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Abstract

Privacy-preserving image generation has been impor-
tant for segments such as medical domains that have sen-
sitive and limited data. The benefits of guaranteed privacy
come at the costs of generated images’ quality and utility
due to the privacy budget constraints. The utility is cur-
rently measured by the gen2real accuracy (g2r%), i.e., the
accuracy on real data of a downstream classifier trained
using generated data. However, apart from this standard
utility, we identify the “reversed utility” as another cru-
cial aspect, which computes the accuracy on generated data
of a classifier trained using real data, dubbed as real2gen
accuracy (r2g%). Jointly considering these two views of
utility, the standard and the reversed, could help the gen-
eration model better improve transferability between fake
and real data. Therefore, we propose a novel private image
generation method that incorporates a dual-purpose auxil-
iary classifier, which alternates between learning from real
data and fake data, into the training of differentially private
GANs. Additionally, our deliberate training strategies such
as sequential training contributes to accelerating the gen-
erator’s convergence and further boosting the performance
upon exhausting the privacy budget. Our results achieve
new state-of-the-arts over all metrics on three benchmarks:
MNIST, Fashion-MNIST, and CelebA.

1. Introduction

By combining game theory with the powerful deep neu-
ral networks, Generative Adversarial Network (GAN) [19]
and its variants [2, 21, 24, 27] have shown impressive capa-
bility to learn the data distribution and synthesise data of
high fidelity and diversity that are challenging to be differ-
entiated from the real ones. Therefore, they are appealing
data augmentation methods in domains where real data is
too rare or contains sensitive information, such as the med-
ical domain. For example, GANs can be used to generate
synthetic liver lesions [16], MRIs [5], and CT scans [34]

Figure 1. In each training loop, the proposed dual-purpose aux-
iliary classifier is trained sequentially to improve on both two as-
pects of transferability and provide feedback to the generator.

that could then be fed into machine learning models to un-
leash their power for building high-quality medical analyt-
ics systems. Ideally, this could also protect the privacy of
real patient data and encourage data sharing between insti-
tutions by only releasing the synthetic ones generated by
GANs. This seems to solve the two problems mentioned,
the scarcity and sensitivity of data.

Unfortunately, recent works have shown that GANs are
not safe from leaking sensitive information about training
sample [3, 29, 40] as GANs are subject to model inversion
attacks and membership inference attacks in both white-
box and black-box settings [15, 23, 35, 42]. To preserve
privacy, recent works have made progress by adopting Dif-
ferential Privacy (DP) [12], a rigorously privacy-guaranteed
mechanism, in GAN training [8, 14, 25, 30, 37]. Along this
line, GS-WGAN [8] is a current state-of-the-art method,
which demonstrated that DP can be achieved by only se-
lectively sanitising the generator, while leaving the discrim-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20361



inator non-private.
Despite the success of recent works, there are still two

main gaps to be filled for this task. Firstly, the current util-
ity in the literature only focuses on the transferability from
fake data to real data. It computes the gen2real accuracy
(g2r%), i.e. the classification accuracy on real data of a clas-
sifier trained using fake data. Such utility is surely impor-
tant by definition since it reflects how useful the generated
data will be in downstream applications. Nonetheless, the
gen2real accuracy only covers one direction of data trans-
ferability, while neglecting the other way around, namely
from real to fake data. It was previously less investigated
that whether blending both these two aspects of transfer-
ability in model design could lead to better private GANs.
Secondly, the gained privacy largely sacrifices the gener-
ated outputs’ quality and utility. This is because the pri-
vacy budget constraints the maximum number of generator
updates, which makes the generator difficult to converge.
Prior works [6, 8, 30, 37] have hardly synthesised images of
both high quality and utility within standard privacy bud-
get under DP framework, especially for RGB image gener-
ation such as on CelebA dataset. Private GANs still need to
accelerate the generator convergence within the budget to
achieve a better privacy-quality/utility trade-off.

In this paper, the following attempts are made to close
the two aforementioned gaps. Firstly, we recognize the “re-
versed utility” as another critical aspect for transferability,
which is defined as the real2gen accuracy (r2g%) computed
as the classification accuracy of the classifier trained with
real data and tested on the generated data. The intuition is
that for an output to generalise well, it should be difficult to
tell from the real ones in its corresponding class. There-
upon, a novel method for private image generation with
the standard and reversed utility unified in the training pro-
cess is proposed. This is based on a dual-purpose auxiliary
classifier as illustrated in Fig. 1, which switches between
training on real data and fake data, and then provide feed-
back for the generator to enhance the transferability in both
two direction. Concretely, we build the proposed method
on GS-WGAN [8], since its sanitisation mechanism could
keep the generator differentially private when integrating an
auxiliary classifier that is exposed to real data. Secondly,
different from the conventional training scheme of GANs
where the discriminator learns from real and fake data si-
multaneously, we devise our training procedure of the clas-
sifier in a sequential manner. This could assist the classifier
in learning from different domains separately and reducing
noisy gradients during updates, which enables the classifier
to provide more valuable feedback to the generator and ac-
celerate its convergence within a given privacy budget.

