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Abstract

Single domain generalization aims to learn a model from
a single training domain (source domain) and apply it to
multiple unseen test domains (target domains). Existing
methods focus on expanding the distribution of the training
domain to cover the target domains, but without estimating
the domain shift between the source and target domains. In
this paper, we propose a new learning paradigm, namely
simulate-analyze-reduce, which first simulates the domain
shift by building an auxiliary domain as the target domain,
then learns to analyze the causes of domain shift, and finally
learns to reduce the domain shift for model adaptation.
Under this paradigm, we propose a meta-causal learning
method to learn meta-knowledge, that is, how to infer the
causes of domain shift between the auxiliary and source do-
mains during training. We use the meta-knowledge to ana-
lyze the shift between the target and source domains during
testing. Specifically, we perform multiple transformations
on source data to generate the auxiliary domain, perform
counterfactual inference to learn to discover the causal fac-
tors of the shift between the auxiliary and source domains,
and incorporate the inferred causality into factor-aware do-
main alignments. Extensive experiments on several bench-
marks of image classification show the effectiveness of our
method.

1. Introduction
Single domain generalization [28] aims to generalize a

model trained using one training domain (source domain)
into multiple unseen test domains (target domains). Since
only one source domain is given and the target domains are
out-of-distribution and unavailable during training, single
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Figure 1. Illustration of the simulate-analyze-reduce paradigm. In
this paradigm, we first simulate the domain shift by constructing
an auxiliary domain as the unseen target domain, then learn to
analyze the domain shift, and finally learn to reduce the domain
shift based on inferred causes.

domain generalization is a challenging task and attracts in-
creasing interests. Existing works have made considerable
successes through expanding the distribution of the source
domain by data augmentation [19, 28, 34] or learning adap-
tive data normalization [8] typically. However, such suc-
cesses have been achieved without explicitly considering
the domain shift between the source and target domains,
which limits the generalization performance of model in
real-world scenarios.

In this paper, we propose a new learning paradigm,
namely simulate-analyze-reduce, to address single domain
generalization by enabling the model to analyze the real
domain shift between the source domain and unseen tar-
get domain. This new paradigm is shown in Figure 1. We
first build an auxiliary domain as the target domain to sim-
ulate the real domain shift between the source and target
domains, since the target data is unavailable during train-
ing. We then learn to analyze the intrinsic causal factors of
the domain shift to facilitate the subsequent model adapta-
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tion. Finally, we learn to reduce the domain shift with its
inferred causes.

Under this paradigm, we propose a meta-causal learn-
ing method to learn the meta-knowledge about how to infer
the causes of the simulated domain shift between the aux-
iliary and source domains via causal inference in training,
and then apply the meta-knowledge to analyze the real do-
main shift between the target and source domains during
testing, through which the source and given target domains
are adaptively aligned. Specifically, we perform multiple
transformations on source data to generate an auxiliary do-
main with great diversity. Then we build a causal graph
to represent the dependency among data, variant factors,
semantic concepts and category labels, and conduct coun-
terfactual inference over the causal graph to exploit the in-
trinsic causality of the simulated domain shift between the
auxiliary and source domains. For each sample in the aux-
iliary domain, we construct counterfactual scenes by inter-
vening variant factors to infer their causal effects on the cat-
egory prediction, and these inferred causal effects of vari-
ant factors can be regarded as the causes of domain shift.
To reduce the domain shift, we propose a factor-aware do-
main alignment by learning and integrating multiple feature
mappings, where an effect-to-weight network is designed to
convert the causal effects of variant factors into the weights
of feature mappings.

During testing, the distribution discrepancy between the
input target sample and the source domain is analyzed and
reduced by applying the learnt meta-knowledge, i.e., infer-
ring the causal effects of variant factors and incorporating
them into the factor-aware domain alignment. In summary,
the main contributions of this paper are as follows:

• We propose a novel learning paradigm, simulate-
analyze-reduce, for single domain generalization. This
paradigm empowers the model with the ability to esti-
mate the domain shift between the source domain and
unseen target domains, thus boosting the model adap-
tation across different domains.

