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Abstract

Multi-dataset training provides a viable solution for ex-
ploiting heterogeneous large-scale datasets without extra
annotation cost. In this work, we propose a scalable multi-
dataset detector (ScaleDet) that can scale up its generaliza-
tion across datasets when increasing the number of train-
ing datasets. Unlike existing multi-dataset learners that
mostly rely on manual relabelling efforts or sophisticated
optimizations to unify labels across datasets, we introduce
a simple yet scalable formulation to derive a unified se-
mantic label space for multi-dataset training. ScaleDet is
trained by visual-textual alignment to learn the label as-
signment with label semantic similarities across datasets.
Once trained, ScaleDet can generalize well on any given
upstream and downstream datasets with seen and unseen
classes. We conduct extensive experiments using LVIS,
COCO, Objects365, Openlmages as upstream datasets, and
13 datasets from Object Detection in the Wild (ODinW)
as downstream datasets. Our results show that ScaleDet
achieves compelling strong model performance with an
mAP of 50.7 on LVIS, 58.8 on COCO, 46.8 on Objects3635,
76.2 on Openlmages, and 71.8 on ODinW, surpassing state-
of-the-art detectors with the same backbone.

1. Introduction

Major advances in computer vision have been driven
by large-scale datasets, such as ImageNet [9] and Open-
Images [22] for image classification, or Kinetics [6] and
ActivityNet [2] for video recognition. Large-scale datasets
are crucial for training recognition models that generalize
well. However, the collection of massive annotated datasets
is costly and time-consuming. This is especially promi-
nent in detection and segmentation tasks that require de-
tailed annotations at the bounding box or pixel level. To
exploit more training data without extra annotation cost, re-
cent works unify multiple datasets to learn from more vi-
sual categories and more diverse visual domains for detec-
tion [38,40,47,51] and segmentation [25,37].

To train an object detector across multiple datasets, we
need to tackle several challenges. First, multi-dataset train-
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Figure 1. Our scalable multi-dataset detector (ScaleDet) learns
across datasets in a unified semantic label space by visual-textual
alignment with label semantic similarities. At test time, ScaleDet
can generalize on any given upstream and downstream dataset.

ing requires unifying the heterogeneous label spaces across
datasets, as label definitions are dataset-specific. The labels
from two datasets may indicate the same or similar objects.
For example, “footwear” and “sneakers” are two different
labels in OpenImages [24] and Objects365 [34], but refer to
the same type of objects (see Figure 1). Second, the train-
ing setups may be inconsistent among datasets, as different
data sampling strategies and learning schedules are often re-
quired for datasets of different sizes. Third, a multi-dataset
model should perform better than single-dataset models on
individual datasets. This is challenging due to the heteroge-
neous label spaces, the domain discrepancy across datasets,
and the risk of overfitting to the larger datasets.

To resolve the above challenges, existing work resorts to
manually relabelings class labels [25], or training multiple
dataset-specific classifiers with constraints to relate labels
across datasets [51]. However, these methods lack scalabil-
ity. The manual relabeling effort and the model complex-
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ity of training multiple classifiers grow rapidly as the num-
ber of datasets increases. We overcome this limitation with
ScaleDet: a scalable multi-dataset detector (Figure 1). We
propose two innovations: a scalable formulation to unify
multiple label spaces, and a novel loss formulation to learn
hard label and soft label assignments across datasets. While
hard label assignment serves to disambiguate class labels
in probability space, soft label assignment works as a reg-
ularizer to relate class labels in semantic similarity space.
Unlike existing multi-dataset methods [25,37,38,40,47,51]
that mostly generalize on seen datasets or seen classes,
our method exploits vision-language learning to attain good
generalization on both upstream and downstream datasets,
where the downstream datasets can contain unseen classes
and new domains. Our contributions are:

* We propose a novel scalable multi-dataset training recipe
for object detection. Our method utilizes text embeddings
to unify and relate labels with semantic similarities across
datasets, and trains a single classifier via visual-textual
alignment to learn hard label and soft label assignments.

e We conduct extensive experiments to demonstrate the
compelling scalability and generalizability of ScaleDet in
multi-dataset training. We show that ScaleDet can boost
its performance as we increase the number of training
datasets: LVIS [14], COCO [27], Objects365 [34] and
Openlmages [24] (Sec 4.2). Furthermore, we show that
ScaleDet achieves state-of-the-art performance on multi-
ple benchmarks when compared to recent advanced de-
tectors, e.g., Detic [49], UniDet [51] (Sec 4.3, Sec 4.4).

* We evaluate the transferablity of ScaleDet on the chal-
lenging “Object Detection in the Wild” benchmark (which
contains 13 datasets) [26] to demontrate its competitive
generalizability on downstream datasets (Sec 4.5).