Experiments on standard datasets for private image gen-
eration: MNIST, FashionMNIST and CelebA, demonstrate
that the proposed method could achieve outstanding per-

formance over state-of-the-art approaches on all evaluation
metrics including quality and utility. In summary, our con-
tributions are three-fold: 1) The “reversed utility” is identi-
fied as an beneficial part of an improved design of private
GANs. 2) A dual-purpose auxiliary classifier is developed
in alignment with both the standard and reversed utility. 3)
The classifier is trained with strategies like sequentialisation
to accelerate the convergence of generator.

2. Related Work

Private Generation with GANs. There are two main
classes of algorithms that marry DP with GANs for pri-
vate data generation. One is through the PATE [33] frame-
work, where the training set is partitioned into disjoint sub-
sets. The differential privacy is then realized by performing
a noisy aggregation of classification outputs from subsets.
This category could trace back to PATE-GAN [25], while
G-PATE [30] and DataLens [37] are recent advancements.
The other line of work originates from the DP-SGD frame-
work [1], which adapts the stochastic gradient descent al-
gorithm by clipping the gradients and adding random noise
to the clipped gradients. After each gradient descent up-
date, privacy accountant such as moment accountant [1] or
Renyi Differential Privacy (RDP) accountant [31] is used
to accumulate privacy costs. The training process termi-
nates upon exhausting all privacy budgets. DPGAN [40]
firstly applied this idea to GANs, however, the performance
is poor even on MNIST under the standard privacy bud-
get. Following works including dp-GAN [43], GANob-
fuscator [41] and SPRINT-GAN [4] proposed several opti-
mization strategies to improve the training stability and con-
vergence rate such as adaptive clipping, parameter grouping
and warm starting. DP-GAN-TSCD [17] relied on long-
short term memory (LSTM) for generating time-series data.
DP-CGAN [36] adopted the RDP accountant [31] instead of
moment accountant [1] for a tighter bound for privacy loss
with improved quality and utility. The current state-of-the-
art for this line of work is GS-WGAN [8], which improved
previous methods by selectively applying the DP mecha-
nism to the training process on only partial of the genera-
tor’s architecture. It is the first DP-SGD-based work that
mentions DP can be achieved by sanitising the generator,
while training the discriminator in a non-private way. There
are also some recent works that conduct private data genera-
tion without GANs, such as the DP-Sinkhorn [6] combining
DP with Sinkhorn divergence.

3. Preliminaries

Differential Privacy (DP). DP [12] is a strong technique
for privacy guarantees. We denote f(·) as a general training
algorithm that inputs dataD and outputs the model parame-
ters Θ. In our case, f(·) refers to the generator in GAN. To
achieve differential privacy, a Gaussian sanitisation mecha-
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nismM(·) with rangeR is used in replace of f(·) by adding
Gaussian noise based on its sensitivity as in Eq. (1), where
∆2f = maxD,D′ ||f(D)− f(D′)||2 is the L2 sensitivity of
our generator function f on adjacent datasets D and D′ that
only differ in one entry. This allows the mechanism to sat-
isfy the definition to be (ϵ, δ)-DP that Eq. (2) would hold
for any subsets of the mechanism’s output S ⊆ R with δ
probability of failing the DP and privacy budgets ϵ.

M(D) = f(D) +N (0, (σ∆2f)
2) (1)

Pr[M(D) ⊆ S] ≤ eϵPr[M(D′) ⊆ S] + δ. (2)

Accountant procedures such as Moment Accountant
(MA) [1, 11, 13] and Renyi Differential Privacy (RDP) [31]
accountant compute the privacy cost at each access to the
training data and accumulates this cost as the training pro-
gresses. Our work utilizes RDP accountant for privacy com-
putation as most recent works [7–9, 36].