• We propose a meta-causal learning method based on
counterfactual inference to learn the meta-knowledge
about analyzing the intrinsic causality of domain shift,
thus facilitating the reduction of domain shift.

• Our method achieves the state-of-the-art results on sev-
eral benchmarks of image classification, especially on
the more challenging tasks with a large domain shift,
clearly demonstrating the effectiveness of our method.

2. Related Work
2.1. Domain Generalization

Domain generalization focuses on generalizing a model
learned from multiple source domains to the unseen target

domain. The key difference between domain adaptation
and domain generalization is that during training, domain
adaptation leverages unlabelled target data while domain
generalization has no access to the target domain. Exist-
ing domain generalization methods can be roughly divided
into two categories: learning domain-invariant feature rep-
resentation from multiple source domains [7, 10, 24, 25, 32]
and generating diverse more samples via data augmenta-
tion [2, 29, 31, 39].

Recently, single domain generalization [28] has attracted
growing attention, where only one source domain is avail-
able during training and the model is evaluated on multi-
ple unseen target domains. A rich line of works employ
data augmentation for generating out-of-domain samples to
expand the distribution of the source domain [19, 28, 34].
Qiao et al. [28] propose meta-learning based adversarial
domain augmentation to generate samples. Li et al. [19]
propose a progressive domain expansion network to gen-
erate multiple domains progressively via simulating vari-
ous photometric and geometric transforms by style trans-
fer based generators. Wang et al. [34] propose a style-
complement module to generate diverse images with dif-
ferent styles. Fan et al. [8] use data normalization for sin-
gle domain generalization, where an adaptive normaliza-
tion scheme is learned to be incorporated with adversarial
domain augmentation to enhance the generalization of the
model.

The aforementioned methods aim to generate the source
data distribution as diverse as possible to cover unseen tar-
get domains. When the expanded source distribution does
not approximate the target distribution, the performance
may significantly degrade, since there still exists a domain
gap between the source and target domains. To address this
problem, our method learns to analyze and reduce the do-
main shift by building an auxiliary domain during training.

2.2. Causality for Domain Generalization

Several recent methods exploit causality to learn
domain-invariant semantic representation for domain gen-
eralization [20–22]. Considering the cross-domain invari-
ance of the causality between semantic factors and predic-
tions, Liu et al. [20] propose a causal semantic generative
model to remove the domain-specific correlation between
semantic factors and variant factors, and thus make the pre-
diction affected only by the semantic factors. Assuming
that images of the same object across domains should have
the same representation, Mahajan et al. [22] use the cross-
domain invariance of the causality between objects and fea-
ture representations to capture the within-class variation for
domain generalization. Lv et al. [21] introduce causal in-
ference to extract causal factors that are invariant across do-
mains in order to learn invariant feature representation.

From a different perspective, our method focuses on uti-
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Figure 2. Overview of the proposed meta-causal learning method. (1) A data transformation module simulates the domain shift via
generating an auxiliary domain Da. (2) A counterfactual inference module analyzes the domain shift by inferring the causal effects of
V on Y . “–” denotes comparing the values of Y before and after do-operation. The edge X → Y is a dashed arrow to represent
the classification model P (Y |X). (3) A factor-aware domain alignment module reduces the domain shift via multiple feature mappings
according to weights learned by an effect-to-weight network. (4) A base module is used for feature extraction and classification.

lizing causal inference to discover the intrinsic causes of
domain shift by constructing counterfactual scenes over the
learnt causal graph, which facilitates the reduction of do-
main shift and in turn benefits cross-domain adaptation.

3. Method
3.1. Problem Definition

For single domain generalization, during training, we are
given a labeled source domain Ds = {(xs

i , y
s
i )|

Ns
i=1} drawn

from the distribution Ps, where xs
i is the i-th source sample

with its category label ysi ∈ Y . During testing, the learnt
model is applied to multiple unseen target domains Dt =
{Dj

t}Jj=1, where Dj
t is the j-th target domain drawn from

the distribution P j
t , and P j

t ̸= Ps.
To bridge the domain gap between the source domain

and multiple unseen target domains, we propose a new
learning paradigm, called simulate-analyze-reduce, which
starts with simulating the domain shift between the source
and target domains, then learns to analyze the domain shift,
and finally learns to reduce the domain shift. Under this
paradigm, we propose a meta-causal learning method that
has four components: a data transformation module to gen-
erate auxiliary domains as target domains, a counterfactual
inference module to discover the causes of the domain shift,
a factor-aware domain alignment module to reduce the do-
main shift, and a base module for feature extraction and
classification, as illustrated in Figure 2.

