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Abstract

Masked Autoencoder (MAE) has demonstrated superior

performance on various vision tasks via randomly masking

image patches and reconstruction. However, effective data

augmentation strategies for MAE still remain open ques-

tions, different from those in contrastive learning that serve

as the most important part. This paper studies the prevail-

ing mixing augmentation for MAE. We first demonstrate that

naÈıve mixing will in contrast degenerate model performance

due to the increase of mutual information (MI). To address,

we propose homologous recognition, an auxiliary pretext

task, not only to alleviate the MI increasement by explicitly

requiring each patch to recognize homologous patches, but

also to perform object-aware self-supervised pre-training

for better downstream dense perception performance. With

extensive experiments, we demonstrate that our proposed

Mixed Autoencoder (MixedAE) achieves the state-of-the-art

transfer results among masked image modeling (MIM) aug-

mentations on different downstream tasks with significant

efficiency. Specifically, our MixedAE outperforms MAE by

+0.3% accuracy, +1.7 mIoU and +0.9 AP on ImageNet-1K,

ADE20K and COCO respectively with a standard ViT-Base.

Moreover, MixedAE surpasses iBOT, a strong MIM method

combined with instance discrimination, while accelerating

training by 2×. To our best knowledge, this is the very first

work to consider mixing for MIM from the perspective of

pretext task design. Code will be made available.

1. Introduction

Self-supervised learning (SSL) has become one of the

most popular pre-training paradigm due to its independence

of human annotation. Previous literature mainly focuses on

the handcrafted pretext task design [13,19,36] and instance

discrimination [6,10], while with the development of Vision

Transformer [15], masked image modeling (MIM), deeply

motivated by masked language modeling [12], has started to

demonstrate more superior effectiveness by firstly masking

some patches of the input images and then reconstructing

the masked patches from visible ones by predicting certain
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Figure 1. Fine-tuning accuracy on ImageNet-1K. Our MixedAE

achieves the best trade-off between pre-training overhead and

transfer performance. Specifically, MixedAE surpasses MAE [22]

consistently with only 3% extra overhead, while outperforms the

strong iBOT [49] with only 53.4% of its computation overhead.

See more detailed comparisons in Tab. 1. ID stands for instance

discrimination, while MIM represents masked image modeling.

targets generated by masked patches. In order to complete

reconstruction, the encoder is expected to generate highly

semantic representation which can be better transferred to

downstream tasks [21, 29, 30, 48] for superior performance.

Existing MIM works mainly concentrate on the design

of the reconstruction targets (e.g., visual tokenizers [3, 14],

pixels [22,44], graphical features [41] and instance discrim-

ination [2, 16, 49]) and masking strategies (e.g., random [3,

22], attention-guide [25] and sample-dependent [39]). See

more detailed discussions in Sec. 2. Despite the superior

performance, we observe that the input augmentations for

MIM have been seldom explored. Specifically, adding color

jittering, an essential augmentation technique of contrastive

learning [8], with MAE [22] even degrades the transfer re-

sults, suggesting MIM might have a different preference

for data augmentations, and the effective data augmentation

strategies for MIM are still an open question.

In this paper, we explore the usage of image mixing, a

commonly used technique in both supervised [46, 47] and

contrastive learning [38, 45], with MAE [22]. We start by

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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constructing a simple baseline to adopt mixing with MAE

directly, which, different from in supervised and contrastive

learning, would instead ease the reconstruction pretext by

increasing the mutual information between the model input

and reconstruction target due to the usage of image mixing

with global self-attention as proved in Sec. 3.1. To address

this issue, we propose homologous recognition, an auxiliary

pretext task to enforce each patch to recognize homologous

patches explicitly according to attention distributions before

reconstruction, and build our Mixed Autoencoder network

(MixedAE) in Sec. 3.3. Moreover, we demonstrate that our

simple yet effective method can not only achieve significant

performance improvement, but also conduct object-aware

SSL pre-training without any specifically designed modules

for better downstream dense perception results in Sec. 3.4.