Wasserstein GAN. Generative Adversarial Network
(GAN) [19] is prevalent deep learning methodology for
training high-performing generative models. Specifically,
GAN is composed of two neural networks: a generator G
that takes some sampled random noise z ∼ Pz as the input
to synthesise fake data x̃ = G(z) ∼ Px̃; and a discrimina-
tor D that takes real data x or generated data G(z) as the
input, and outputs single scalar score D(x) or D(G(z)) to
represent the probability of the input being real or fake. The
two networks G and D are trained adversarially, in a sense
that they compete with each other in a zero-sum game.

Wasserstein GAN (WGAN) [3] uses the Wasserstein loss
in replace of the traditional Jensen-Shannon divergence in
the plain GAN. This results in a better behaved discrim-
inator gradient with respect to its input, thus facilitating
the generator’s optimisation. Then, under WGAN in par-
ticular, the generator G wishes to generate realistic fake
data that can fool the discriminator D, i.e., to maximise
the discriminator’s loss on fake data E[D(G(z))]; the dis-
criminator D wishes to correctly distinguish the fake from
real, thus to minimise its loss function on both real data
−E[D(x)] and fake data E[D(G(z))]. As the discriminator
needs to be 1-Lipschitz continuous for a stable training, gra-
dient penalty [20] is further introduced to softly regularize
the gradient norm. The objective function can be written as

min
D

max
G

V (G,D) = Ex̃∼Px̃ [D(G(z))]−Ex∼Px [D(x)]

+ λE[(||∇D(x̂)||2 − 1)2], (3)

where E[(||∇D(x̂)||2 − 1)2] would allow any gradient
norms above one to be penalised, and λ is used to control
the level of regularisation regarding the gradient penalty.
4. Methodology
4.1. Auxiliary Classifier in Private GANs

Our method builds on top of the recent developments of
GANs, which have demonstrated their capabilities of gen-
erating outputs of high quality. Specifically, in our training

Figure 2. Architecture design. The discriminator receives feed-
back from both real and fake data simultaneously, while the clas-
sifier is trained in a sequential manner.
process, the interactions between the discriminator D and
the generator G are kept the same as in traditional GANs
as discussed in Sec. 3. Differently, for privacy-preserving
data generation, in addition to quality, it is also desirable for
the outputs to be of high utility as measured by gen2real
accuracy (g2r%), which is the accuracy on real data of a
classifier that has been trained on generated data. How-
ever, to the best of our knowledge, no work so far has in-
vestigated that whether incorporating utility measure in the
model design would result in better utility performance un-
der the given privacy budget. Motivated by this, we propose
a new private GAN method that blends the utility measure
(i.e., g2r%) into privacy-preserving GAN training. This is
realised by introducing an auxiliary “gen2real” classifier C
into the GAN training that specialises in classification tasks
instead of discrimination tasks. The auxiliary classifier can
then be used to mimic the utility evaluation process, where
the classifier is firstly trained using fake data, then tested
on real data. The learning objective of our auxiliary clas-
sifier is quite different from D, in that the interactions be-
tween G and C is now in collaboration instead of competi-
tion. They have the same goal of minimising the classifier’s
loss on fake data −E[C(G(z,y),y)], where y denotes the
class label. Note that the generator G takes weighted aver-
age feedback from both source: D and C, where β is the
proportion allocated to D and 1 − β for C. Both weights
are between 0 and 1. In summary, D, C and G play the
following three-player minimax game with value function
V (G,D,C):

min
G

max
D

min
C

V (G,D,C)

= −βEx̃∼Px̃
[D(G(z,y))] + βEx∼Px [D(x)]

− (1− β)Ex̃∼Px̃
[C(G(z,y),y)] (4)

Remark on privacy-preservation. We adopt the power-
ful privacy protection technique: Differential Privacy (DP)
in our GAN training. Recall in Eq. (1) from Sec. 3 that for
any general training algorithm f(·), we can make it differ-
entially private by using a satinitisation mechanismM that
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adds Gaussian noise N (0, (σ∆2f)
2) to the algorithm f(·),

where the variance of the noise is determined by the func-
tion’s sensitivity value ∆2f . In our case, the function f(·)
is the generator function G(·), since it is the generator that
we wish it to achieve differential privacy. A common way to
bound its sensitivity is by clipping its gradient gG to have
an L2-norm within a fixed clipping bound ζ. This would
then allow us to analytically determine the distribution of
the aforementioned added noise to be N (0, σ2ζ2I2). To
sum up, by applying the gradient sanitisation mechanism as
follows would enable the generator to be differentially pri-
vate:

Mσ,ζ(g) = Clip(g, ζ) +N (0, σ2ζ2I2). (5)

