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Abstract

Whole Slide Images (WSIs) are usually gigapixel in size
and lack pixel-level annotations. The WSI datasets are also
imbalanced in categories. These unique characteristics,
significantly different from the ones in natural images, pose
the challenge of classifying WSI images as a kind of weakly
supervise learning problems. In this study, we propose,
RankMix, a data augmentation method of mixing ranked
features in a pair of WSIs. RankMix introduces the con-
cepts of pseudo labeling and ranking in order to extract key
WSI regions in contributing to the WSI classification task. A
two-stage training is further proposed to boost stable train-
ing and model performance.

To our knowledge, the study of weakly supervised learn-
ing from the perspective of data augmentation to deal with
the WSI classification problem that suffers from lack of
training data and imbalance of categories is relatively un-
explored.

1. Introduction
1.1. Background

Natural image processing tasks, including image classi-
fication and object detection, have been widely solved using
deep learning models and obtain astounding results. In this
study, we investigate how medical imaging can also ben-
efit from deep learning with focus on whole slide images
(WSIs). WSI scanning is commonly used in disease di-
agnosis [12, 34]. The demand of computer aided assess-
ment makes deep learning widely adopted in this field [1].
Because WSI is a gigapixel image and lacks pixel-level
annotations, multiple instance learning (MIL) [31, 32] is
an exact solution to this weakly supervised learning prob-
lem [2]. In MIL, a WSI is often cropped into tens of thou-
sands of patches and then an aggregator will make a predic-
tion based on integrating these patches. Most recent works
[5, 9, 10, 25, 28, 30, 37, 38, 44] focus on aggregator architec-
ture design and improving feature extraction of the patches.

However, because WSI is difficult to collect and share, we
explore the possibility of data augmentation in WSI classi-
fication to increase training samples and mitigate the prob-
lem of class imbalance [19, 26, 33, 48] that WSI may have
due to rare diseases (versus common diseases). In addition,
patch feature extractor is often trained by self-supervised
learning [24,28] or comes from pre-trained models (such as
pre-trained in ImageNet [30, 37] or WSI datasets [5, 11]).
Therefore, for universality and portability, our work will fo-
cus on studying the feature domain instead of pixel domain
of patches.

Traditionally, mixup methods [18, 48] are employed to
mix photos of the same aspect ratio or vectors of the same
dimension. Nevertheless, this is not the case for WSI as
WSI intrinsically has a different number of patches, ranging
from hundreds to hundred of thousands. This is because the
generation of a WSI, caused by the tissue placement and
the tissue size, will make WSIs of varying aspect ratios and
sizes.

In addition, because a WSI tends to be a very large size
(equivalent to tens of thousands of 224 × 224 patches or
even larger) and the background often occupies a large part,
it is better to use data pre-processing to remove unimpor-
tant background parts in order to save computation time
and avoid possible unnecessary information [21, 39] (such
as noise and artifacts). That is, the pre-processing step of
cropping a WSI into patches, as shown in Fig. 1, will re-
move most of the background patches. The resultant WSI
patches, however, will lose their absolute positions.

1.2. Challenges

The above characteristics of WSI lead to the difficulty
of directly employing the traditional mixup methods. We
cannot simply resize two WSIs to have the same size for
the sake of performing mixup. This is because all WSIs
are scanned at the same magnification (e.g., 20x), the phys-
ical meanings will be lost if they are rescaled casually.
More importantly, due to loss of absolute positions among
the patches after removing the WSI background, resizing
patches actually do not solve this problem.
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Another commonly used techniques for data augmenta-
tion are based on cutting, including Cutout [14] and Cut-
mix [47]. The core of cutting aims at obtaining or removing
parts of an images. However, the key difference between
WSI images and natural images is that the main objects can
occupy a major part of a natural image, but it is not the
case in WSIs. For example, the tumor slide of Camelyon16
dataset [16] only has a small area of tumor (approximately
< 10% of tissue area). Therefore, if a random cut is made,
there is a non-negligible probability that the tumor slide will
not contain any tumor patches.