3.2. Data Transformation for Domain Shift Simula-
tion

To simulate the real domain shift between the source
and target domains, we generate an auxiliary domain Da as
the unseen target domain by performing transformations on
source data. The domain shift is actually the data distribu-
tion discrepancy between the source and auxiliary domains,
and is usually caused by the variations of extrinsic attributes
of data, independent of intrinsic semantics. Taking the im-
age data for example, the domain shift is mainly caused by
the variations of visual attributes, such as the variations of
brightness, viewpoint, and color. Therefore, to make the
simulated domain shift as realistic as possible, we formulate
the extrinsic attributes as variant factors, and design data
transformations according to the variant factors.

We define a set of variant factors, denoted as V =
{v1, v2, ..., vK}, where vk denotes the k-th variant fac-
tor. Each variant factor corresponds to a data transfor-
mation function that aims to generate new data by mak-
ing changes on the corresponding extrinsic attribute, de-
noted as Gvk(x; θvk), where x is an input sample, and
θvk ∈ [gkmin, g

k
max] represents the degree parameter to con-

trol the magnitude of transformation with the scale range
[gkmin, g

k
max].

In real-world scenarios, the complex domain shift is of-
ten caused by combinatorial multiple variant factors and ac-
cordingly we design a sampling strategy to enable the com-
binatorial data transformation. Given a source sample xs

i ,
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we randomly sample N i
v variant factors from V to form a

factor subset Vi = {vi1, vi2, · · · , viNi
v
}. Then, a correspond-

ing auxiliary sample xa
i is generated by

xa
i = Gvi

Ni
v

(
· · ·Gvi

2

(
Gvi

1
(xs

i ; θvi
1
); θvi

2

)
· · · ; θvi

Ni
v

)
,

(1)
where the transformation degree parameter θvi

k
is randomly

selected from its range scale. In this way, the domain shift
is generated as diverse as possible to approximate the real
domain shift.

3.3. Counterfactual Inference for Domain Shift
Analysis

After simulating the domain shift, we introduce coun-
terfactual inference to analyze the domain shift. During
training, we learn the meta-knowledge about how to infer
the causes of data discrepancy between one auxiliary sam-
ple and the source domain, and during testing, we apply the
learnt meta-knowledge to unseen target samples.

We build a causal graph to model the causal dependency
among the input sample (node X), the variant factors (node
V ), the semantic concepts (node S), and the output cate-
gory (node Y ), as shown in Figure 2 (2). The semantic con-
cepts denote the intrinsic attributes of data that are related
to the category, and the variant factors denote the extrinsic
attributes of data that are domain specific, independent of
the intrinsic semantics. For example, when the input sam-
ple is an image of “zebra”, the semantic concepts are like
“four legs” and “black-white stripes”, and the variant fac-
tors include brightness, viewpoint, and so on. The edge
S → Y represents that the category of the input data is
determined by the semantic concepts. The edges S → X
and V → X represent that the semantic concepts and the
variant factors together determine what the input sample
looks like. Since the semantic concepts represent the in-
trinsic semantics and are invariant across different domains,
ideally the cross-domain classification is only determined
by the semantic concepts, which is implemented by learn-
ing the edge S → Y , i.e., estimating the conditional prob-
ability P (Y |S). However, in reality, the semantic concepts
are unobserved from the input samples, so the classification
should be implemented by learning the edge X → Y , i.e.,
estimating the conditional probability P (Y |X). The edge
X → Y is a dashed arrow to represent the classification
model P (Y |X). Since the input sample node X is affected
by the semantic concept node S and the variant factor node
V together, the category node Y is also affected by the vari-
ant factor node V through edges V → X → Y . As the
variant factors are domain-specific, their causal effects on
the category lead to the domain shift. Hence, we infer the
causal effects of the variant factors on the category predic-
tion to discover the causes of the domain shift. That is to
say, we infer the causal effects of the node V on the node

Y as causes of domain shift, and then learn to reduce the
domain shift based on its causes.