In addition, to minimise the loss on quality after the in-
troduction of the sanitisation mechanism, we maximally
preserve the gradient information by identifying all sub-
components that can skip sanitisation. Firstly, we identify
that D and C can be trained non-privately as Eq. (6) and
Eq. (7), and eventually dropped since it is only the generator
G that would be released after training. Secondly, accord-
ing to the chain rule, the generator gradient can be decom-
posed into two sub-components: gG = ∇θG

LG(θG) =
∇G(z;θG)LG(θG) · JθG

G(z;θG), where JθG
G(z;θG) is

the local generator jacobian computed independent of train-
ing data, hence can skip sanitisation as in Eq. (9). The other
term ∇G(z;θG)LG(θG) is the derivative of generator loss
function with respect to its synthesised output. This is com-
puted with the use of sensitive information since the gen-
erator’s loss LG(θG) is defined with regard to the discrim-
inator or classifier, both of which is trained non-privately.
Thus, to conclude, as shown in Eq. (9), this is the only
sub-component that sanitisation mechanism M is applied
to. This selective fashion of sanitisation allows reducing
the number of parameters to be sanitised, and also training
the non-sanitised components D and C more reliably.

θD := θD − ηD · gD, (6)

θC := θC − ηC · gC . (7)

θG := θG − ηG · g̃G (8)

g̃G =Mσ,ζ(∇G(z;θG)LG(θG)) · JθG
G(z;θG) (9)

In above equations, ηG, ηD, ηC represent the learning
rates for corresponding model components. Besides, gra-
dient penalty is used for updating D and C to satisfy the
1-Lipschitz continuity condition for using W-loss. This also
brings an additional benefit of precise estimation and ana-
lytical determination of the clipping bound ζ to be one thus
saves the computational search.

Remark on evaluating the utility. Same as the evalu-
ation process of g2r%, after training the classifier C using
fake data, we freeze the classifier weights and validate it on

real data. This validation result can be used to monitor the
training progress of C, and facilitate decisions such as early
stopping and hyper-parameter tuning. Finally, the classifier
with optimized validation performance would be capable of
providing the generator with higher quality feedback.

Remark on relevant GAN variants. A relevant GAN
variant to our method is the auxiliary classifier GAN (AC-
GAN) [32], which lets the discriminator to provide two sep-
arate feedback to the generator, a probability distribution
over sources and a probability distribution over the class
labels. This is still a two-player GAN, but the discrimi-
nator is multi-tasking. Although AC-GAN loosely shares
some common concepts with our proposed method, they are
very distinct in terms of motivation, model design and train-
ing process. Another loosely related line of work that uses
classifier in GAN include Triple GAN [28] and Triangle
GAN [18], both of which are designed for semi-supervised
learning tasks, in that another generative model is designed
to generate labels y using real data x to supplement the un-
supervised features. Another 3-player GAN that includes
a classifier is ALI [10], which leverages the classifier to
improve the training of the discriminator by learning map-
pings from y to x. In comparison, our method incorporates
the classifier for completely different purposes, which are
to improve on both standard and reversed utility for private
data generations given a fixed privacy budget.
4.2. Real2Gen As a Reversed Utility

In addition to improving the generated outputs’ standard
utility, we identify that it is also beneficial to improve on
their reversed utility as measured by real2gen accuracy
(r2g%), i.e., the accuracy on fake data of a classifier that
has been trained on the real data. This aims for improving
data transferability in both directions and also data general-
isability. We have also discovered that combining this new
direction of transferability in our model design would result
in better private GANs.

This is realised by introducing an auxiliary “real2gen”
classifier C into GAN training. As in Eq. (10), the learning
objective for G and D are identical to the “gen2real” coun-
terpart shown in Eq. (4). However, C now takes only real
data as inputs for its updates hence minimises−E[C(x,y)],
to mimic the r2g% evaluation process, where it is trained on
the real data, then tested on the generated data. In summary,
the value function is as follows:

min
G

max
D

min
C

V (G,D,C)

= −βEx̃∼Px̃
[D(G(z,y))] + βEx∼Px [D(x)]

− (1− β)Ex̃∼Px̃
[C ′(G(z,y),y)]− Ex∼Px [C(x,y)]

(10)

Note that in the above equation, C ′(·) directly copies the
weight from C, and C ′(·) would be detached from any gra-
dient computations.
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Algorithm 1 Differentially Private Generative Adversar-
ial Network with Dual-Purpose Auxiliary Classifier (DP-
GAN-DPAC) Training

Input: Dataset D, subsampling rate γ, noise scale σ, train-
ing iterations T , learning rates ηD, ηC , ηG, the number
of iterations per generator iteration for the discriminator
ndis, for the classifier using fake data and real data re-
spectively nf and nr, batch size B, class label y