To address these challenges, we propose a novel mixup
method, called RankMix, for augmentation of whole
slide images with diverse sizes and imbalanced categories.
RankMix introduces the concepts of instance-level pseudo
labeling and ranking in order to obtain meaningful WSI
regions that can contribute to the WSI classification task.
In order to further enhance model performance, two-stage
training is proposed in that the first step is to train a stable
score function by general MIL, and then the score function
and mixup technique are jointly used in the second stage of
training.

1.3. Our Contributions

Our contributions are summarized as follows:

• To our knowledge, MIL currently focuses on improv-
ing feature extraction and aggregator-based classifica-
tion. It is relatively ignored in investigating weakly
supervised learning from the perspective of data aug-
mentation. Our proposed method can be applied to
WSI classification problems and can be easily incor-
porated to existing MIL methods.

• In contrast to the existing mixup methods that aim at
mixing natural images of the same size, our method
can mix images (e.g., WSIs) of different sizes.

• Because of rare diseases and the difficulty of medical
image collection, the WSI classification problem is apt
to suffer from lack of training data and imbalance of
categories. Our proposed method is demonstrated to
be feasible in addressing these challenges.

2. Related Work
In this section, we briefly introduce the techniques that

are relevant to our work.

2.1. Data Augmentation

Data augmentation can improve the generalization and
has been widely used in training neural networks. Mixup
[48] fuses information from two images by convex combi-
nation. CutMix [47] inpaints the masking area (produced by

random occlusion) with another image content at the same
location. Recently, Part et al. [35] proposed how the major-
ity can help the minority with re-balancing distribution of
each sub-class. In addition to mixing in the pixel domain,
Manifold Mixup [42] and PatchUp [18] proposed mixing
the features of two images. Despite promising, the afore-
mentioned methods are not presented for medical images.

For medical imaging, Galdran et al. [19] mixed two med-
ical images sampled from different distributions, includ-
ing instance-based sampling and class-based sampling. By
increasing the sampling probability of the minority class,
the class imbalance problem that usually occurs in medi-
cal imaging can be properly alleviated. In histopathology
studies, the datasets often suffer from stain color variation
because of different stain approaches, procedures, and slide
scanner. To address this problem, Chang et al. [4] mixed
two stain color matrices from stained images in order to in-
crease the generalization of unseen colors. Chen et al. pro-
posed Flow-Mixup [6] to regularize medical images with
corrupted multi-labels because the annotations of medical
images are costing and automatic annotation often provides
corrupted labels. Gazda et al. [20] used the mixup tech-
nique to improve model performance for medical image
segmentation. In ReMix [46], Yang et al. proposed using
latent-space data augmentation to deal with WSI classifica-
tion. However, ReMix only mixed instance prototypes of
slides from the same class by K-Means while maintaining
the original labels. From this perspective, ReMix acts like a
kind of feature augmentation instead of general mixup.

As shown in Tab. 1, although the previous researches on
medical images are diverse, their data augmentations are not
feasible for WSIs with large gaps in size.

2.2. Multiple Instance Learning (MIL)

In recent MIL studies, the patches of a WSI are trans-
formed into the features of fixed size by a feature extractor
and then the patch features will be aggregated to get a fi-
nal slide-level prediction. To leverage patch features, MIL-
RNN [2] uses the recurrent neural network (RNN) [36] to
encode position information. Because RNNs are apt to suf-
fer from information loss over long distances, the follow-
up works proposed attention-based MIL [25, 30] to calcu-
late the contributions of instance-level features by learn-
able neural networks. Thanks to the success of Transformer
[15, 41], self-attention based MIL methods [10, 28, 37] re-
ceive considerable attention in WSI classifications. Li et
al. [28] proposed the non-local attention mechanism to cal-
culate the relation between the critical feature and remain-
ing features, but ignored the position relationship between
patches. To address this problem, Shao et al. proposed
TransMIL [37], which emphasizes the benefits of Pyramid
Position Encoding Generator (PPEG), to encode spatial in-
formation by group convolution. Recently, Chikontwe et
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Setting Image type Mixup input Mixup output Large size gap between 2 inputs

Mixup [48] Natural image Image v x
Manifold Mixup [42] Natural image Image, Hidden state v x