To infer the causal effects of the node V on the node Y ,
we first learn the edge X → Y using the source data Ds by
a classification loss:

Lc = E(xs
i ,y

s
i )∼Ps

[
−
∑
u

Iu=ys
i
logC(F (xs

i ))u

]
, (2)

where (xs
i , y

s
i ) ∈ Ds, F is a feature extractor, C is the clas-

sifier to output |Y| category probabilities, C(·)u is the u-th
element of |Y| category probabilities, and Iu=ys

i
is an indi-

cator function, meaning that if u = ysi , the value of Iu=ys
i

is
1 and 0 otherwise. Then, for each sample from the auxiliary
domain, we construct a factual scene and multiple counter-
factual scenes over the causal graph, so as to infer the causal
effects of variant factors on the category prediction. Given
an auxiliary sample xa

i ∈ Da, its factual category is pre-
dicted by

ya
i = P (Y |X) = C(F (xa

i )), (3)

where ya
i ∈ R|Y| is a category probability vector, and

represents the value of node Y . For each variant factor,
we construct a counterfactual scene to infer its causal ef-
fect by doing intervention on the variant factor node V .
Let do(V = vk) denote the intervention on the node V ,
which is implemented by changing extrinsic attributes of
data through the transformation Gvk with multiple degree
parameters. Accordingly, the counterfactual category of xa

i

is predicted by

ya
i,vk

= P
(
Y |X, do(V = vk)

)
=

1

|M|
∑

θvk∈M

C
(
F
(
Gvk(x

a
i ; θvk)

))
, (4)

where M is a set of degree parameters, obtained by uni-
formly sampling magnitudes of transformation Gvk from
the scale range. By comparing the factual and counterfac-
tual category probabilities of xa

i , the causal effect of the
k-th variant factor is calculated by

eik = P (Y |X)− P
(
Y |X, do(V = vk)

)
= ya

i − ya
i,vk

.
(5)

The inferred causal effect represents how much contribution
the corresponding variant factor makes to the domain shift,
and the larger the causal effect is, the more seriously the
domain shift is caused by the variant factor.

3.4. Factor-aware Domain Alignment for Domain
Shift Reduction

After analyzing the causes of domain shift, we propose
a factor-aware domain alignment to reduce the domain shift
by learning multiple feature mappings, with guidance of the
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Figure 3. Inference process of meta-causal learning for a given target sample.

inferred causal effects of variant factors. Each feature map-
ping addresses a specific domain shift caused by one vari-
ant factor. We construct K feature mappings for K vari-
ant factors, and the k-th feature mapping aims to address
the domain shift caused by the k-th variant factor. In order
to incorporate the causal effects of variant factors into the
learning of mappings, we build an effect-to-weight network
that converts the causal effect of each variant factor into the
weight of the corresponding feature mapping.

For the auxiliary sample xa
i and its inferred causal ef-

fects of all variant factors {ei1, ei2, · · · , eiK}, the weights of
feature mappings are calculated by

ωi = softmax
(
W (ei1),W (ei2), · · · ,W (eiK)

)
, (6)

where ωi ∈ RK and its k-th element ωi
k denotes the weight

of the k-th factor-aware feature mapping. W (·) denotes the
effect-to-weight network.

According to the weights of feature mappings, we inte-
grate the K feature mappings to project the auxiliary sam-
ples into the source feature space. The alignment of the
source and auxiliary domains is implemented by minimiz-
ing the feature distance between the source and auxiliary
samples in the source feature space. Given a source sam-
ple xs

i with the corresponding category label ysi , generated
auxiliary sample xa

i and inferred mapping weights ωi, the
alignment loss incorporated with inferred causal effects is
defined as

Lc
a =

1

Ns

∑
i

||F (xs
i )−

∑
k

ωi
kMk

(
F (xa

i )
)
||2

+
1

Ns

∑
i

H
(
C
(∑

k

ωi
kMk

(
F (xa

i )
)
, ysi

))
.