Output: Private generator θG and total privacy cost ϵ
Load non-private discriminators θk

D for k = 1, 2, ...,K
(K = 1/γ); initialise private generator θG;
for step in {1, ..., T} do

Sample subset index k ∼ U [1,K] and subset dk;
Initialise classifier θk

C

for t in {1, ..., ndis} do
Sample batch {xi}Bi=1 ⊆ Dk;
Sample batch {zi}Bi=1 with zi ∼ Pz;
Compute mean discriminator gradient gD;
θk
D ← θk

D − ηD · gD

end for
for t in {1, ..., nf} do

Sample batch {zi}Bi=1 with zi ∼ Pz;
Compute mean classifier gradient gC ;
θk
C ← θk

C − ηC · gC

end for
for t in {1, ..., nr} do

Sample batch {xi}Bi=1 ⊆ Dk;
Compute mean classifier gradient gC′ ;
θk
C ← θk

C − ηC · gC′

end for
Compute mean satinised generator gradient g̃G;
θG ← θG − ηG · g̃G

Accumulate privacy cost ϵ;
end for
return Generator θG, privacy cost ϵ

Remark on evaluating the reversed utility. Simi-
larly, the real2gen classifier mimic the evaluation process
of r2g%. After training the C on real data, it is then vali-
dated on the fake data. However, different from the design
of gen2real classifier, this time we use the validation loss di-
rectly as the feedback for updating G, instead of a facilitator
for monitoring purposes.
4.3. Training Strategies

Dual-purpose auxiliary classifier. For the auxiliary
classifier, learning from the fake data mimics the evalua-
tion process of standard utility by construction, making it
a single-purpose classifier that improves on g2r%; while
learning from the real data mimics the evaluation process
of reversed utility, making it a single-purpose classifier that
improves on r2g%. We further find that learning from both
sources would enable us to feedback the generator with

learning signals about the bilateral transferability (g2r% and
r2g%) during training. This would further improve on its
performance. The auxiliary classifier now kills two birds
with one stone, hence named as “dual-purpose”. However,
this brings additional complexity to the training of the clas-
sifier, as the learning sources are from different data do-
mains and distributions. Hence, we apply sequential train-
ing to the classifier, which would be discussed as follows.

Sequential training. Recall that D’s task is to discrim-
inate real from fake, thus it is necessary to batch the data
in a way that corresponds each real data with its fake coun-
terpart. As a result, D learns from both data domains si-
multaneously as in Fig. 2. In comparison, the task of C is
instead to discriminate between classes, therefore the corre-
spondence should be shift from real-and-fake labels to class
labels. Moreover, we find that for classification task, mixing
the losses from real and fake sources into the same equation
would result in noisy gradients that confuse C during its
updates. This is because real and fake data are of different
distributions and have quite distinct features for each class
label. Hence, we train the classifier sequentially and for
two separate updates, by alternatively learning from fake
data then real data (instead of simultaneously). This also
enables C to be designed in a dual-purpose way (Fig. 2)
that incorporates the evaluation of both g2r% and r2g% into
the training process, which guarantees the improvements on
both measures. Intuitively, this auxiliary classifier is essen-
tially acting as the intermediary facilitating the communi-
cation between G and the real data, telling the generator:
“I was entirely trained by you (step 1), I then go and see
what real data look like (step 2) and have got slighted im-
proved (step 3), now I am back and show you what I am like
now (step 4), to let you know how you should have trained
me back then if you wish to let me perform well on the real
data that you can never see (step 5).” The detailed algorithm
is shown in Algorithm 1. Implementational details are dis-
cussed in Sec. 5.1.

5. Experiments

5.1. Experimental setup

We compare our generated data with several state-of-the-
art differentially private generative model baselines on three
image datasets over quality and utility evaluation metrics.

Datasets. We conducted experiments on image datasets
to demonstrate the superiority of our method generating
high dimensional differentially private data. MNIST [26]
and FashionMNIST (F-MNIST) [39] have been the stan-
dard datasets for this line of work, however, they are both
grayscale images. We have also experimented on even
higher dimensional celebrity face image dataset CelebA, to
validate the applicability of our method on image datasets
with RGB colour channels. Specifically, MNIST and F-
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MNIST datasets both contains 60000 training examples and
10000 validation examples of 28 × 28 grey-scale images
consist of 10 labels. The CelebA dataset contains 202599
colour images of celebrity faces, each with 40 attribute an-
notations, among which we take the binary “gender” at-
tribute as the label. We used the official pre-processed ver-
sion and further resized the images to 32 × 32 × 3. The
data is partitioned into three subset: 162770 training, 19867
validation, and 19962 test. For all datasets, we use only the
training set for training purposes, and use the validation set
for evaluating our conditional GAN.