Concurrently, MixMIM [31] also considers mixing with

MAE, but different from ours, 1) Purpose: MixMIM uses

mixing to recover the 2D structure after random masking

for an efficient implementation to conduct MAE-style pre-

training on hierarchy Vision Transformers [34], while ours

utilizes mixing to conduct object-aware SSL pre-training

for better representation learning. 2) Method: MixMIM

uses masked self-attention to only perform attention within

patches from the same images given the mixing masks as in-

put, sharing the exactly same pretext task with MAE, while

ours requires explicit homologous recognition given mixing

masks as target, actively emerging mixing into the pretext

design. 3) Formulation: The mixing ratio r is limited to

0.5 in MixMIM, which instead can be flexibly selected from

(0, 0.5] in our formulation. See more details in Sec. 3.

The main contributions of this work contain three parts:

1. We propose the Mixed Autoencoder (MixedAE), a sim-

ple yet effective approach to conduct object-aware pre-

training without introducing any specifically designed

modules. With extensive experiments, we demonstrate

that MixedAE can achieve the state-of-the-art transfer

performance on various downstream tasks including

image classification, semantic segmentation and object

detection, while maintaining significant efficiency.

2. We theoretically demonstrate the underlying design

differences between MIM and previous supervision

with mixing (e.g., supervised and contrastive learning).

3. To our best knowledge, this is the first work to consider

mixing as an effective data augmentation strategy for

MIM from the perspective of pretext design with a pure

autoencoder-based architecture.

2. Related Work

Self-supervised learning aims at learning a transferable

representation without human annotation. Previous works

mainly focus on handcrafted pretext design [13, 19, 36] and

instance discrimination [8, 9, 20]. Mask image modeling

(MIM), inspired by the mask language modeling [12], has

achieved significant performance with superior pre-training

efficiency by firstly masking portion of an image, and then

reconstructing the masked part based on the visible one.

Reconstruction target. BEiT [3] pioneeringly proposes

to predict visual tokens generated by a pre-trained visual

tokenizer [37], which is simplified by SimMIM [44] to use

pixel values as the reconstruction target directly. MAE [22]

proposes an asymmetric encoder-decoder architecture for

better efficiency. Besides pixels as the target, MaskFeat [41]

utilizes HOG features, while PeCo [14] enhances the BEiT

tokenizer with an additional perceptual loss. Recent works

combine the idea of instance discrimination [8] with MIM.

iBOT [49] considers MIM as a self-distillation process with

a Siamese architecture, and data2vec [2] proposes a unified

framework to conduct masked reconstruction pre-training

for speech, images and languages. SplitMask [16] divides

an image into two equal partitions and performs contrastive

learning and MIM in the multi-task manner. In this paper,

we build MixedAE based on MAE due to its efficiency and

effectiveness, while the improvement brought by MixedAE

is complementary to more advanced reconstruction targets.

Masking strategy. Instead of random masking [3, 22],

AttMask [25] proposes a novel attention-guided masking

strategy by masking according to the attention map of the

final Transformer layer, while ADIOS [39] introduces an

adversarial objective between masking and reconstruction

to generate learnable masks for MIM pre-training. In this

paper, we utilize random masking for MixedAE following

MAE due to its simplicity and effectiveness.

Input augmentation instead has been less explored for

MIM. Instead of masking, CIM [18] adopts a small BEiT

as the generator to corrupt an image, which is further taken

as input to an enhancer to reconstruct the corrupted patches

or distinguish the corrupted patches from the uncorrupted

ones. Concurrently, MixMIM [31] considers mixing with

MAE also, but different from ours, MixMIM uses masked

self-attention to only perform attention within patches from

the same images given the mixing masks as input, which is

exactly the same with MAE from the perspective of pretext

design, while ours utilizes mixing as part of the pretext task

actively to conduct object-aware SSL pre-training.

3. Method

In this section, we start by adopting mixing in MAE [22]

with a simple baseline in Sec. 3.1, which, as we can prove,

will instead ease the reconstruction pretext task. Then, we

propose a novel auxiliary pretext task to formulate our final

MixedAE, which can not only alleviate the ease of recon-

struction, but also achieve object-aware SSL pre-training

without specifically designed modules in Secs. 3.2 to 3.4.
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Figure 2. Model architecture of Mixed Autoencoder (MixedAE). (a) The input images are first separated into groups to generate mixed

samples independently, which are further taken as input to the encoder for feature extraction. (b) The self-attention operations are replaced

with our homologous attention, enforcing each patch to only attend to patches with the highest attention mass. (c) The encoder features

will be ªunmixedº and fed into the decoder for pixel reconstruction. (d) Meanwhile, the homologous contrastive loss is adopted to verify

the sampling accuracy by encouraging features of homologous patches to be similar, while heterologous ones to be dissimilar.