Balanced-MixUp [19]
Retinal image,

Gastro-intestinal image Image v x

Stain Mix-up [4] Patches of WSI Stain matrix v x
Flow-Mixup [6] Chest X-ray, ECG Hidden state v x
Mixup for KiTS [20] CT image Image v x

ReMix [46] WSI Instance prototype x v
RankMix (Ours) WSI Image feature v v

Table 1. Comparisons among mixup methods. Our method, RankMix, deals with mixing of not only two images with large gap in size in
the feature domain but also their labels.

al. [10] proposed combining the critical feature [28] with
PPEG [37], treating the tumor slides as a kind of out-of-
distribution compared to normal slides, and re-calibrating
the patch features of a slide according to the magnitudes of
critical feature and slide label.

2.3. Self-Training and Knowledge Distillation

Knowledge distillation [23,40] uses soft labels instead of
hard labels (which are the maximum of class probabilities)
from the teacher model to train the student model. The stu-
dent model, aiming for model compression, is a smaller one
to mimic the output of its teacher model. Instead of com-
pressing models, Xie et al. [45] integrated self-training with
knowledge distillation to improve the image classification
task with unlabeled data. The authors propagated pseudo
soft labels of unlabeled data from the teacher model to the
student model. The researches [3, 8, 17] further used self-
training and knowledge distillation to deal with the self-
supervised learning problem.

To sum up, our work, RankMix, has similar concepts
with previous works, but we study how the general MIL
model can be adopted as the teacher model. This makes
RankMix act like a post-processing of traditional MIL, as
illustrated in Fig. 2, and can be simply plugged into the exist
approaches.

3. Preliminary

In this section, we introduce the classification problem
of WSIs, as well as some baseline techniques and notations,
to make this paper self-contained.

3.1. Problem Formulation

In the WSI classification problem, we have a se-
ries of WSIs X = {X1, X2, . . . , Xn} and correspond-
ing slide labels Y = {Y1, Y2, . . . , Yn} as dataset D =
{(Xi, Yi), i = 1, . . . , n}. Our goal is to train an NN
model based on dataset D for binary slide label Yi ∈ {0, 1}

prediction of an incoming WSI image Xi. In MIL, a WSI
can be treated as a bag (slide) containing the instances
(patches) as Xi = {xi,1, xi,2, . . . , xi,m(i)}. Note that
the WSI Xi’s have different numbers m(i)’s of instances
and the instance-level labels {yi,1, yi,2, . . . , yi,m(i)} are un-
known. Without loss of generality, we will mostly use m
in place of m(i) for notation simplicity. The slide label Yi

of a WSI Xi is defined to be negative (Yi = 0) when all in-
stances in a bag are negative (without tumors), i .e., yi,j = 0
for all j. If at least one instance in Xi is positive (with tu-
mor), its slide label will be positive (Yi = 1). The slide
label of WSI Xi is defined as:

Yi =

{
0, iff

∑
yi,j = 0

1, otherwise
. (1)

3.2. MIL as Baseline Model

In MIL, as shown in Fig. 1, the slide Xi will
first be cut into many instances (patches) as Xi =
{xi,1, xi,2, . . . , xi,m} and then passed through an instance
feature extractor Gθ to get the so-called features (embed-
dings) Hi = {hi,1, hi,2, . . . , hi,m} ∈ Rm×d via Eq. (2) as:

hi,j = Gθ(xi,j), (2)

where d denotes the length of a feature vector and m de-
notes the number of features. As mentioned before, differ-
ent WSIs will have different numbers of features but feature
length d is the same. Finally, the aggregator will output a
slide label prediction Ŷi by Eq. (3) as:

Ŷi = aggregator(hi,1, hi,2, . . . , hi,m). (3)

In this work, we use DSMIL [28] and FRMIL [10] as the
backbone models to represent SOTA permutation-variant
and permutation-invariant MIL models, respectively, where
the former only considers the relationship between each em-
bedding and does not consider relative positions, and the lat-
ter uses the pooling multi-head self-attention (PMSA) mod-
ule and positional encoding module (PEM) to fuse relative
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Figure 1. The workflow of general MIL.

spatial information. We study the impact of RankMix on
these two models and demonstrate that our method can be
plugged into the current MIL methods. The general loss
function of an MIL model can be formulated as:

LMIL = w1 ∗ Lbag(Ŷi, Yi) +
∑
ℓ

wℓ ∗ Lℓ, (4)

where Lbag is a binary cross-entropy (BCE) loss, Lℓ is other
loss term that depends on different MIL models, and wℓ’s
are the corresponding balance weights.