Evaluation metrics. To evaluate output quality, we use
Inception Score (IS) and Frechet Inception Distance (FID),
we have also included the generated images as Fig. 3 and
Fig. 4 for visual inspections. To evaluate utility, the stan-
dard is to use the g2r%, which computes the accuracy on
real data of a downstream classifier trained using gener-
ated data, where for the classifier, we used Multi-Layer Per-
ceptron (MLP) and Convolutional Neural Network (CNN).
However, we find g2r% only considers the transferability
from fake data to real data, while neglecting the other way
around. This gives a readily exploitable loophole for short-
cut outputs to trick the metric. Take gender classification
on a hypothetical face image dataset as an example, if in
which 90% females are white, and 90% males are black, we
can easily trick the g2r% metric by generating only purely
black images for male, and purely white images for female.
Then, the learned classifier from our fake data would over-
fit the only feature it could extract - the degree of blackness,
and still get 90% accuracy on the real data. This overfitting
issue arises more frequently when the available real data for
training are very limited, which is exactly the venue where
this line of work comes in - remember that we wish to gener-
ate data for domains that have sensitive and limited data. To
prevent overfitting and generate high-performing classifiers
that are not easily being tricked, ideally, the generated im-
ages should be more generalisable to the true features that
distinguish between semantic classes of male and female:
e.g., female faces should have smaller size, larger cheeks,
and smaller and less prominent brows, noses, and chins.
Therefore, we propose to also measure the “reversed utility”
that computes the accuracy on fake data of a downstream
classifier trained using real data, dubbed as real2gen accu-
racy (r2g%). This other direction of transferability from
real to fake allows the evaluation of output generalisability,
as intuitively, for a fake output to generalise well, it should
be difficult to tell from its real class by a real-world classi-
fier. In our evaluations, MLP and CNN are selected as the
classifiers. We recommend future works in this domain to
consider both g2r% and r2g% as utility metrics.

Implementational details. For the generator and dis-
criminator, we use DCGAN for the discriminator and clas-
sifier, and ResNet (adapted from BigGAN) for the genera-

Figure 3. Image generated at privacy budget ϵ = 10 for MNIST
(Left) and F-MNIST (Right) by various methods.

Figure 4. Image generated at privacy budget ϵ = 10 for CelebA
by various methods conditioned on gender. Left: Female. Right:
Male.

tor. Same as previous works, we have also used the sub-
sampling technique for enhancing privacy protection, and
pre-trained the discriminators before training. This brings
better discriminator convergence without costing any addi-
tional privacy budgets since it is only the generator that we
would release after training. Our models are implemented
in PyTorch. We implement the gradient sanitisation mecha-
nism by registering a backward hook to the selected portion
of generator gradient ∇G(z)LG(θG) that we wish to sani-
tise. We adopt the official implementation of [38] for ac-
cumulating the privacy costs after each generator iteration,
where the smaller the σ, the larger the privacy cost ϵ. The
value choice of δ = 1e − 5, σ = 1.07 were both kept the
same as in [8]. These correspond to line 23 of Algorithm 1.
After 20000 iterations, the total privacy costs are within the
budget of ϵ = 10.

5.2. Comparison with baselines

Quality. Qualitatively, as shown in Fig. 3 and Fig. 4,
our method produced the most visually appealing results
on all tested datasets compared to several state-of-the-art
baselines. On MNIST and F-MNIST, our method success-
fully generates privacy-preserving images that are hard to
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MNIST F-MNIST CelebA
Method IS FID IS FID IS FID

PATE-GAN [25] 1.46 253.55 2.35 229.25 - -
DP-CGAN [36] - 179.20 - 243.80 - -
G-PATE [30] 5.16 150.62 4.33 171.90 1.37 350.92
DataLens [37] 5.78 137.50 4.58 167.70 1.42 320.84
DP-MERF [22] - 121.40 - 110.40 - -
GS-WGAN [8] 9.23 61.34 5.32 131.34 1.85 297.35
DPSinkhorn [6] - 55.56 - 129.40 - 168.40
Ours 9.71 54.06 6.60 90.77 1.90 139.99

Table 1. Comparing IS ↑ and FID ↓ on various datasets.