3.1. Mixing: A Simple Baseline

Given a unlabeled dataset, we randomly sample a clean

data batch with size B, which are later divided into non-

overlapping patch sequences {xi}
B
i=1 (xi ∈ RL×(P 2·C))

following ViT [15], where L is the sequence length, P is

the patch size, and C is the image channel dimension.

Mixing. The data batch is further separated into groups

{{xj
i}

1/r
i=1}

Br
j=1, and each group will generate a single mixed

image, where r ∈ (0, 0.5] is the mixing ratio representing

the ratio of patches each clean image contributes to within a

single mixed sample. Different from MixMIM [31], r is not

restricted to 0.5 in our formulation. Therefore, the mixing

process for the j-th group can be represented as,

x̂j = σmix({x
j
i},M

j) =

1/r
∑

i=1

✶(M j = i)xj
i , (1)

where ✶(·) is indicator function and M j ∈ {1, 2, ..., 1/r}L

represents a random mixing mask independently generated

for the j-th group, which satisfies,

L
∑

l=1

✶(M j
l = i) = rL, ∀i ∈ {1, 2, ..., 1/r}. (2)

So, M j determines the source patch in each position of x̂j ,

while maintaining the mixing ratio for each clean image

equal with r (i.e. symmetric mixing). The mixed images

x̂j are further fed into the encoder for feature extraction,

which can be represented as ẑj = ENC(x̂j).

Unmixing. Following MAE [22], ẑj is then ªunmixedº to

recover the input batch before mixing by inserting a special

[MASK] token with M j . For ∀i ∈ {1, 2..., 1/r}, we have,

z
j
i = ✶(M j = i)ẑj + [1− ✶(M j = i)][MASK]. (3)

The ªunmixedº group {zj
i}

1/r
i=1 is then taken as input to the

decoder for pixel reconstruction, as y
j
i = DEC(zj

i ). Finally,

the reconstruction loss can be formulated as,

Lrecon =

1/r
∑

i=1

L
∑

l=1

[1− ✶(M j
l = i)](yj

i,l − x
j
i,l)

2. (4)

So far, we have built a simple baseline to adopt mixing

for MAE, which, however, performs even worse than MAE,

as demonstrated in Tab. 3f. In the following, we provide a

theoretical explanation to prove that this naÈıve incorporation

will actually ease the reconstruction pretext task.

Mutual information analysis. Without loss of generality,

we take r = 0.5 as an example. Denote X1,X2 as two

random variables representing two input images, and X1 is

further considered as the reconstruction target (symmetric

for X2). Then, we can prove that the mutual information

(MI) between the mixed input σmix({X1,X2},M) and

the target X1 is no smaller than that between the MAE input

σMAE(X1,M) and X1 as (see proofs in Appendix A),

I(σmix({X1,X2},M);X1) ≥ I(σMAE(X1,M);X1).
(5)

Therefore, different from masking, which is introduced to

decrease the mutual information between the model input
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(a) Uncertainty of generative modeling.

(b) Different segment embeddings represent different images.

Figure 3. Visualization of segment embeddings. (a) Due to the

uncertainty of generative modeling, green colors of the cucumber

and the forest are both reasonable for patches in the red ellipse.

(b) We adopt different segment embeddings for different images

to provide necessary information for homologous recognition.

and the reconstruction target due to the redundancy of im-

age signals [22], naÈıve mixing will instead increase the MI,

and thus, ease the reconstruction pretext task. Verification

experiment is conducted in Appendix C.

Also note that the MI increasement brought by mixing is

target-invariant, suggesting that Eq. (5) also holds when the

target is semantic labels for supervised learning or positive

samples for contrastive learning, for which MI increasement

is appealing. This might explain why naÈıve mixing without

auxiliary supervision is beneficial for supervised [46, 47]

and contrastive learning [38, 45], but not for MAE.

3.2. Recognition: Homologous Recognition

Another indispensable factor to achieve MI increasement

is the usage of global self-attention in ViT, with which each

query patch will inevitably attend to heterologous patches

from other images. Due to the uncertainty of generative

modeling, heterologous patches might provide a shortcut to

complete reconstruction (e.g., the green color of cucumbers

is a ªvaluableº cue to reconstruct the forest behind the fox

in Fig. 3a). To address, we propose a novel auxiliary pretext

task called homologous recognition to enforce each query to

explicitly recognize and only attend to homologous patches.