2. Related Work

Multi-dataset training aims to leverage multiple datasets
to train more generalizable visual recognition models, es-
pecially for tasks that require more expensive annotations,
such as detection [38,40,47,51] and segmentation [25,37].
Existing methods for multi-dataset training can be catego-
rized into two groups. The first group introduces special
network components to adapt feature representations tai-
lored to datasets [38,40]. For example, a domain attention
module is designed to learn an adaptive multi-domain detec-
tor, which assigns different network activations to different
domains [38]. The second group introduces new formula-
tions to combine heterogeneous label spaces over multiple
datasets [25,37,47,51]. For instance, the MSeg dataset [25]
is created upon multiple semantic segmentation datasets by
relabeling with Amazon Mechanical Turk based on a man-
ually defined taxonomy of class labels. To avoid manual
relabeling, a pseudo labeling strategy [47] is used to gener-
ate pseudo labels across datasets based on predictions from

dataset-specific detectors. Recent works use set theory with
manually defined sets [37] or employ combinatorial opti-
mization [51] to learn the label relations across datasets.
Our approach is more related to the second group, but it of-
fers a more scalable and generalizable training recipe that
does not require training multiple dataset-specific classi-
fiers [47,51], nor manually designed rules to relate class
labels [25,37]. Furthermore, different from existing multi-
dataset detectors [38,40,47,51], ScaleDet is also capable of
generalizing to datasets that contain unseen classes.

Vision-language models (VLMs) employ vision-and-
language learning to solve visual recognition problems.
By bridging large-scale vision and language data, vision-
language models (VLMs) such as VirTex [10], CLIP [31],
ALIGN [19], FILIP [43], UniCL [42] and LiT [45], have
shown remarkable performance on learning transferable vi-
sual representations that generalize well to downstream
tasks. More recently, VLMs have been explored in seg-
mentation [11,41] and detection [3, 13, 20, 26, 46, 48, 49].
In detection, most of the VLMs utilize auxiliary semantic-
rich vision-language datasets as pre-training data to build
models capable of solving multiple tasks including open-
vocabulary detection [44], as represented by MDETR [20],
RegionCLIP [48], GLIP [26, 46], X-DETR [3], and De-
tic [49]. For instance, MDETR uses various vision-and-
language datasets (e.g., Flickr30k [30], Visual genome [23])
to train a VLM that allows instance-wise detection guided
by text query. GLIP [26] uses 27M grounding data to build
a unified VLM for detection and grounding. X-DETR [3]
trains a VLM on grounding and image-caption datasets to
solve multiple instance-wise vision-language tasks in one
model. Detic [49] uses detection and large-scale classi-
fication datasets to train a large-vocabulary detector. We
exploit a pre-trained text encoder similar to other VLMs,
e.g., RegionCLIP uses CLIP, while MDETR, X-DETER use
RoBERTa. However, our model is trained directly on detec-
tion datasets, while these other VLMs use image captioning
or grounding datasets to train jointly with detection datasets.

3. ScaleDet: A Scalable Multi-Dataset Detector

Our goal is to train object detectors that generalize bet-
ter as we increase the number of datasets used for training.
A critical challenge of multi-dataset training is unifying the
heterogeneous label spaces across datasets by relating their
semantic concepts. To tackle this challenge, we propose a
simple yet effective recipe to train a scalable multi-dataset
detector (ScaleDet, Figure 2). ScaleDet learns across multi-
ple datasets by unifying different label sets to form a unified
semantic label space (Figure 2 top), and is trained via hard
label and soft label assignments for visual-textual alignment
(Figure 2 bottom). In Sec 3.2 and Sec 3.3 we present the
details of these two contributions, but first we discuss the
preliminaries and problem formulation in Sec 3.1.
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Figure 2. Approach overview. Our scalable multi-dataset detector (ScaleDet) uses text prompts to define labels, and learns across datasets
by visual-textual alignment in the unified label space. Each visual feature of an object region proposal is assigned to one corresponding
label via a hard label assignment (see the loss Lp; in Eq. (6)) and related to semantically-similar labels via a soft label assignment (see the
loss L4 in Eq. (7)). At test time, ScaleDet can perform object detection on any given label space of a seen or unseen detection dataset.