MNIST F-MNIST CelebA
Method MLP CNN MLP CNN MLP CNN

DP-CGAN [36] 0.60 0.63 0.50 0.46 - -
G-PATE [30] - 0.81 - 0.69 - 0.71
DataLens [37] - 0.81 - 0.71 - 0.73
DP-MERF [22] 0.81 0.82 0.71 0.73 - -
GS-WGAN [8] 0.79 0.80 0.65 0.65 0.68 0.66
DPSinkhorn [6] 0.80 0.83 0.73 0.71 0.76 0.76
Ours 0.85 0.88 0.75 0.73 0.80 0.85

Table 2. Comparing gen2real accuracy ↑ on various datasets.

MNIST F-MNIST CelebA
Method ↑ MLP CNN MLP CNN MLP CNN

GS-WGAN [8] 0.99 0.99 0.85 0.85 0.66 0.60
Ours 1.00 1.00 0.97 0.98 0.99 0.98

Table 3. Comparing real2gen accuracy ↑ on various datasets.

tell from the real ones. On the more challenging CelebA
dataset, DataLens [37] can hardly generate meaningful out-
puts, GS-WGAN can resemble faces, but with a lot of
masaic on the faces and hard to visualise gender differ-
ences. DP-Sinkhorn [6] can show clear signs of gender,
however, the outputs are much blurrier compared to ours.
Quantitatively, as in Tab. 1, our method results in the best-
performing IS and FID on all tested datasets. The advantage
is much more distinct for the more challenging F-MNIST
and CelebA datasets. These demonstrate that our deliberate
training design of sequential training of the auxiliary clas-
sifier has resulted in improved training stability and better
output quality.

Utility. Results in Tab. 2 and Tab. 3 shows that on all
three datasets, our method consistently improve on base-
lines no matter we choose MLP or CNN as the classifier.
Specifically, the improvements on GS-WGAN over both
utility metrics are very significant, which clearly illustrate
the effectiveness of our dual-purpose design of auxiliary
classifier on realising both of its purposes.

More experimental results and analyses that demon-
strate our method’s better privacy-quality and privacy-
utility trade-offs are provided in the supplementary mate-
rial.

gen2real ↑ real2gen ↑
Method IS ↑ FID ↓ MLP CNN MLP CNN

Baseline 5.32 131.24 0.65 0.65 0.85 0.85
w/o g2r 6.33 88.17 0.73 0.68 0.94 0.95
w/o r2g 6.47 86.91 0.74 0.71 0.92 0.92
w/o seq 4.91 128.25 0.65 0.64 0.88 0.77
w/o init 6.56 101.69 0.72 0.65 0.97 0.95

Full 6.60 90.77 0.75 0.73 0.97 0.98

Table 4. Ablation studies.

5.3. Ablation studies

(1) Single-purpose vs. dual-purpose auxiliary classi-
fier. With the two purposes of improving on standard and
reversed utility, we incorporate both gen2real and real2gen
components into the algorithm design, by introducing a
dual-purpose auxiliary classifier. We experiment on remov-
ing each purpose from the design, and compare their perfor-
mances with the dual-purpose version, and also the baseline
method that does not use the classifier. As in Tab. 4, results
show that in terms of g2r% and r2g% performances, the
single-purpose versions (i.e., without gen2real or real2gen
component) are inferior to the dual-purpose one, but much
superior to the no-purpose baseline. Additionally, the one
without real2gen has worse r2g% performance, but better
g2r% performance compared to the one without gen2real.
These all prove the effectiveness of our design. The study
also shows that under our deliberate training design, the
single-purpose and dual-purpose versions would have com-
parable output quality, with the dual-purpose one having
slightly better IS, but slightly worse FID. This is because
the variate in number of purposes does not change the key
mechanism of our training design that contributes to qual-
ity improvement, which is the separation of real and fake
inputs in the training of C. The dual-purpose version ben-
efits from our sequential training design, while the single-
purpose ones would only use either real or fake data as the
input. Thus, they have all avoided inputting the real and
fake data simultaneously. This study also shows the auxil-
iary classifier’s consistent improvement on quality over the
baseline by a large margin, regardless of the change in num-
ber of purposes.