Homologous attention recognizes homologous patches

on-the-fly by enforcing each query patch to only attend to

key patches with the highest attention mass using a TopK(·)
sampling operation. Specifically, the homologous attention

can be formulated as,

AHomoAtt = softmax(TopK(qkT /
√

Dh)), (6)

where q is the query patch, k are the key patches and Dh

is the feature dimension. By default, all the self-attention

operations in ViT are replaced with homologous attention

except the very first layer. See comparisons in Tab. 3e.

Encoder Decoder

(a) Compose mixing mode.

Encoder Decoder

x2

x2

(b) Full mixing mode.

Figure 4. Visualization of two mixing modes when r = 0.5.

(a) Each group generates a single mixed sample for the compose

mixing mode, (b) while 1/r mixed samples are generated for the

full mixing mode to maintain the effective batch size unchanged.

Homologous contrastive aims at verifying the TopK(·)
sampling accuracy by encouraging the encoder features of

homologous patches to be similar, while heterologous ones

to be dissimilar in the supervised contrastive manner [26].

The homologous contrastive loss can be formulated as,

LHomoCon = −

L
∑

l=1

∑

l+

log
exp(cos(ẑj

l , ẑ
j
l+)/τ)

∑L
l′ ̸=l exp(cos(ẑ

j
l , ẑ

j
l′)/τ)

,

(7)

where τ is the temperature and cos(·, ·) is the cosine sim-

ilarity. As demonstrated in Fig. 6, the TopK(·) sampling

accuracy is significantly improved and stabilized with the

usage of the homologous contrastive loss LHomoCon.

Segment embedding. Beside the positional embeddings,

we add another segment embedding to the mixed sequence

x̂j following BERT [12] to provide necessary information

to complete homologous recognition, due to the uncertainty

of generative modeling. The segment embedding is shared

for patches from the same image, while different for patches

from different images, as demonstrated in Fig. 3b.

Mixing mode. For a fair comparison under different train-

ing overheads, two mixing modes are adopted for MixedAE,

1) Compose: each group generates a single mixed sample

following Eq. (1), and the effective encoder batch size is

Br; 2) Full: each group generates 1/r mixed samples by

sampling M j for 1/r times independently, and the effective

encoder batch size is B. An example is provided in Fig. 4

when r = 0.5. As shown in Tab. 1, MixedAE achieves the

SoTA performance under different training overheads. If no

otherwise specified, compose mixing is adopted by default.
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Figure 5. Visualizations of attention maps on images from ImageNet-1K [11] (1st-3rd columns), Microsoft COCO [30] (4th-6th columns)

and ADE20K [48] datasets (7th-9th columns). Both MAE and MixedAE are pre-trained on ImageNet-1K for 300 epochs. Compared with

MAE which mainly focuses on the most discriminative patches, (e.g., boundaries (1st, 2nd & 5th) and edges (6th & 8th)), MixedAE

discovers foreground object patches more precisely (3rd & 9th) and completely (4th & 7th). See more attention maps in Appendix E.

3.3. Reconstruction: Loss Function

Loss function. We formulate MixedAE in the multi-task

learning manner and the final loss function is a weighted

sum of the reconstruction loss Lrecon and the homologous

contrastive loss LHomoCon as,

LMixedAE = Lrecon + λLHomoCon, (8)

where the balanced weight λ is set to be 0.1 by default.

3.4. Discussion: Object-aware Pre-training

With the usage of mixing, we observe that MixedAE can

achieve object-aware self-supervised pre-training without

any specifically designed components, such as K-means [7],

selective search [42] and object discovery network [24], be-

cause homologous recognition requires each query patch to

recognize all homologous patches within a mixed image.

Due to the single-centric-object guarantee [7] of ImageNet,

that most images are pre-processed to guarantee only one

object in the center part of them, the mixed image can be

considered as a ªpseudoº multi-instance image, and given a

query patch, the process of recognizing all patches from the

same image within a mixed sample is exactly recognizing

all patches from the same object within a given ªpseudoº

multi-instance image. Therefore, the awareness of object

existence and completeness is enhanced in the leant repre-

sentation of our MixedAE.

In Fig. 5, we visualize the attention maps of MAE and

MixedAE by averaging all attention heads of the last layer,

taken the [CLS] token as query and patch tokens as keys.