3.1. Preliminaries and problem formulation

Standard object detection. A typical object detector aims
to predict the bounding box location b; € R* and class label
c; € R™ for any object that belongs to a predefined set of n
classes. Given an image I, the image encoder (e.g., CNN or
Transformer) of the detector extracts the box features and
visual features, which are fed to a box regressor B and a
visual classifier C. The detector is trained by minimizing a
bounding box regression loss Ly, and a classification loss
L5 to learn the predictions of bounding boxes and class
labels given the box features and visual features, i.e.,

EDet = Ebbox + Ecls~ (1)

Existing object detectors generally adopt a one-stage [36,
52] or two-stage [15, 32] framework, which may contain
additional loss terms in Eq. (1). For example, one-stage de-
tectors use a regression loss to regress towards properties
of object locations, such as centerness [36]. Two-stage de-
tectors [15, 32] instead use a region proposal network with
its own dedicated loss function that predicts the objectness
of each box. In this work, we focus on reformulating the
classification loss L. in Eq. (1) to solve the problem of
multi-dataset training, built upon a two-stage detector [50].
Multi-dataset object detection. Given a set of K datasets
{D1,Da, ..., Dk} with their label spaces {L1, Lo, ..., Lx },
we aim at training a scalable multi-dataset detector that
generalizes well on upstream and downstream detection
datasets. In contrast to prior multi-dataset learners [25, 37,
51], which relate or merge similar labels across datasets
to joint labels, we propose a simple yet scalable formula-

tion to unify labels without merging any labels explicitly.
We exploit informative text embeddings from powerful pre-
trained visual-language models to define and relate labels
over the non-identical label spaces {L1, Lo, ..., Lx}. We
present our method in the following sections.

3.2. Scalable unification of multi-dataset label space

As Figure 2 (top) shows, during training, a mini-batch
of images is randomly sampled from multiple training
sets and fed to the detector to obtain the visual features
{v1,v2,...,v;} of the region proposals for each image,
where v; € RP is a D-dimensional vector. Each visual fea-
ture v; is matched to a set of text embeddings {t1, ta, ..., t, }
by label assignment. Below, we detail how we define se-
mantic labels with text prompts, and unify label spaces with
label semantic similarities for multi-dataset training.

Define labels with text prompts. We represent each class
label [; with its text prompts, e.g., the label “person” can
be denoted by a text prompt “a photo of a person”. We
extract the prompt text embeddings from the text encoder
of a pre-trained visual-language model (e.g., CLIP [31] or
OpenCLIP [18]), and average embeddings of a set of prede-
fined text prompts (known as prompt engineering [31]) to
represent the label /; as a semantic text embedding ¢;.

Unify label spaces by concatenation. Given the text em-
beddings of class labels from all datasets, a crucial prob-
lem of multi-dataset training is to unify the non-identical
label spaces { L1, Lo, ..., L }, which can be solved by relat-
ing and merging similar labels into a unified label set [25].
However, without careful manual inspection, this incurs the
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risk of propagating errors in model training due to the ambi-
guities in label definitions, e.g., labels “boy” and “girl” are
similar but should not be merged. Thus, instead of merg-
ing labels across datasets, we unify different label spaces
by concatenation:

L=Li [ [ J[Lx={hia lizs o lknli o}, ()

where [ [ denotes the coproduct (i.e., the disjoint union of
two label sets); I, ; is label ¢ from dataset k£ (we omit k be-
low). Besides its simplicity, our formulation of this unified
semantic label space L maximally preserves the semantics
of all labels, thus providing richer vocabulary for training.
Relate labels by semantic similarities. As we use text em-
beddings to represent class labels, we can relate the labels
that share similar semantics, in our unified label space. For
example, label “person” in LVIS [14] should be related to
labels “person” and “boy” in Openlmages [24], as they are
semantically similar. To uncover the label relations across
datasets, we compute the semantic similarities using the
prompt text embeddings. For a given class label [;, its se-
mantic similarities with respect to all the labels are derived
with cosine similarities and normalized between 0 and 1:
sim(l;, ;) = wj
Bi —

where a;=min{cos(t;,;)}7_;,

Bi=max{cos(t;,t;)}7_1=cos(t;, t;)=1,

3)

where sim((;, ;) is the semantic similarity between the text
embeddings ¢;,t; of two labels [;,[; and it encodes their
semantic relation, e.g., the labels “person” and “boy” are
strongly related with a high similarity score, while “per-
son” and “avocado” are weakly related with low similarity.
The label semantic similarity matrix S that encodes label
relations among all n class labels can be written as:

1 - sim(ll,ln) S1
sim(l,,l;) .- 1 Sn,

where S is an n X n matrix, and each row vector s; encodes
the semantic relations of label [; with respect to all n class
labels. With these label semantic similarities, we can intro-
duce explicit constraints that allow the detector to learn on
the unified semantic label space (Eq. (2)) with encoded la-
bel semantic similarities (Eq. (4)). Importantly, our formu-
las (Eq. (2), Eq. (4)) are computed offline, which does not
add any computational cost for training and inference, nor
requires a model reformulation when scaling up the number
of training datasets.

3.3. Training with visual-language alignment

For training on the unified semantic label space
{l1,12,...,1,}, we align visual features with text embed-

dings {t1, ta, ..., t, } via the hard label and soft label assign-
ments, as shown in Figure 2 (bottom) and detailed below.