3.3. Mixup

The mixup technique was first proposed in [48] as:

xmxp = λx1 + (1− λ)x2 (5)

ymxp = λy1 + (1− λ)y2, (6)

where the input sample xi (i = 1, 2) is drawn from the
training dataset, the label corresponding to the input sample
xi is yi, and λ ∈ [0, 1] is sampled from ∼ Beta(α, α).

The main goal of mixup is to make linear combinations
of inputs and outputs, respectively, and to ensure that the
mapping of the mixed input and mixed output can maintain
linear constraints. Therefore, the mixup technique is able
to boost the generalization and robustness of an NN model.
In addition, mixup can improve the performance of a model
encountering the class imbalance problem [19].

4. Proposed Method: RankMix
RankMix is mainly composed of pseudo labeling, rank-

ing, mixing ranked features, and self-training, as illustrated
in Fig. 2. We will describe the motivation of our method
and the role of each component in RankMix.

4.1. Motivation

A WSI is usually composed of normal tissue and spe-
cial areas, as shown in Fig. 3a. Special areas can be tumors
or defects, etc. If a pathologist obtains a WSI that contains

tumors, his/her expertise is sufficient to make a correct deci-
sion of determining whether there is a tumor inside it. Based
on this premise, even a pathologist obtains a partial image
of the same WSI that contains most of the tumor areas, as
shown in Fig. 3b, it suffices to determine that the image
contains tumors. By contrast, if an entire WSI or a partial
WSI contains only normal tissues, it can be easily deter-
mined that the WSI is normal, as shown in Figs. 3c and 3d,
respectively.

Therefore, the hypothesis here is that cropping a WSI
into patches will not affect tumor detection, not to mention
the fact that dealing with the entire WSI as a whole is indeed
impractical when computing power and memory consump-
tion are taken into consideration.

Moreover, based on the problem introduced in Sec. 1.2,
it is easy to lose physical meaning from picking patches and
resizing them to have the same size. If we can select the ar-
eas of arbitrary sizes to represent the original slide, we can
prepare two partial but representative slides of the same size
for use in the mixup technologies. Nevertheless, the prereq-
uisite is based on the fact that we can know which parts of
the slide are sufficient to represent the original slide. This
conflicts with the scenario that we only have the label of
entire slide and do not have the instance-level labels corre-
sponding to patches in the slide, as described in Sec. 3.1.

In view of the above challenges, we will explain in fol-
lowing subsections how to pick out fragments that are suf-
ficient to represent a slide without instance-level labels. We
will demonstrate how to get the pseudo instance-level labels
in Sec. 4.2, how to select representative features in Sec. 4.3,
and how to combine representative features with a mixup
mechanism in Sec. 4.4. The module of pseudo labeling and
ranking in RankMix (Fig. 2) is further detailed in Fig. 4.

4.2. Pseudo Labeling

Given Hi = {hi,1, hi,2, . . . , hi,m} ∈ Rm×d from a
WSI Xi by Eq. (2), the pseudo patch-level labels will be
predicted to determine which patches are useful for mixup
later. Specifically, if we have a score function f ∈ Rd×1
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Figure 2. The flowchart of MIL with RankMix. We train the general MIL model with the training set X in the first stage (Top), and then the
score function f obtained in the first stage is used to make pseudo labels for {Xa, Xb} and train the MIL model with mixup mechanism in
the second stage (Bottom). The dashed arrows indicate the patch scores that may be used by the aggregator depending on the MIL method.

implemented by a multilayer perceptron (MLP) as:

ŷi,j = scorei,j = f(hi,j), ∀i = 1, . . . , n (7)

we can define a loss function Lmax as:

Lmax = BCE(ŷi,j∗ , Yi), (8)

where j∗ = argmaxj(ŷi,j) and Yi is obtained from Eq. (1).
Note that the score function here can be calculated indi-

(a) Example of tumor slide
from Camelyon16.