Compared with MAE which mainly focuses on the most

discriminative patches (e.g., boundaries and corners), our

MixedAE can successfully discover the foreground object

patches more precisely and completely, which might also

explain why MixedAE improves more significantly when

transferred to dense perception tasks, such as semantic seg-

mentation [48] and object detection [30], as shown in Tab. 1.

4. Experiments

4.1. Implementation Details

Architecture. We mainly use the standard ViT-Base [15]

as the backbone architecture, and further provide ViT-Large

experiments in Appendix C. The input images are resized

to 224 × 224, resulting in a total sequence length L = 196
with the patch size being 16×16. Following MAE [22], the

decoder consists of 8 Transformer layers with the hidden

dimension as 512 by default. For a fair comparison with

BEiT [3], we additionally build a MixedAE in full mixing

mode with a lightweight decoder made up of 2 Transformer

layers and the hidden dimension as 256, as shown in Tab. 1.

The mixing ratio r is set to be 0.25 (i.e., corresponding

to the 0.75 masking ratio in MAE [22]) by default, and the

threshold K in the TopK(·) operation is therefore set to

be 0.25L. Following common practices [6, 10], we adopt

a linear projector with the output dimension as 128 right

before the homologous contrastive loss, and the temperature

coefficient τ is set to be 0.25.

Optimization. We pre-train MixedAE on the ImageNet-

1K [11] training set with the AdamW [35] optimizer and

a cosine learning rate schedule with a linear warm-up of

40 epochs. The batch size is set to be 4096 for the compose

mixing, while 1024 for the full mode. The base learning rate

is set to be 7.5e−5, which will scale linearly with the batch

size (lr = lrbase×bs/256). Only standard random cropping

and flipping are utilized for data augmentation. The remain-

ing hyperparameters are all maintained the same with MAE

for a fair comparison (see Appendix B for more details).
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Method
Pre-train Pre-train† ImageNet ADE20K COCO

Epochs GPU-days Top-1 Acc. mIoU APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

DeiT [40] 300 19.6 81.8 46.9 48.8 68.7 52.7 42.5 65.9 45.5

MoCov3 [10] 600†† 54.8 82.8 46.8 47.2 66.9 50.8 41.1 63.6 44.1

DINO [6] 1600†† 120.5 82.8 46.9 49.5 69.1 53.6 42.9 66.0 46.3

BEiT [3] 300 32.1 82.9 44.7 39.3 57.7 42.4 34.8 55.2 36.8

MAE [22] 300 16.4 82.7 46.1 47.2 65.8 51.3 41.1 62.9 44.4

MixMIM [31] 300 40.2 83.2 - - - - - - -

CIM-RevDet [18] 300 42.7 83.1 - - - - - - -

CIM-ResPix [18] 300 42.7 83.3 - - - - - - -

MixedAE 300 16.9 83.1+0.4 47.0+0.9 47.8+0.6 66.6+0.8 52.0+0.7 41.6+0.5 63.6+0.7 45.0+0.6

MixedAE-Full∗ 300 30.8 83.7+1.0 47.4+1.3 48.9+1.7 67.6+1.8 53.3+2.0 42.5+1.4 64.8+1.9 45.9+1.5

MixedAE-Full 300 62.3 83.8+1.1 48.9+2.8 51.0+3.8 69.7+3.9 55.2+3.9 44.1+3.0 67.0+4.1 47.9+3.5

BEiT [3] 800 85.5 83.2 45.6 40.8 59.4 44.1 36.0 56.8 38.2

MAE [22] 800 43.7 83.3 47.2 49.4 68.1 53.9 42.9 65.5 46.6

MixedAE 800 45.0 83.5+0.2 48.7+1.5 50.3+0.9 69.1+1.0 54.8+0.9 43.5+0.6 66.2+0.7 47.4+0.8

MAE [22] 1600 87.4 83.6 48.1 50.6 69.4 55.0 43.8 66.6 47.5

iBOT [49] 1600†† 172.1 83.8 49.6 51.2 70.1 55.2 44.3 67.4 48.0

MixedAE 1600 90.1 83.9+0.3 49.8+1.7 51.5+0.9 70.2+0.8 55.9+0.9 44.5+0.7 67.5+0.9 48.2+0.7

Table 1. Transfer performance comparison between methods pre-trained on ImageNet-1K. 1) Effectiveness: MixedAE achieves the

state-of-the-art performance under different pre-training epochs and overheads. 2) Efficiency: MixedAE consistently surpasses the strong

iBOT [49] baseline, while only requiring 53.4% of the pre-training overhead. 3) Object-aware pre-training: more significant improvements

are achieved when transferred to downstream dense perception tasks (0.3 vs. 1.7 vs. 0.9). ∗: a lightweight decoder is deployed to maintain

similar pre-training overhead with BEiT [3]. †: GPU-days estimated on Tesla V100 GPUs. ††: effective epochs following iBOT [49].