(7)

where F is the feature extractor, Mk is the k-th feature
mapping, C is the classifier, ωi

k is the k-th element of ωi,∑
k ω

i
kMk

(
F (xa

i )
)

represents the projected feature of xa
i ,

and Ns is the number of source samples. ||·||2 is the L2-loss,
and H(·) is the cross-entropy loss. The first term measures
the feature distance between the source and auxiliary sam-
ples after projection, i.e., the data distribution discrepancy

between the source and auxiliary domains. The second term
encourages the auxiliary samples to belong to the same cat-
egories as the source samples.

Moreover, to enable each feature mapping to address the
specific domain shift caused by the corresponding variant
factor, we introduce another alignment loss Lm

a :

Lm
a =

1

Ns

1

K

∑
i

∑
k

||F (xs
i )−Mk

(
F (xk

i )
)
||2

+
1

Ns

1

K

∑
i

∑
k

H
(
C
(
Mk

(
F (xk

i )
)
, ysi

))
,

(8)

where xk
i is an sample generated by conducting the data

transformation Gvk on the source sample xs
i , denoted by

xk
i = Gvk(x

s
i ; θvk). The transformation degree parameter

θvk is randomly selected from its range scale.
Then the overall loss function is defined as

L = Lc + Lc
a + Lm

a . (9)

The whole training process is summarized in Algorithm 1.

3.5. Inference

During testing, given a target sample xt
i, firstly, the

causal effects of variant factors are inferred by counter-
factual inference in Eq. (5), and the weights ωi of feature
mappings are calculated by the effect-to-weight network in
Eq. (6). Then the target feature f t

i = F (xt
i) is projected

into the source feature space by integrating K feature map-
pings according to their weights ωi to obtain the projected
feature f̂

t

i =
∑

k ω
i
kMk

(
f t
i

)
. Finally, the category of xt

i is

predicted by C(f̂
t

i). The whole inference process is shown
in Figure 3.

4. Experiments
4.1. Datasets

Digits. The Digits dataset consists of five datasets:
MNIST [16], MNIST-M [9], SVHN [26], USPS [13], and
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Algorithm 1 Training process

Input: The source domain Ds, the variant factor set V .
Output: The feature extractor F , the classifier C, K fea-

ture mappings {Mi}Ki=1, the effect-to-weight network
W .

1: Initialize F , C, {Mi}Ki=1, W ;
2: while not converge do
3: Sample an image xs

i from Ds;
4: Construct a factor subset Vi by sampling N i

v variant
factors from V;

5: Generate an auxiliary sample xa
i by Eq.(1);

6: for vk in V do
7: Calculate the factual category ya

i of auxiliary sam-
ple xa

i by Eq.(3);
8: Calculate the counterfactual category ya

i,vk
of aux-

iliary sample xa
i by Eq.(4);

9: Infer the causal effect eik of variant factor vk via
comparing ya

i and ya
i,vk

by Eq.(5);
10: end for
11: Calculate the weights of K feature mappings

{Mi}Ki=1 by Eq.(6);
12: Update F , C, {Mi}Ki=1, W by Eq.(9).
13: end while

SYN [9], with 10 categories. We use MNIST as the source
domain, and the other four datasets as the target domains.
The first 10, 000 images in the training set of MNIST are
used for training.
CIFAR10-C. The CIFAR10-C dataset [11] is proposed to
evaluate the robustness of classification model. The images
are corrupted from the test set of the CIFAR10 dataset [15]
by 19 corruption types with five levels of severity. A higher
level means the more serious corruption. There are 10
categories. We use CIFAR10 as the source domain, and
CIFAR10-C as the target domains where images of one
severity level form one target domain.
PACS. The PACS dataset [17] is a benchmark for domain
generalization, and consists of four domains: art painting,
cartoon, photo, and sketch. There are 9, 991 images of
seven categories. We use one domain as the source domain,
and the rest three domains as the target domains. So there
are four tasks with different domains as the source domains.