(b) Partial slide (in red bound-
ing box) selected from (a).

(c) Example of normal slide
from Camelyon16.

(d) Partial slide (in red bound-
ing box) selected from (c).

Figure 3. Illustration of juding if a whole slide or partial slide
contains tumors or not. The green annotation indicates the tumor
regions and red bounding box indicates the partial region of WSI
that is considered to have the same label as the original WSI.

vidually to deal with the multi-class classification problems
(e.g., TCGA-Lung dataset in Sec. 5.1) and can be replaced
by any similar mechanisms of MIL, which calculates the
importance of each patch to yield a final slide-level predic-
tion (e.g., attention mechanism [25, 28, 30] or the distance
between clusters [9, 38, 44]). So far, we can get the class
probability of every patch in a WSI by the score function f .

4.3. Ranking

After obtaining the score function f , we already have
the basic ability to achieve the motivation mentioned in
Sec. 4.1. If we want to obtain a representative portion that
can represent the original WSI, we need to score each fea-
ture {ŷi,1, . . . , ŷi,m} ∈ Rm×1 in the WSI and then sort the
patch scores as:

Zi = {zi,1, zi,2, . . . , zi,m}
s.t. ŷi,zi,1 > ŷi,zi,2 > · · · > ŷi,zi,m ∀i = 1, . . . , n.

(9)
According to the number k (k is an arbitrary positive inte-
ger) of features we need, we can obtain the desired features
H̄i ∈ Rk×d from the original features Hi ∈ Rm×d as:

H̄i = {hi,zi,1 , hi,zi,2 , . . . , hi,zi,k}.
for k ≤ m,∀i = 1, . . . , n

(10)

Finally, in order to maintain the relative position informa-
tion among patches, the features in H̄i are rearranged in
the original order to get the final representative features
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Figure 4. Illustration of the pseudo labeling and ranking mechanism.

H ′
i ∈ Rk×d as:

H ′
i = {hi,z′

i,1
, hi,z′

i,2
, . . . , hi,z′

i,k
},

s.t. z′i,1 < z′i,2 < · · · < z′i,k ∀i = 1, . . . , n
(11)

where H ′
i indicates the k features selected from the original

ith slide with the order preserved.

4.4. Mixup in Ranked Features

According to Eq. (5) and Eq. (6), we can formulate
the mixup of features from two examples, (Xa, Ya) and
(Xb, Yb), sampled from the dataset D, as follows:

Hmxp = λH ′
a + (1− λ)H ′

b (12)

Ymxp = λYa + (1− λ)Yb, (13)

where H ′
a ∈ Rk×d and H ′

b ∈ Rk×d are obtained from
Ha ∈ Rm(a)×d and Hb ∈ Rm(b)×d, respectively, by
Eq. (9)∼ Eq. (11), and m(a) and m(b) denote the numbers
of features obtained from Xa and Xb, respectively. Differ-
ent from the existing mixup techniques, we conduct mixup
in ranked features.

4.5. MIL Model with RankMix

As described in Sec. 3.2 and Sec. 4.2, RankMix can be
applied to MIL models with the total loss being defined as:

L =w1Lmax(ŷmxp,j∗ , Ymxp) + w2Lbag(Ŷmxp, Ymxp)

+
∑
ℓ

wℓLℓ,

(14)
where the first term comes from Eq. (8) and the remaining
terms come from Eq. (4). So far, we have explained how to
accomplish the middle component of RankMix in MIL in
Fig. 2, i.e., the first stage of training.

4.6. Self-Training: Second Stage of Training

WSI classification faces the tough problem that each
WSI is only given a slide-level label; that is, tens of thou-
sands of patches correspond to one label. This kind of

weakly supervised learning is more difficult to train than su-
pervised learning. If the RankMix proposed so far is used,
unstable training will be encountered. However, if the score
function is more reliable (i.e., can distinguish patch labels)
at the beginning, then RankMix is found to achieve better
results. We can imagine that the score function acts like
expert annotations, and higher quality annotations will nat-
urally result in better performance.