4.2. Transfer Results on ImageNet-1K

Setup. We consider the fully fine-tuning performance on

ImageNet-1K for 100 epochs and report the Top-1 accuracy.

Following MAE [22], we average all the patch tokens after

the final Transformer layer, which is taken as input to a lin-

ear head for classification. See more details in Appendix B.

Comparison with MAE. As shown in Tab. 1, MixedAE

obtains consistent improvements over MAE under different

pre-training epochs with only 3% additional overhead. The

300-epoch pre-trained MixedAE with full mixing acquires

even better accuracy than the 1600-epoch pre-trained MAE,

demonstrating the efficiency of data utilization.

Comparison with other MIM augmentations. Our

MixedAE with the lightweight decoder and the full mixing

mode obtains 83.7% Top-1 accuracy, 0.5% and 0.4% higher

than MixMIM [31] and CIM [18] respectively, meanwhile

saving at least 23.4% computational overhead, revealing the

simplicity of our MixedAE.

Comparison with other SSL approaches. Our MixedAE

obtains consistent improvements under various pre-training

epochs and overheads, and achieves a better trade-off be-

tween pre-training overhead and transfer performance, as

shown in Fig. 1. Specifically, MixedAE pre-trained for 1600

epochs achieves 83.9% accuracy, constructing a new state-

of-the-art result with a pure autoencoder-based framework.

Requiring only 53.4% of the training overhead, MixedAE

surpasses the strong iBOT [49], demonstrating remarkable

efficiency. Moreover, the improvement brought by mixing

is orthogonal to the usage of more advanced reconstruction

targets [2, 14, 41] and masking strategies [25, 39].

4.3. Transfer Results on Downstream Tasks

We further consider three downstream settings to eval-

uate the learnt representation, and more details about the

different transfer procedures are included in Appendix B.

Semantic segmentation. We utilize the UperNet [43] to

perform semantic segmentation on ADE20K [48] following

BEiT [3]. As reported in Tab. 1, our 800-epoch MixedAE

achieves 48.7 mIoU, even surpassing the MAE pre-trained

for 1600 epochs by 0.6 mIoU, and our 1600-epoch MixedAE

further improves to 49.8 mIoU, outperforming all baseline

methods by a non-trivial margin, which is more significant

than the improvement on ImageNet-1K (1.7 vs. 0.3), thanks

to the object-aware pre-training, as discussed in Sec. 3.4.

Object detection and instance segmentation. We utilize

Cascade Mask R-CNN [4, 23] to produce bounding boxes

and instance masks simultaneously on COCO [30]. As

demonstrated in Tab. 1, MixedAE consistently outperforms

MAE under different epochs (0.6/0.9/0.9 & 0.5/0.6/0.7).

Similarly with ADE20K, more significant improvements

are observed due to the high-quality attention maps learnt

by the object-aware pre-training, as demonstrated in Fig. 5.
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Method Aircraft Caltech Cars C10 C100 DTD Flowers Food Pets SUN VOC Avg.