Visual-language similarities. Given the visual feature v; of
an object region proposal, we first compute the cosine sim-
ilarities between v; and all text embeddings {t1, 2, ..., t, }:

c; = [cos(vi, t1), cos(vi, t2), ..., cos(v;, t)]- (5)

With these similarity scores, we can align the visual feature
v; to the text embeddings with the following loss terms.
Hard label assignment. Each visual feature v; has its
groundtruth label /;, and thus can be matched to the text
embedding ¢; of [; by hard label assignment as follows,

Ly = BCE(04(ci/T),1i), (6)

where BCE(-) is the binary cross-entropy loss, og4(-) is
the sigmoid activation, 7 is a temperature hyperparameter.
Eq. (6) ensures the visual feature v; is aligned with the text
embedding ¢;. However, it does not explicitly learn the la-
bel relations across datasets. We introduce the soft label
assignment to learn the semantic label relations.

Soft label assignment. As each label is semantically re-
lated to all class labels through the semantic similarities
computed in Eq. (4), a visual feature can also be related to
all text embeddings by using the semantic similarity scores.
For this aim, we introduce the soft label assignment on the
visual feature v;:

L = MSE(c;, s;), (7)

where MSE(+) is mean square error. s; denotes the semantic
similarities between the label /; and all n class labels — the
14, row of the label semantic similarity matrix S in Eq. (3).
Remark. While hard label assignment (Eq. (6)) is imposed
in probability space to disambiguate different class labels,
soft label assignment (Eq. (7)) is imposed in semantic simi-
larity space to assign each visual feature to the text embed-
dings with different semantic similarities, thus acting as a
regularizer to relate similar class labels across datasets.

Training with semantic label supervision. With the hard
label and soft label assignments, we train the detector to
classify different region proposals by aligning visual fea-
tures to text embeddings in the unified semantic label space.
That is, the classification loss L5 in Eq. (1) is replaced by

Elang = ‘chl + )\Esl; (®)

where A is a hyperparameter to balance the two loss terms.
Eq. (8) uses language supervision to map images to texts,
thus enabling zero-shot detection of unseen labels.

Overall objective. As we focus on reformulating the clas-
sification loss of our detector for multi-dataset training, we
do not change the loss Lypo; in Eq. (1) and our overall ob-
jective for training ScaleDet is:

EScaleDet = ['bbow + Llung~ (9)
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Once trained with Lgcqepet, ScaleDet can be deployed
on any upstream or downstream datasets that contain seen
or unseen classes. By replacing the unified label space L
in Eq. (2) with the label space of any given test dataset,
ScaleDet can compute the label assignment based on the
visual-language similarities derived in Eq. (3). When the
test dataset contains unseen classes, the evaluation setting is
known as zero-shot detection [1] or open-vocabulary object
detection [44]. To test on any given dataset, ScaleDet can
either be directly evaluated or fine-tuned before evaluation.

4. Experiments

We detail our experiment setups in Sec 4.1. We ana-
lyze ScaleDet when training with an increasing number of
datasets in Sec 4.2, and compare it to the state-of-the-art
(SOTA) on standard benchmarks in Sec 4.3 and Sec 4.4.
We evaluate the transferability of ScaleDet on downstream
datasets in Sec 4.5, and conduct ablation study in Sec 4.6.
We also provide qualitative visual results in Supplementary.

4.1. Experiment setups

Upstream datasets. For our multi-dataset training, we
adopt the following four popular detection datasets as up-
tream datasets: (1) COCO [27] (C) contains 80 common
object categories; (2) LVIS [14] (L) has a large number of
1203 object categories with a challenging long tail distribu-
tion; (3) Objects365 [34] (O365) has 365 object categories;
(4) Openlmages detection (OID) [24] has 601 object cate-
gories in the sixth version. When we train ScaleDet on these
four datasets, there are 2249 class labels in the unified label
space (Eq. (2)) and 3.7M training images.

Downsteam datasets. To evaluate the transferability on di-
verse unseen datasets, we adopt the recent challenging “Ob-
ject Detection in the Wild” (ODinW) benchmark [26]. It
contains 13 public object detection datasets with very differ-
ent application domains, to mimic diverse and challenging
real-world scenarios. Some of these datasets capture seen
classes in unseen domains, like people in thermal images,
while others capture unseen classes, like “jellyfish” and
“stingray” in aquariums (Figure 1, bottom right). To evalu-
ate on ODinW, the models can be evaluated directly (direct
transfer) or evaluated after fine-tuning (fine-tune transfer).
Evaluation metrics. For evaluation on upstream datasets,
we use the standard mAP metric (i.e., mAP at IoU thresh-
olds 0.5 to 0.95) on COCO, LVIS and Objects365. On
Openlmages, we follow the official evaluation protocol that
uses mAP@0.5 and an expanded semantic class hierar-
chy [24]. For evaluation on downstream datasets, we fol-
low [26] and report the average mAP over 13 datasets in
this section. We provide the detailed qualitative and quanti-
tative results on individual datasets in Supplementary.