Inspired by self-training [40,45] and BERT-based model
[13, 27, 29], we design a score function by learning from a
pre-trained task in advance (i.e., can output the class proba-
bility distribution of a patch) as:

p(Ŷi|Hi) = aggregator(Hi) = p(Ŷi|hi,1, . . . , hi,m).
(15)

Then, by using the concept of self-training, the stronger
model is used as a teacher to extract the area that can rep-
resent the original WSI via score function for the student
model to mixup ranked features as:

Ŷmxp = p(Ymxp|Hmxp) = p(Ymxp|hmxp,1, . . . , hmxp,k)

= p(Ymxp|λH ′
a + (1− λ)H ′

b)

= aggregator(λH ′
a + (1− λ)H ′

b).
(16)

From the perspective of BERT-based models, we use
the teacher model to learn the WSI classification problem
(also known as the pretext task) as pretraining, and treat the
mixup of ranked features as the downstream task to further
improve the performance. Please see Fig. 2 for the illustra-
tion of two-stage training procedure.

5. Experiments and Results

In this section, we will describe the datasets used for ex-
periments in Sec. 5.1, experimental setting and performance
metrics in Sec. 5.2, main results in Sec. 5.3, and ablation
studies in Sec. 8.1 (Appendix).
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Method/Dataset Camelyon16 WSI-usability TCGA-Lung
ACC AUC AUPRC ACC AUC AUPRC ACC AUC AUPRC

DSMIL [28] 86.82% 93.32% 92.68% 76.11% 86.60% 24.51% 93.81% 97.89% 97.75%
+ ReMix [46] 82.17% 86.89% 83.86% 83.19% 85.83% 25.59% 94.29% 97.62% 97.29%
+ RankMix w/o self-training 87.60% 92.07% 92.43% 90.27% 87.07% 25.66% 94.29% 98.00% 97.76%
+ RankMix 89.92% 93.47% 92.74% 90.27% 88.16% 28.41% 94.29% 98.04% 97.79%

FRMIL [10] 89.15% 94.57% 93.66% 83.19% 87.69% 45.99% 90.95% 95.38% 94.96%
+ ReMix [46] 82.59% 87.29% 87.35% 89.25% 80.63% 33.09% 92.22% 96.99% 97.04%
+ RankMix w/o self-training 90.70% 94.11% 93.68% 80.53% 84.27% 38.55% 93.33% 95.84% 97.01%
+ RankMix 91.47% 94.59% 93.99% 93.81% 93.61% 47.65% 93.33% 97.00% 97.04%

Table 2. Comparison of WSI classification between RankMix and vanilla models under three datasets.

5.1. Datasets

We introduce the WSI datasets used for experiments
here, and a pre-processing setting was adopted to extract
patches from each WSI. Each WSI was cropped into dif-
ferent numbers of 224 × 224 patches at 20x magnification
without overlapping. We follow [10,28] to discard the back-
ground patches with tissue entropy less than 15% of a WSI.

Camelyon16 [16] is a public and well-known dataset
proposed for metastasis detection in breast cancer. The
dataset contains 270 training slides and 130 testing slides,
and roughly has 4.1 million patches at 20x magnification
with the maximum of 44000 patches per WSI and a mini-
mum of 1200 patches per WSI in our pre-processing setting.
If a WSI contains at least one tumor region, it is regarded
as a positive slide. On the contrary, if the entire area of a
WSI is normal, it is negative. In Camelyon16, the tumor
area only accounts for approximately less than 10% of the
tissue area in the positive slide.

TCGA-Lung is a public dataset that has two types
of lung cancer, Lung Adenocarcinoma (TCGA-LUAD)
and Lung Squamous Cell Carcinoma (TCGA-LUSC),
from the Caner Genome Atlas (TCGA). Please refer
to https://pubmed.ncbi.nlm.nih.gov/25691825/ for details.
There are in total 1046 diagnostic WSIs, including 534
TCGA-LUAD and 512 TCGA-LUSC, were split into 836
training slides and 210 testing slides. After pre-processing,
TCGA-Lung roughly has a minimum of 50 patches per slide
and a maximum of 12700 patches per slide, with a total of
3.2 million patches.