(2) Sequential vs. parallel training of auxiliary clas-
sifier. We design the classifier to learn from fake and real
inputs separately and sequentially. What if we did not go the
extra mile and simply uses the conventional training scheme
of GANs for updating the discriminator where it learns from
real and fake data simultaneously? We then modify the loss
equation for updating C to be the simple average of its loss
from real and fake inputs, and the results in Tab. 4 show a
significant downgrade compared to the sequential opponent
in all aspects. This proves the contribution of the sequential
training strategy for classifier in preventing noisy gradients
and improving training stability.
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Hyperparameters gen2real ↑ real2gen ↑
tc β if : ir IS ↑ FID ↓ MLP CNN MLP CNN

Baseline - 1.0 - 5.32 131.24 0.65 0.65 0.85 0.85

Different tc
0 0.8 10:10 6.09 93.27 0.75 0.71 0.97 0.92

16000 0.8 10:10 6.12 105.35 0.68 0.65 0.96 0.92

Different β
6000 0.5 10:10 6.55 105.11 0.69 0.65 0.95 0.97
6000 0.95 10:10 6.36 90.43 0.74 0.70 0.97 0.98

Different nf : nr
6000 0.8 60:10 6.26 106.50 0.70 0.66 0.95 0.92
6000 0.8 10:60 6.49 90.93 0.73 0.70 0.97 0.96

Ours 6000 0.8 10:10 6.60 90.77 0.75 0.73 0.97 0.98

Table 5. Hyperparameter analyses on F-MNIST. tc refers the generator iteration that we introduce the auxiliary classifier; β is the weights
given to the discriminator compared to the classifier in the loss function; if : ir means the number of classifier iteration per generator
iteration using fake data and real data respectively. Our proposed method is relatively insensitive to the hyperparameter selection.

(3) The re-initialisation of classifier during each gen-
erator iteration. The auxiliary classifier is re-initialised
after each generator iteration, to closely mimic the gen2real
evaluation process, where a classifier is trained from scratch
using the fake data, before testing on real data. Thus, this
strategy aims to improve on g2r% performance. What if
we save and re-use the classifier output after every gen-
erator iteration? The results show that if the strategy is
removed, r2g% would have comparable performance, the
quality measures would have slightly worse performance,
and the g2r% would have a distinct downgrade in perfor-
mance, especially the g2r% using CNN would decrease
from 73% to 65%. These have demonstrated the effective-
ness of the re-initilisation design of classifier on improving
output performance, especially g2r%. It indeed allows bet-
ter feedback to be passed to the generator during training,
as the strategy makes the auxiliary classifier more represen-
tative of the generator during each specific iteration.

5.4. Hyper-parameter analyses

We have extensively tuned hyper-parameters that relates
to the proposed auxiliary classifier: the iteration tc to intro-
duce auxiliary classifier into the training pipeline, the pro-
portion (β) of generator’s feedback allocated to D as op-
posed to C, and the number of classifier iterations nf and
nr per generator update using fake data and real data respec-
tively. In Tab. 5, we present two representative examples for
each hyper-parameter to discuss the general patterns.

We find late-launching the auxiliary classifier has better
performance compared to introducing it into the pipeline
from start (tc = 0). During the 20000 total iterations
of generator, the best results are achieved when the auxil-
iary classifier comes into effect after tc = 6000 iterations
for MNIST and F-MNIST, and tc = 1000 iterations for
CelebA. This is because the generator finds challenging to
generate meaningful outputs during initialisations. Thus,
the auxiliary classifier trained using the generated output is
of less quality, and in return gives lower-quality feedback
to the generator during the first hundreds of training iter-
ations. Also, as the clipping step in gradient sanitisation

scheme is constraining the amount of gradient flow to the
generator during each iteration, the convergence would be
faster if all budgets were allocated to discriminator during
initial stages. We also find the performance is insensitive
to tc when it takes values within the range of 500 − 8000.
However, setting tc too large (e.g.,tc = 16000 as in Tab. 5)
would prevent the classifier from being fully leveraged and
result in worse performance compared to smaller settings
of tc, but better performance compared to the baseline that
does not incorporate the classifier. Also, the performance is
not very sensitive to β, if , and ir, comparable performances
with the best setting were achieved after testing on a wide
range of values.

6. Conclusion

In this paper, we identify the “reversed utility” as a cru-
cial supplement of the standard utility to better evaluate
output generalisability. We also find both utility capable
of improving on transferability between real and fake data
if they are incorporated into our model design. To imple-
ment this unification, we propose a novel and effective dif-
ferentially private GAN with dual-purpose auxiliary clas-
sifier (DP-GAN-DPAC). Align with our deliberate sequen-
tial training strategies, the method is also entitled to train
more stably, hence generate higher quality outputs. Exten-
sive experiments show that DP-GAN-DPAC significantly
outperforms the current state-of-the-art baselines on both
greyscale and RGB image datasets. We conclude that in-
corporating a dual-purpose auxiliary classifier into private
GAN trainings could become a standard for this line of
work.
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