Implementation details. In our experiments, unless explic-

Model ~ Dataset(s)  |L C 0365 OID | mAP
L 33.1 37.0 152 415317
baseline 11.0 468 7.9 33.1 | 247
B 0365 19.2 39.8 28.8 47.6 | 33.9
OID 157 31.3 141 693|326
LC 333449 159 43.7|345
ScaleDet L.C,0365 36.5 47.0 31.2 44.9 | 39.9
L.C.0365.0ID | 36.8 47.1 30.6 69.4 | 46.0

Table 1. Training with an increasing number of datasets. The
best results on single-/multi-dataset training are in green/bold.
Backbone: ResNet50. mAP is the mean AP across datasets.

itly stated, we use CenterNet2 [50] with a backbone pre-
trained on ImageNet21k [33]. We use prompt text embed-
dings from CLIP [31] or OpenCLIP [18] to encode class
labels. For augmentation, we use large scale jittering [12]
and efficient resize crop [49] with an input size of 640x 640,
896x896 when using ResNet50 [16], Swin Transformer
[28] as backbone. We use an input size of 800x 1333 for
testing. We use Adam optimizer [21] and train on 8§ V100
GPUs. For multi-dataset training, we directly combine all
datasets and use repeat factor sampling [14], without us-
ing any multi-dataset sampling strategy. More details about
learning schedules of different tables are in Supplementary.

4.2. Training with a growing number of datasets

Evaluation setup. We setup the single-dataset baseline by
training on individual datasets. We use text embeddings to
represent the class labels for each dataset, and train the de-
tector on each dataset by hard label assignment (Eq. (6)). To
evaluate how ScaleDet scales as we increase the number of
training datasets, we train it using the following incremental
combinations: (1) LVIS+COCO, (2) LVIS+COCO+0365,
(3) LVIS+COCO+0365+0ID. These increase the dataset
size from 218k — 1.96M — 3.7M and the number of
class labels from 1283 — 1648 — 2249. After training the
baseline and ScaleDet, we replace the text embeddings in
Eq. (5) to represent the labels of each dataset for evaluation.
For example, to evaluate on COCO we set the text embed-
dings to represent the 80 classes of COCO and derive class
predictions based on visual-textual similarities.

To make the evaluation efficient, for the results in Ta-
ble 1, Figure 3 and Figure 4 we use a fixed input size of
640640, a ResNet50 [16] backbone and text embeddings
from CLIP [31]. We then explore using larger backbones
(Swin Transformers [28]) and text embeddings from Open-
CLIP [18] for the analysis of backbones in Table 2.

Effect on upstream datasets. Table | shows the eval-
uation on upstream datasets when increasing the number
of datasets, from which we can observe the followings.
First, scaling up the number of training datasets consis-
tently leads to better model performance, e.g., the mAP on
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Figure 3. Direct transfer results on ODinW benchmark when
scaling up the number of training datasets. Number 1-4 in z-axis
means using L, L+C, L+C+0365, L+C+0365+0ID for training.
Details of unseen classes, qualitative results are in Supplementary.
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Figure 4. Direct transfer to different datasets on ODinW
benchmark when scaling up the number of training datasets.

LVIS is improved from 33.1, 33.3, 36.5, to 36.8 when in-
creasing the number of training sets from 1 to 4. Second,
multi-dataset training with ScaleDet is generally better than
single-dataset training (baseline), e.g., the mAP on LVIS,
COCO, 0365, OID are greatly improved from 33.1, 46.8,
28.8, 69.3 (baseline) to 36.8, 47.1, 30.6, 69.4 when train-
ing on all datasets. This suggests that ScaleDet learns well
across heterogeneous label spaces, diverse domains of dif-
ferent datasets, and does not overfit to any specific datasets.