4.2. Implementation Details

Auxiliary Domain. We define 16 variant factors to generate
the images in the auxiliary domain, including 12 photomet-
ric factors (Brightness, Contrast, Color, Sharpness, Auto-
Contrast, Invert, Equalize, Solarize, SolarizeAdd, Posterize,
NoiseSalt, NoiseGaussian) and 4 geometric factors (Shear-
X, Shear-Y, Rotate, Flip). Since the Rotate and Flip variant
factors will affect the semantic information of digit images,
we use the other 14 variant factors for the Digits dataset. For

Table 1. Single domain generalization results (%) on Digits with
ConvNet as backbone. The model is trained on MNIST, and eval-
uated on SVHN, SYN, MNIST-M, and USPS.

Method SVHN SYN MNIST-M USPS Avg
ERM [14] 27.83 39.65 52.72 76.94 49.29
CCSA [24] 25.89 37.31 49.29 83.72 49.05
d-SNE [36] 26.22 37.83 50.98 93.16 52.05
JiGen [2] 33.80 43.79 57.80 77.15 53.14
GUD [31] 35.51 45.32 60.41 77.26 54.62
M-ADA [28] 42.55 48.95 67.94 78.53 59.49
ME-ADA [37] 42.56 50.39 63.27 81.04 59.32
PDEN [19] 62.21 69.39 82.20 85.26 74.77
L2D [34] 62.86 63.72 87.30 83.97 74.46
AA [4] 45.23 64.52 60.53 80.62 62.72
RA [5] 54.77 59.60 74.05 77.33 66.44
RSDA [30] 47.40 62.00 81.50 83.10 68.50
RSDA+ASR [8] 52.80 64.50 80.80 82.40 70.10
Ours 69.94 78.47 78.34 88.54 78.82

Table 2. Single domain generalization results (%) on CIFAR10-C
with WRN as backbone. Each level is viewed as a target domain,
a higher level denotes the more serious corruption and the domain
discrepancy between the source and target domains is larger.

Method level1 level2 level3 level4 level5 Avg
ERM [14] 87.80 81.50 75.50 68.20 56.10 73.82
GUD [31] 88.30 83.50 77.60 70.60 58.30 75.66
M-ADA [28] 90.50 86.80 82.50 76.40 65.60 80.36
PDEN [19] 90.62 88.91 87.03 83.71 77.47 85.55
AA [4] 91.42 87.88 84.10 78.46 71.13 82.60
RA [5] 91.74 88.89 85.82 81.03 74.93 84.48
Ours 92.38 91.22 89.88 87.73 84.52 89.15

the CIFAR10-C and PACS datasets, all 16 variant factors
are used. To make the auxiliary domain as diverse as pos-
sible, for each source image at each iteration, we randomly
sample several variant factors and use them to generate a
new auxiliary image.

4.3. Results on Single Domain Generalization

We compare our method with several state-of-the-art
methods, including the baseline method (ERM [14]), the
methods of learning domain-invariant features (CCSA [24],
d-SNE [36], JiGen [2]), and the methods of making data
augmentation (GUD [31], M-ADA [28], ME-ADA [37],
PDEN [19], L2D [34], AA [4], RA [5], RSDA [30],
RSC [12], ASR [8]).

Table 1, Table 2, and Table 3 show the comparison
results on Digits, CIFAR10-C, and PACS, respectively.
From the results, there are several interesting observations
as follows. First, our method generally outperforms the
compared methods on all datasets, which clearly shows
the effectiveness of the proposed simulate-analyze-reduce
learning paradigm for single domain generalization. Sec-
ond, compared with the data augmentation methods (e.g.,
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Table 3. Single domain generalization results (%) on PACS with
ResNet-18 as backbone. One domain (name in column) is used
as the source domain and the other three domains are used as the
target domains.

Method Artpaint Cartoon Sketch Photo Avg
ERM [14] 70.90 76.50 53.10 42.20 60.70
RSC [12] 73.40 75.90 56.20 41.60 61.80
RSC+ASR [8] 76.70 79.30 61.60 54.60 68.10
Ours 77.13 80.14 62.55 59.60 69.86

Table 4. Leave-one-domain-out results (%) on PACS with ResNet-
18 as backbone. One domain (name in column) is used as the
target domain and the other three domains are used as source do-
mains.