SSL ResNets

MoCov2 [9] 79.9 84.4 75.2 96.5 71.3 69.5 94.4 76.8 79.8 55.8 71.7 77.7

SimCLR [8] 78.7 82.9 79.8 96.2 79.1 70.2 94.3 82.2 83.2 61.1 78.2 80.5

BYOL [20] 79.5 89.4 84.6 97.0 84.0 73.6 94.5 85.5 89.6 64.0 82.7 84.0

SwAV [5] 83.1 89.9 86.8 96.8 84.4 75.2 95.5 87.2 89.1 66.2 84.7 85.3

SDR [33] 82.6 89.0 87.5 97.4 84.4 75.6 97.0 86.1 89.3 66.1 85.3 85.5

SSL Transformers

MoCov3 [10] 76.6 91.2 86.6 98.3 88.3 72.6 95.5 86.4 92.0 65.6 84.5 85.2

DINO [6] 69.4 91.2 81.3 98.4 88.9 77.6 96.9 87.3 93.5 64.7 86.3 85.1

BEiT [3] 66.3 80.2 78.6 96.1 80.0 69.9 92.9 83.2 85.3 57.1 76.7 78.7

MAE [22] 78.2 91.2 88.4 97.0 82.5 75.3 96.6 84.7 92.6 65.4 86.0 85.3

MixedAE 82.1 91.5 88.8 97.9 85.9 78.7 97.1 87.4 93.6 66.2 86.4 86.9+1.6

Table 2. Transfer performance comparison on 11 downstream classification tasks. Our 1600-epoch pre-trained MixedAE achieves

consistent improvements over MAE on all 11 classification datasets with an average accuracy of 86.9%, surpassing all counterparts.

Downstream classification. Following [17, 32, 33], we

study transfer performance on 11 downstream classification

datasets, including both fine-grained (e.g., Cars [27]) and

coarse-grained ones (e.g., CIFAR100 [28]) in Tab. 2. Our

MixedAE achieves consistent improvement over MAE on

all 11 downstream tasks with an average accuracy of 86.9%,

outperforming all counterparts as demonstrated in Tab. 2.

4.4. Ablation Study

Setup. We conduct 300-epoch pre-training with a base

learning rate of 1.5e−4 for all ablation studies on MixedAE

with compose mixing. By default, we report the fine-tuning

accuracy on ImageNet-1K [11] and mIoU on ADE20K [48].

See more detailed settings and results in Appendix C.

Mixing ratio r. Different from MixMIM [31], the mixing

ratio r in our formulation can be flexibly selected from the

range of (0, 0.5]. As shown in Tab. 3a, r = 0.25 works

better, while requiring less pre-training overhead (since the

effective encoder batch size scales linearly with r, as shown

in Eq. (1)). Note that r = 0.25 is also corresponding to the

default 0.75 masking ratio in MAE.

Position of homologous contrastive. We study whether

the encoder features before or after the final Layer Normal-

ization ([LN]) [1] of ViT [15] achieves better performance

as input to the homologous contrastive loss in Tab. 3b. The

latter achieves consistent improvements on both ImageNet-

1K and ADE20K, suggesting that the features after [LN]

are more suitable for homologous recognition.

Positives of homologous contrastive. In Eq. (7), given a

query patch, all homologous patches are considered as pos-

itive samples but taken separately to calculate LHomoCon in

the supervised contrastive manner [26]. We further ablate to

utilize the average of both the query and all its homologous

patches as its positive, which, however, performs slightly

worse than the separate manner (-0.2 mIoU on ADE20K).

Threshold K of homologous attention. We study the

threshold number K in AHomoAtt in Tab. 3d, where all the

global self-attention operations in the ViT are replaced with

our homologous attention. Compared with the no sampling

baseline, the usage of homologous attention obtains consis-

tent improvement on ImageNet-1K, while the best achieves

at K = 0.25L, which is consistent with the mixing ratio r
in Tab. 3a specifically.

Position of homologous attention. As shown in Fig. 6a,

homologous attention cannot achieve promising accuracy in

early Transformer layers without sufficient information en-

gagement. Thus, we further explore to maintain the global

self-attention in early layers unchanged in Tab. 3e, and ob-

serve empirically that utilizing global self-attention in the

very first layer only achieves the best performance.

Homologous recognition. In Tab. 3f, we further compare

the effectiveness of different components of homologous

recognition. Without the homologous contrastive loss for

verification, utilizing homologous attention only obtains a

significant drop of 0.5 mIoU on ADE20K. Although achiev-

ing improvement, utilizing the homologous contrastive only

still suffers from the ease of reconstruction brought by MI

increasement, as previously discussed in Eq. (5). Finally,

the best performance is achieved when using homologous

attention and contrastive loss simultaneously.

4.5. Analysis

Effectiveness of TopK sampling. To further observe the

effectiveness of TopK sampling in homologous attention,

we visualize the sampling accuracy with respect to different

layers and pre-training epochs in Fig. 6. As demonstrated

in Fig. 6a, the naÈıve usage of homologous attention only

cannot achieve promising sampling accuracy, which, there-

fore, suffers from a significant performance drop in Tab. 3f.