WSI-usability is a private dataset used for distinguishing
whether a WSI is usable or not. The purpose of this dataset
is used for evaluating automatic quality control (QC). In or-
der to have sufficient practicality, two pathologist experts
each annotated 250 WSIs from TCGA, of which 50 WSIs
were redundant, resulting in 450 WSIs in total. If it is a
bad (labeled as positive) slide, it means that the WSI is not
usable; otherwise, it is a good WSI and annotated as a neg-
ative slide. WSI-usability has only 23 positive slides, so
it possesses a severe class imbalance problem. After pre-
processing, WSI-usability roughly has a minimum of 700

patches per slide and a maximum of 120000 patches per
slide, with a total of 5.7 million patches.

Summing up the above, the adopted datasets cover the
imbalance/balanced classes, unbalanced/balanced bags, and
single/multiple-class problem. Among them, WSI-usability
has majority and minority categories with a huge gap,
which indicates the rare diseases and other costly data.
For the positive slides in Camelyon16, tumors occupy
quite smaller areas than normal tissues, while the negative
slide is all filled with normal tissues. Different from the
other two datasets, TCGA-Lung has two types of positive
slides, namely TCGA-LUSD and TCGA-LUSC, leading to
a multi-class classification problem.

5.2. Experimental Setup and Evaluation Metrics

ResNet18 [22] was adopted as our backbone model that
was trained by SimCLR [7] and Adam optimizer to obtain
feature extractor Gθ with a mini-batch size of 512, learning
rate of 1e − 4, and weight decay of 1e − 5. For Came-
lyon16, we used the weights of ResNet18 trained by Lee
et al. [28], as described in [10]. Then, the embeddings
Hi ∈ Rm(i)×512 of a WSI Xi were obtained from the global
average pooling layer of feature extractor Gθ.

For training aggregator, we used the Adam optimizer for
200 epochs with the mini-batch size of 1 (bag), learning rate
of 2e − 4, and weight decay of 5e − 3. Note that the mini-
batch for performing mixup of ranked features was 2, where
the sampling methods of DSMIL and FRMIL followed [19]
and [10], respectively. The number k of features used in
RankMix was set to min(m(a),m(b)) for two WSIs Xa

and Xb.
For two-stage training, we trained teacher models by the

general MIL (i.e., DSMIL and FR-MIL). Then, the teacher
models were used to guide the training of student models by
RankMix. The structures of both the teacher model and stu-
dent model are the same, which can be considered as a kind
of self-distillation mechanism. The temperature parameter
τ commonly used in knowledge distillation was set to 1.0
(see Eq. (20) later).

The classification performance was evaluated in terms of
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Method/Dataset Camelyon16 WSI-Usability TCGA-Lung
Accuracy AUC Accuracy AUC Accuracy AUC

DSMIL [28] 86.82% 93.32% 76.11% 86.60% 93.81% 97.89%
DSMIL + Direct Mixup 84.50% 90.51% 89.38% 71.18% 94.29% 98.03%
DSMIL + Shrink Mixup 86.05% 92.42% 88.50% 69.94% 93.81% 97.95%
DSMIL + Duplicate Mixup 84.50% 91.96% 89.38% 72.43% 93.81% 97.99%
DSMIL + Random Mixup 87.60% 91.89% 88.50% 83.33% 94.29% 97.99%
DSMIL + RankMix 89.92% 93.47% 90.27% 88.16% 94.29% 98.04%

FRMIL [10] 89.15% 94.57% 83.19% 87.69% 90.95% 95.38%
FRMIL + Direct Mixup 88.37% 92.50% 59.29% 80.37% 92.38% 95.96%
FRMIL + Shrink Mixup 89.92% 93.16% 68.14% 57.09% 92.86% 96.88%
FRMIL + Duplicate Mixup 87.60% 92.78% 86.73% 74.77% 92.38% 96.73%
FRMIL + Random Mixup 90.70% 94.23% 77.88% 80.69% 93.33% 96.98%
FRMIL + RankMix 91.47% 94.59% 93.81% 93.61% 93.33% 97.00%

Table 3. Comparisons between RankMix and four custom mixup techniques.

the accuracy and area under the curve (AUC).