Method Artpaint Cartoon Photo Sketch Avg
MetaReg [1] 83.70 77.20 95.50 70.30 81.70
GUD [31] 78.32 77.65 95.61 74.21 81.44
Epi-FCR [18] 82.10 77.00 93.90 73.00 81.50
MASF [6] 80.29 77.17 94.99 71.68 81.03
JiGen [2] 79.42 75.25 96.03 71.35 80.51
DMG [3] 76.90 80.38 93.55 75.21 81.46
DDAIG [38] 84.20 78.10 95.30 74.70 83.10
CSD [27] 78.90 75.80 94.10 76.70 81.40
L2A-OT [39] 83.30 78.20 96.20 73.60 82.80
EISNet [33] 81.89 76.44 95.93 74.33 82.15
RSC [12] 83.43 80.31 95.99 80.85 85.15
ME-ADA [37] 78.61 78.65 95.57 75.59 82.10
MMLD [23] 81.28 77.16 96.09 72.29 81.83
L2D [34] 81.44 79.56 95.51 80.58 84.27
FACT [35] 85.37 78.38 95.15 79.15 84.51
MatchDG [22] 81.32 80.70 96.53 79.72 84.57
CIRL [21] 86.08 80.59 95.93 82.67 86.32
Ours 85.30 80.93 96.53 85.24 87.00

Table 5. Ablation study (%) on PACS with ResNet-18 as back-
bone. One domain (name in column) is used as the source do-
main and the other three domains are used as target domains. “T”,
“A”, “C” denote Domain Transformation, Domain Alignment, and
Counterfactual Inference, respectively.

Method T A C Artpaint Cartoon Sketch Photo Avg
Base 71.26 67.64 43.97 36.99 54.97
DT ! 75.28 78.46 59.45 56.09 67.32
DTA ! ! 71.64 72.78 57.11 52.02 63.39
Ours ! ! ! 77.13 80.14 62.55 59.60 69.86

AA [4], RA [5] and RSDA [30]) that are more related
to our method, our method achieves much better results,
and especially yields a 10.32% gain over RSDA on Dig-
its, strongly suggesting that it is beneficial to empower the
model with the ability of analyzing the causes of domain
shift by counterfactual inference. Third, on more difficult
tasks with larger domain shift (e.g., SVHN on Digits, level5
on CIFAR10-C, and Photo on PACS), our method signifi-
cantly improves the performance, further demonstrating the

superiority of our method on handling more challenging sit-
uations. Forth, our method performs little worse on MNIST-
M and USPS of Digits. The possible reason is that other
compared methods use more well-designed data augmenta-
tion and network regularization, such as AdaIN based gen-
erators in PDEN [19] and stochastic neighborhood embed-
ding techniques in d-SNE [36].

4.4. Results on Multiple Domain Generalization

We extend the proposed method to multi-source do-
main setting by regarding the multiple source domains
as one source domain without using domain labels. We
employ the leave-one-domain-out protocol following ex-
isting multi-source domain generalization [21, 35]. We
compare our method with most related methods that
introduces causal inference into domain generalization
(MatchDG [22], CIRL [21]), and existing popular do-
main generalization methods (MetaReg [1], GUD [31], Epi-
FCR [18], MASF [6], JiGen [2], DMG [3], DDAIG [38],
CSD [27], L2A-OT [39], EISNet [33], RSC [12], ME-
ADA [37], MMLD [23], L2D [34], FACT [35]).

Table 4 shows the leave-one-domain-out results on the
PACS dataset with ResNet-18 as backbone. From the re-
sults, we make several observations. First, it is notewor-
thy that our method achieves the state-of-the-art overall per-
formance (“Avg”) although our method is not designed for
multi-source domain generalization, which further demon-
strates that the proposed simulate-analyze-reduce learning
paradigm not only benefits single domain generalization
but also boosts multi-source domain generalization. Sec-
ond, compared with the methods of introducing causal in-
ference to learn domain-invariant features (MatchDG [22],
CIRL [21]), our method achieves better results on the over-
all metric “Avg”, especially making 5.52% and 2.57% gains
over MatchDG [22] and CIRL [21], respectively, on the
more challenging task (Sketch→Others). Such improve-
ments are attributed to the ability of analyzing and reduc-
ing the domain shift, further demonstrating the advantages
of causal inference in analyzing the causes of the domain
shift.