Effect on downstream datasets. Figure 3 shows the re-
sults of direct transfer on the ODinW benchmark. Notably,
scaling up the number of training datasets for ScaleDet
significantly improves its accuracy (mAP) on downstream
datasets, for all settings (i.e., over datasets, over classes
and over unseen classes). In Figure 4 we further visualize
the performance of ScaleDet on some of the downstream
datasets in ODinW. These datasets either contain unseen
classes or come from the visual domains that are very dif-
ferent from those used for training. Importantly, ScaleDet
performs well on both scenarios. For example, thermal-
DogsAndPeople contains novel thermal images, yet multi-
dataset training with ScaleDet is capable of boosting its per-

| Model Text IL  C 03650ID |[mAP

1|ScaleDet-R CLIP  |36.847.130.6 69.4 |46.0

2 |ScaleDet-T CLIP 427512359 73.6 |50.9
3 |ScaleDet-T OpenCLIP |43.9 51.436.3 74.1 |51.4

4 |ScaleDet-B  CLIP 50.4 55.6 43.7 75.7 |56.3
5 |ScaleDet-B  OpenCLIP | 50.7 55.4 43.8 76.2 |56.5
6 | ScaleDet-B* OpenCLIP | 50.6 58.8 46.8 75.9 |58.0

Table 2. Different backbones for multi-dataset training. R:
ResNet50. T, B: Swin-Tiny, Swin-Base transformer. *: further
fine-tune the model on each dataset after multi-dataset training.

formance considerably from 19.4 mAP (single-dataset) to
40.6 (all 4). Furthermore, Raccoon requires the localization
of an unseen class, yet again ScaleDet improves zero-shot
detection from 39.2 mAP (single-dataset) to 48.3 (all 4).
Overall, Figure 3 and Figure 4 show how ScaleDet can uti-
lize the synergistic benefits of different upstream datasets to
boost its generalization on downstream datasets.

Effect of different backbones. We now test ScaleDet with
different backbones and text embeddings (Table 2). En-
hancing the discriminative power of the image backbone
from ResNet50 [16] to Swin-Base Transformer [28] sig-
nificantly boosts the mAP from 46.0 to 56.3 (row 1 vs 4).
Changing the text embeddings from CLIP to OpenCLIP in-
stead helps mostly when using weaker backbones (e.g., +0.5
mAP with ScaleDet-T, row 2 vs 3), as opposed to stronger
ones (e.g., +0.2 mAP with ScaleDet-B, row 4 vs 5). Fi-
nally, with fine-tuning ScaleDet can be further improved
from 56.5 to 58.0 in mAP (row 5 vs 6). Overall, all these
results suggest that ScaleDet can leverage the complemen-
tary power of scalable training sets and strong backbones to
achieve competitive model performance.

4.3. Comparison to SOTA multi-dataset detectors

In this section, we provide an apple-to-apple comparison
of ScaleDet against the two latest state-of-the-art (SOTA)
multi-dataset detectors: UniDet [51] and Detic [49].
Comparison to UniDet. In Table 3, we follow the set-
tings of UniDet [51] and train ScaleDet on the same datasets
(COCO, 0365, OID), using the same ResNet50 backbone,
SGD optimizer and standard data augmentation in the De-
tectron2 codebase [39]. In UniDet, multiple dataset-specific
classifiers are trained, while ScaleDet is trained with seman-
tic labels by one classifier. Table 3 shows the comparison on
multi-dataset training. ScaleDet outperforms UniDet, yield-
ing an mAP of 47.7 vs 45.4. Moreover, ScaleDet has bet-
ter improved margins for multi-dataset training over single-
dataset training (row 4,3 vs 2,1). The improved margin in
mAP is 2.6 points (47.7 vs 45.1) by ScaleDet vs 1.1 points
(45.4 vs 44.3) by UniDet. These results show the benefit
of learning in a unified semantic label space, as opposed to
training multiple dataset-specific classifiers (UniDet).
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|Model ~ Dataset(s) | COCO 0365 OID | mAP
1 . single 42.5 249 657 | 443
2‘U“‘Det multiple ‘ 455 246 660 ‘ 454

i‘scaleDet single ‘42.1 265  66.6 ‘ 45.1

multiple 45.5 279 69.6 | 47.7

Table 3. Comparison to UniDet [51] on multi-dataset train-
ing with COCO, 0365 and OID. Backbone: ResNet50 pre-trained
on ImageNetlk. “single”: training with one single training set
same as the test set. “multiple”: multi-dataset training with
COCO0,0365,0ID. mAP is the mean AP across datasets.

| Model ~ Datasets |LVIS COCO | mAP
1 | Detic [49] L.C 330 439 | 384
2 | ScaleDet L.C 333 449 | 391
3 | Detic [49] L,C.IN21k 354 424 | 389
4 | ScaleDet L,C,0365 36.5 470 | 41.7

5 | ScaleDet L,C,0365,0ID | 36.8 47.1 | 41.9

Table 4. Comparison to Detic [49] on multi-dataset training
with LVIS (L) and COCO (C). Backbone: ResNet50. IN21k: Im-
ageNet21k [9]. In row 1-2, both Detic and ScaleDet are trained
with only LVIS and COCO, thus providing a like-to-like compar-
ison. In row 3, 4, 5, the training data size is 12.6M, 1.96M, 3.7M
respectively. mAP is the mean AP across datasets.