5.3. Main Results

First, we applied the proposed method, RankMix, to two
baseline models, DSMIL [28] and FRMIL [10], and com-
pared the performance with the vanilla models in Tab. 2.
We can observe that self-training indeed boosts the over-
all model performance, as described in Sec. 4.6. Without
self-training (i.e., mixup in the model without being derived
from a teacher model), RankMix can sometimes achieve
slightly better results, but as the model and dataset vary,
it can be seen that the performance is slightly degraded
in few cases. On the contrary, when self-training is intro-
duced, the performance can be improved further. A recent
work, ReMix [46], which is a SOTA augmentation method
in WSI, was included for comparison. It can be found that
RankMix outperforms ReMix remarkably.

Second, we compared our method with the general
mixup techniques under different custom settings in Tab. 3.
This is because the existing mixup researches, to our knowl-
edge, were conducted on the same feature number, they can-
not be readily employed to be compared with our method
under the scenario that two feature of different numbers
were mixed. Here, we discuss four situations for mixing
up two WSIs (Ha and Hb) with different numbers (m(a)
and m(b)) of features in the following.

1) Direct Mixup: Perform mixup directly regardless of
feature numbers (m(a) and m(b)), where the feature with a
smaller number is padded with zeros. So, the feature num-
ber after mixing is defined as:

kd = max(m(a),m(b)). (17)

2) Shrink Mixup: Extract the same number ks of fea-
tures for mixing up by

ks =

{
m(b), iff m(a) > m(b)

m(a), otherwise
. (18)

3) Duplicate Mixup: Duplicate the feature with a
smaller number to have the same size kdu as the larger fea-
ture as:

kdu =

{
m(a), iff m(a) > m(b)

m(b), otherwise
. (19)

4) Random Mixup: By randomly performing both the
duplicate and shrink mixups.

Compared with the above four straightforward cases, it
can be seen from Tab. 3 that RankMix is a sophisticated
design according to the characteristics of WSI, described in
Sec. 1.2, and generally performs better than others.

Finally, we conduct ablation studies to further evaluate
RankMix in two aspects. On the one hand, we examine how
the score functions learned under different pre-trained mod-
els, as described in Sec. 4.6, affect RankMix. On the other
hand, we examine how different knowledge transfer tech-
niques affect the student model performance in WSI classi-
fication. Please refer to Sec. 8.1 in Appendix for details.

6. Conclusion
In this work, we investigate weakly supervised learning

from the perspective of data augmentation to deal with the
WSI classification problem that suffers from lack of training
data and imbalance of categories. A new data augmentation
method, RankMix, of is proposed to mix ranked features in
a pair of WSIs with different sizes. RankMix is composed
of pseudo labeling and ranking for extracting key WSI re-
gions, and two-stage training for boosting stable training
and model performance.
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data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 3, 6, 11

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[42] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolat-
ing hidden states. In International Conference on Machine
Learning, pages 6438–6447. PMLR, 2019. 2, 3

[43] Longhui Wei, An Xiao, Lingxi Xie, Xiaopeng Zhang, Xin
Chen, and Qi Tian. Circumventing outliers of autoaugment
with knowledge distillation. In European Conference on
Computer Vision, pages 608–625. Springer, 2020. 11

[44] Chensu Xie, Hassan Muhammad, Chad M Vanderbilt, Raul
Caso, Dig Vijay Kumar Yarlagadda, Gabriele Campanella,
and Thomas J Fuchs. Beyond classification: Whole slide
tissue histopathology analysis by end-to-end part learning.
In Medical Imaging with Deep Learning, pages 843–856.
PMLR, 2020. 1, 5

[45] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet
classification. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10687–
10698, 2020. 3, 6, 11

[46] Jiawei Yang, Hanbo Chen, Yu Zhao, Fan Yang, Yao Zhang,
Lei He, and Jianhua Yao. Remix: A general and efficient
framework for multiple instance learning based whole slide
image classification. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI, pages 35–45, 2022. 2,
3, 7, 8

[47] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 2

[48] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018. 1, 2, 3, 4

23945