Specifically, neither the sampling accuracy of the first two
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mixing ratio r GPU-days acc mIoU

0.25 16.9 82.4 45.0

0.5 21.0 82.3 44.2

(a) Mixing ratio r, which is not limited to 0.5,

different from the MixMIM [31] formulation.

case acc mIoU

pre-[LN] 82.4 44.5

post-[LN] 82.5 45.3

(b) Position of homologous contrastive. The

encoder features after [LN] works better.

case acc mIoU

all positives separately 82.5 45.3

mean positive 82.5 45.1

(c) Positives of homologous contrastive. It’s

better to utilize positive patches separately.

threshold K acc mIoU

0.125L 82.6 45.1

0.25L 82.6 45.6

0.5L 82.6 45.5

1.0L (no sampling) 82.5 45.3

(d) Threshold K works best when consistent

with the mixing ratio r in Tab. 3a.

layer ID acc mIoU

none 82.6 45.6

1st 82.7 46.4

1st & 2nd 82.5 44.8

1st & 2nd & 3rd 82.5 45.6

(e) Usage of global self-attention in the very

first layer only achieves the best performance.

HomoAtt HomoCon acc mIoU

MixedAE

82.4 45.0

✓ 82.6 44.5

✓ 82.5 45.3

✓ ✓ 82.7 46.4

(f) Homologous recognition. Best to utilize

homologous attention and contrastive together.

Table 3. MixedAE ablation experiments with ViT-B/16. We report the ImageNet-1K fine-tuning accuracy (acc) and ADE20K semantic

segmentation performance (mIoU). We explore (a) the mixing ratio r, (b,c) the position and positives for homologous contrastive, (d,e) the

threshold K and position for homologous attention, and (f) a summary of homologous recognition. Default settings are marked in gray .
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(a) Accuracy curve with respect to Transformer layers of our MixedAE

pre-trained for 300 epochs, where the 1st layer adopts global self-attention.
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(b) Accuracy curve with respect to pre-training epochs of the very final

Transformer layer in our MixedAE.

Figure 6. Analysis of TopK sampling accuracy. Without the homologous contrastive loss for verification (green curve), utilizing the

homologous attention only cannot achieve promising accuracy, dramatically varying between different layers. However, with the usage of

homologous contrastive loss (orange curve), the sampling accuracy is significantly improved and stabilized mostly around 70% to 80%

throughout the whole pre-training process, which is essential to achieve remarkable transfer performance, as demonstrated in Tab. 3f.

nor final two layers exceed 60%, and accuracy of the very

final layer even maintains under 40% throughout the whole

pre-training process, as shown in Fig. 6b (the green curve).

However, with the usage of the homologous contrastive

loss for verification, the sampling accuracy is significantly

improved and stabilized around 70% to 80% for all layers

except the first two, as in Fig. 6a. The sampling accuracy

of the final layer rapidly increases to around 70% when pre-

trained only for 20 epochs, maintaining stable throughout

the remaining pre-training, as in Fig. 6b (the orange curve).

Comparison with existing MIM methods combined with

contrastive. Although also utilizing a ªcontrastive lossº

with reconstruction, MixedAE differs from existing MIM

works [16,49] combined with contrastive learning from two

perspectives, 1) Purpose: existing works utilize contrastive

loss to perform instance discrimination simultaneously with

MIM, while our homologous contrastive is only utilized to

guarantee the sampling accuracy. Therefore, homologous

contrastive performs more like a regularization term instead

of an individual self-supervision in [16, 49]. To verify, we

pre-train a MixedAE with LHomoCon only without Lrecon,

which cannot achieve reasonable performance, as reported

in Appendix C. 2) Efficiency: given a single input, existing

works require forward propagation at least twice for several

augmented views to conduct instance discrimination, while

only once for our homologous contrastive, resulting in the

significant efficiency. Specifically, our MixedAE surpasses

iBOT [49] with only 53.4% of its computational overhead.

5. Conclusion

This paper explores the usage of image mixing for MAE.

Different from in supervised and contrastive learning, we

first theoretically demonstrate naÈıve mixing might instead

ease the reconstruction pretext task. To address that, our

MixedAE with the proposed homologous recognition as the

auxiliary supervision can not only achieve state-of-the-art

performance with a better trade-off between transfer results

and pre-training overhead, but also conduct object-aware

pre-training without any specifically designed modules. We

hope our simple yet effective method can bring researchers’

attention to more effective data augmentations for MIM.
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