Comparison to Detic. In Table 4, we follow the settings
of Detic [49] and perform multi-dataset training on LVIS
and COCO, using a ResNet50 backbone. In Detic, the uni-
fied label space for LVIS and COCO contains 1203 class
labels, obtained by merging two label sets with wordnet
synsets, while ScaleDet ‘flattens’ their labels (1203+80)
to 1283. Table 4 (row 1 and 2) presents the compari-
son. ScaleDet outperforms Detic by 1 point on COCO
(44.9 vs. 43.9) and 0.7 mAP on average. Next, we com-
pare ScaleDet and Detic with more training sets (Table 4,
row 3-5). ScaleDet is trained using more detection datasets
(0365,0ID), while Detic uses 14M additional classifica-
tion images (ImageNet21) as a large-scale weakly anno-
tated dataset for detection. Our results show that, although
Detic is trained with far more data and class labels than
ScaleDet (12.6M images and 22k classes after data clean-
ing vs 3.7M images and 2k classes), ScaleDet still surpasses
Detic’s performance by a large margin of 3.0 mAP points
(41.9 vs. 38.9). These results show the importance of learn-
ing from multiple detection datasets and the effectiveness of
ScaleDet in doing so.

4.4. Comparison to SOTA detectors on COCO

In this section, we compare ScaleDet to different types
of SOTA detectors on standard COCO benchmark. The dif-
ferent models cover four major types: (1) single-dataset de-
tectors; (2) detectors trained with vision-and-language un-
derstanding datasets, e.g., UniT [17] is trained on 7 tasks

Model ‘ Model Type mAP
1 Faster RCNN [32] 37.9
2 Mask RCNN [15] 39.8
3 CenterNet [52] single-dataset | 40.2
4 CascadeRCNN [4] | detection 41.6
5 DETR [5] 42.0
6 CenterNet2 [50] 429
7 UniT [17] detection + 423
8 | RegionCLIP [48] understanding | 42.7

. detection +

0 Detic [49] classification 424
10 | UniDet [51] multi-dataset 45.5
11 | ScaleDet detection 47.1

Table 5. Comparison on COCO using ResNet50 as backbone.
Note: “understanding”, “classification” mean training with vision-
and-language understanding, and classification datasets respec-

tively. All methods include COCO dataset for training.

| Model | Model Type | mAP
1 | Faster RCNN-T [32] single-dataset 46.0
2 | DyHead-T [8] detection 49.7
3 | CascadeRCNN-T [4] 50.4
4 | GLIP-T [26] detection + 55.2
5 | GLIPv2-T [46] understanding 55.5
6 | GLIPv2-B [46] 58.8

. detection +
7 | Detic-B [49] classification 54.9
8 | ScaleDet-B multi-dataset | 5¢ g
detection

Table 6. Comparison on COCO using Swin Transformer as
backbone. T, B: Swin-Tiny, Swin-Base Transformer. Note:
GLIPv2-B uses 20.5M data: 3.7M detection data (COCO, 0365,
OID, Visual genome [23], ImageNetBoxes [9]), 16.8M grounding
and caption data (GoldG [20], CC15M [7,35], SBU [29]); while
ScaleDet-B uses 3.5M data (LVIS,COCO,0365,01D).

over 8 datasets and RegionCLIP [48] is trained with 3M
image-text pairs from Conceptual Caption [35]; (3) detec-
tor trained with image classification dataset, i.e., Detic [49]
is trained with ImageNet21k [9]; (4) multi-dataset detector
trained with only detection datasets, e.g., UniDet [51].

We train our ScaleDet using LVIS, COCO, 0365, OID
and present the results in Table 5, where all models are
trained using a ResNet50 backbone. ScaleDet obtains the
best performance among 11 models. Moreover, compared
to detectors trained with large vision-and-language or clas-
sification datasets (row 7-9), ScaleDet gives much better
performance, even though it learns a much smaller num-
ber of concepts — ScaleDet achieves 47.1 by “only” learning
2249 labels, while RegionCLIP and Detic achieve 42.7 and
42.4 by learning 6790 and 22047 concepts, respectively.

In Table 6, we compare ScaleDet to competitors using
Swin Transformers as backbone. With this strong back-
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ODinW
Model Model Type |#Data direct fine-tune
GLIP-T [26] detection + 5.5M 46.5 64.9
GLIPV2-T [46] | CS'5CHO 55M | 485 665

GLIPv2-B [46] understanding

Detic-R [49]
Detic-B [49]

205M| 54.2 69.4

detection + 12.6M| 29.4 64.4
classification | 12.6M 38.7 70.1

ScaleDet-R 3.6M 394 68.5
ScaleDet-T detection 3.6M 443 70.4
ScaleDet-B 3.6M 47.3 71.8

Table 7. Results of direct and fine-tune transfer on ODinW. R,
T, B: ResNet50, Swin-Tiny, Swin-Base Transformer as backbone.
Metric: mAP over 13 datasets. Note: “understanding”, “classifica-
tion” mean training with vision-and-language understanding, and

classification datasets besides detection data.

bone, ScaleDet demonstrates SOTA performance with high
data-efficiency among all models. Among all competitors,
the recent GLIPv2-B [46] is the only model performing on-
par with ScaleDet (58.8), but using almost an order of mag-
nitude more training data than ScaleDet (20.5M vs. 3.5M).