4.5. Ablation Studies

To evaluate each component of our method, we conduct
ablation experiments on the PACS dataset. We design sev-
eral degraded variants of our method for comparison: (1)
“Base”, where only the base module is utilized and opti-
mized by Eq. (2) using the source domain; (2) “DT”, where
the data transformation module is added into the base mod-
ule and the model is trained using both source and auxil-
iary domains; (3) “DTA”, where the simulated domain shift
between auxiliary domain and source domain is directly re-
duced without analyzing the causes of the domain shift via
the proposed counterfactual module.
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Figure 4. Examples of the inferred causal effects (represented as weights) of variant factors. The left part shows a source image from the
CIFAR10 dataset and three target images from the CIFAR10-C dataset with Gaussian noise corruption. As the corruption severity increases
from level 1 to level 5, the inferred weights of the NoiseGaussian variant factor become larger accordingly.

Table 6. Factor analysis (%) on PACS with ResNet-18 as back-
bone. One domain (name in column) is used as the source domain
and the other three domains are used as target domains.

Method Artpaint Cartoon Sketch Photo Avg
Ours GT 74.62 69.78 52.74 43.34 60.12
Ours PT 74.47 73.48 50.35 51.67 62.49
Ours 77.13 80.14 62.55 59.60 69.86

The results are shown in Table 5. From the results, we
make several observations. First, our method achieves bet-
ter performance than “DT”, which validates the superior-
ity of our method on analyzing and reducing the domain
shift, rather than directly enlarging the source data distri-
bution. Second, “DTA” performs worse than “DT”, proba-
bly because brute-force domain alignment without analyz-
ing causes of the domain shift leads to negative transfer and
thus hurts the performance. Third, our method achieves the
best performance thanks to the proposed simulate-analyze-
reduce paradigm.

4.6. Factor Analysis

In order to further analyze the effect of variant fac-
tors, we design several variants of our method by using
different variant factors, including only using geometric
factors (“Ours GT”), and only using photometric factors
(“Ours PT”). Since the factor number of the two type fac-
tors are different, we randomly select 4 photometric factors
to keep the same number as geometric factors and repeat
experiments 10 times to avoid the effect of sampling. The
results are shown in Table 6. From the results, it is notewor-
thy that “Ours PT” performs better than “Ours GT”, espe-
cially with the 8.33% gain when using Photo as the source
domain. The reason may be that the domain shift between
Photo and the other target domains is mainly caused by pho-
tometric factors. Moreover, our method outperforms both
“Ours PT” and “Ours GT”, showing that both photometric
factors and geometric factors are required to simulate the

domain shift as diverse as possible.

4.7. Causality Visualization

In Figure 4, we visualize the inferred causal effects (rep-
resented by the weights) of variant factors for the unseen
target images on the CIFAR10-C dataset during testing.
The target images are actually corrupted from the source
images of CIFAR10 by Gaussian noise of five levels. It
is interesting to observe that the inferred weights of the
NoiseGaussian variant factor are larger than that of the other
variant factors, indicating that the counterfactual inference
succeeds in discovering the real cause of the domain shift.
We can also observe that when the corruption severity of
Gaussian noise increases from level 1 to level 5 (i.e., the
domain shift is more serious), the inferred weights of the
NoiseGaussian variant factor become larger, which further
demonstrates that our method measures the magnitude of
the domain shift correctly.

5. Conclusion

We have presented a new paradigm, simulate-analyze-
reduce, for single domain generalization. Our paradigm
empowers the model with the ability to analyze the do-
main shift, instead of directly expanding the distribution
of the source domain to cover unseen target domains. Un-
der this paradigm, we have presented a meta-causal learn-
ing method that can learn meta-knowledge about inferring
the causes of domain shift during training, and apply such
meta-knowledge to reduce the domain shift for boosting
adaptation during testing. Extensive experiments on several
benchmark datasets have validated the effectiveness of the
new learning paradigm and the advantage of meta-causal
learning on analyzing the domain shift for domain general-
ization.
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