 0.5517 0.1547 4.4200 9.9380

VK2-S6-Rain
GwcNet -

√
- - - - - - 0.4618 1.700 - - 6.6774 -

+Llog -
√ √

- - - EPE<5 98.88 0.4707 1.571 0.4899 0.1861 4.9351 13.3214
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 99.69 0.3873 1.356 0.6685 0.1537 4.4013 10.3362

DS-Cloudy
GwcNet -

√
- - - - - - 1.3413 5.229 - - 37.4263 -

+Llog -
√ √

- - - EPE<5 97.48 1.4780 3.948 1.2617 0.3513 34.4488 82.5380
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 98.83 1.3183 4.414 1.5260 0.4021 33.9037 73.6330

DS-Sunny
GwcNet -

√
- - - - - - 1.5448 6.991 - - 38.7386 -

+Llog -
√ √

- - - EPE<5 97.08 1.4837 4.631 1.2806 0.3835 35.5226 85.8715
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 98.64 1.5548 5.878 3.0025 0.4808 35.6523 83.2573

DS-Foggy
GwcNet -

√
- - - - - - 1.5476 8.859 - - 51.4640 -

+Llog -
√ √

- - - EPE<5 94.89 2.9553 9.015 2.6923 0.5556 48.7136 101.7025
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 99.27 1.5398 7.357 2.4109 0.7023 47.7932 97.8627

DS-Rainy
GwcNet -

√
- - - - - - 3.1918 17.356 - - 68.0346 -

+Llog -
√ √

- - - EPE<5 98.79 5.3539 12.501 4.9480 0.5759 59.3952 146.8906
+SEDNet -

√ √ √
11 log EPE<µϵ+3bϵ 99.10 2.2165 11.020 2.6599 0.6722 50.8103 110.8360

Table 3. Quantitative results of synthetic to real evaluation. The top 4 subsets from VK2-S6-Moving are synthetic datasets, while the
rest 4 subsets from DS-Weather are the real dataset. The best results in each category in each experiment are in bold typeface. SEDNet
outperforms the baselines especially on the uncertainty estimation of the real data and under terrible weather (i.e., foggy and rainy).

that it matches the true distribution better.

4.5. Generalization from Synthetic to Real Data

Stereo-matching networks are typically trained on syn-
thetic data and fine-tuned on small amounts of data from the
target domain due to the cost and difficulty of acquiring real
data with ground truth depth. In this section, we extend the
experiments of VK2-S6 and DS-Weather in Table 1 to com-
pare the generalization performance on unseen real domains
of all methods trained only on synthetic data. We picked
four synthetic subsets from VK2-S6, specifically Morning,
Sunset, Fog and Rain, that have similar illumination condi-
tions, visibility level and weather with the four real subsets
of DS-Weather [37], i.e., Cloudy, Sunny, Foggy and Rainy.
VK2-S6-Morning and VK2-S6-Sunset have similar illumi-
nation to DS-Cloudy and DS-Sunny, but the latter two are
more challenging due to camera underexposure and over-
exposure. Even though they are acquired under the same
weather, DS-Foggy and DS-Rainy are more difficult than
VK2-S6-Fog and VK2-S6-Rain. This can be seen by com-
paring Figures 3 and 4. The synthetic examples only mimic
the poor lighting conditions and challenges caused by the
fog and rain, but ignore the Tyndall effect and reflections
caused by the fog and stagnant water.

As mentioned above, all models are trained only on
Scenes 001, 002, 018 and 020 of VK2. Quantitative results
on synthetic to real transfer are reported in Table 3, where
we only report the best model of each method. The top-

performing variant of SEDNet outperforms the baselines in
the majority of experiments. An extended version of this
table can be found in Table S.2 in the Supplement.

5. Conclusion

We have presented a novel approach for joint disparity
and uncertainty estimation from stereo image pairs. The key
idea is a unique loss function based on the KL divergence
between the distributions of disparity errors and uncertainty
estimates. This is made possible by a differentiable his-
togramming scheme that we also introduce here. To imple-
ment our approach, we extended the GwcNet architecture
to include an uncertainty estimation subnetwork with only
190 parameters. Our experiments on multiple large datasets
have demonstrated that our approach, named SEDNet, is
effective in both disparity and uncertainty prediction. The
success of our method is attributed to the novel loss func-
tion. SEDNet easily surpasses GwcNet in disparity estima-
tion even though they have essentially the same capacity
and almost identical architecture, up to the tiny uncertainty
estimation subnetwork. We are optimistic that our approach
will be similarly successful in other pixel-wise regression
tasks, which we plan to address in future research.
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