Overall, our results in Table 5 and Table 6 show that
ScaleDet offers a data-efficient training recipe that can learn
from fewer visual concepts and less training data, but still
achieves state-of-the-art performance on COCO.

4.5. Comparison of SOTA on ODinW

We evaluate the transferablity on the “Object Detection
in the Wild” (ODinW) benchmark and compare ScaleDet
with SOTA pre-trained detectors that are capable of both
direct and fine-tune transfer given any downstream detec-
tion datasets. Table 7 shows the comparison on ODinW
among 3 types of detectors: (1) GLIP [26], GLIPv2 [46],
(2) Detic [49], and (3) ScaleDet. ScaleDet is trained with
the smallest training data, yet it achieves the best results in
fine-tune transfer, surpassing even GLIPv2-B by 2.4 points
(71.8 vs. 69.4). On direct transfer, GLIPv2-B is however
stronger; we conjecture that this is thanks to its massive
visual-language training data (20.5M), which likely covers
the unseen concepts in the downstream datasets. Further-
more, when comparing ScaleDet-R, ScaleDet-B to Detic-
R, Detic-B, we find the results of ScaleDet are significantly
better, e.g., ScaleDet-R outperforms Detic-R by 10.0 points
(39.4 vs. 29.4) on direct transfer and by 4.1 (68.5 vs. 64.4)
on fine-tune transfer. These observations show the efficacy
of ScaleDet in transferring to downstream datasets.

4.6. Ablation study

Finally, we ablate the components of our ScaleDet. As
described in Sec. 3, ScaleDet is trained with two loss terms:
the hard label assignment L; (Eq. (6)), and the soft label
assignment Ly (Eq. (7)). Lp; aims to assign each visual
feature to one corresponding label, while L4 works as a

Model  Datasets |L  C 03650ID | mAP

L LC 33.144.6 15.7 43.2|34.2
Ln+Lsg 333449159 43.7 | 345
L 36.7 46.7 30.8 69.1 | 45.8
Ln+Ls L’C’O365’OID‘ 36.847.1 30.6 69.4 ‘ 46.0
(a) Ablation on upstream datasets.
Model Datasets ‘ ODinW
Metric ‘ mAP mAP¢
L L.C 269 32.1
Lu+Lg 269 325
L 379 39.8
Lp+Ls L.C,0365,0ID ‘ 394 409

(b) Ablation on downstream benchmark ODinW by direct transfer.
Table 8. Ablation study on upstream datasets (a) and downstream
datasets (b). mAP is the mean AP over datasets; mAP¢ is the
mean AP over all classes; better mAP of each setup is in bold.

regularizer to relate labels across datasets. Table 8a shows
our ablation study on 4 upstream datasets and Table 8b
shows our ablation of direct transfer on downstream bench-
mark ODinW. We find that training with two loss terms
(Lni+Ls) leads to better overall results on both upstream
and downstream datasets. For instance, in Table 8a, when
training with two datasets (L+C), Lp;+L; gives consistent
better results on 4 upstream datasets compared to Lp;. In
Table 8b, when using Lp;+Lg to train on four training
sets (L+C+0365+0ID), the mAP is greatly improved by
1.5 points (39.4-37.9) and mAP is improved by 1.1 points
(40.9-39.8), as compared to using only L. This suggests
that £ is valuable to improve the model’s generalizabil-
ity. Overall, these results indicate that £;,; works effectively
for label assignment within the upstream dataset, while L
takes a complementary role that is more evident when trans-
ferring to downstream datasets.

5. Conclusion and Future Work

We present ScaleDet, a simple yet scalable and effective
multi-dataset training recipe for detection. ScaleDet learns
across multiple datasets in a unified semantic label space,
optimized by hard label and soft label assignments to align
visual and text embeddings. ScaleDet achieves the new
state-of-the-art performance on multiple upstream datasets
(LVIS, COCO, Objects365, Openlmages) and downstream
datasets (ODinW). As the key success of ScaleDet lies in
learning in a unified semantic label space, our formulation
can also generalize to other vision tasks such as image clas-
sification and semantic segmentation. We leave the uni-
fied design of a generic multi-dataset multi-task foundation
model as promising and exciting future endeavors.
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