Title: Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for Vision Decoding

Authors: Zijiao Chen1*, Jiaxin Qing2*, Tiange Xiang3, Wan Lin Yue1, Juan Helen Zhou1†

Affiliations: 1National University of Singapore, 2The Chinese University of Hong Kong, 3Stanford University

URL: https://mind-vis.github.io

Abstract

Decoding visual stimuli from brain recordings aims to deepen our understanding of the human visual system and build a solid foundation for bridging human and computer vision through the Brain-Computer Interface. However, reconstructing high-quality images with correct semantics from brain recordings is a challenging problem due to the complex underlying representations of brain signals and the scarcity of data annotations. In this work, we present MinD-Vis: Sparse Masked Brain Modeling with Double-Conditioned Latent Diffusion Model for Human Vision Decoding. Firstly, we learn an effective self-supervised representation of fMRI data using mask modeling in a large latent space inspired by the sparse coding of information in the primary visual cortex. Then by augmenting a latent diffusion model with double-conditioning, we show that MinD-Vis can reconstruct highly plausible images with semantically matching details from brain recordings using very few paired annotations. We benchmarked our model qualitatively and quantitatively; the experimental results indicate that our method outperformed state-of-the-art in both semantic mapping (100-way semantic classification) and generation quality (FID) by 66% and 41% respectively. An exhaustive ablation study was also conducted to analyze our framework.

1. Introduction

“What you think is what you see”. Human perception and prior knowledge are deeply intertwined in one’s mind [51]. Our perception of the world is determined not only by objective stimuli properties but also by our experiences, forming complex brain activities underlying our perception. Understanding these brain activities and recovering the encoded information is a key goal in cognitive neuroscience. Within this broad objective, decoding visual information is one of the challenging problems that are the focus of a large body of literature [22, 26, 34, 67].

As a non-invasive and effective method to measure brain activities indirectly, functional Magnetic Resonance Imaging (fMRI) is usually used to recover visual information, such as the image classes [21, 39]. With the help of recent deep learning models, it is intriguing if the original visual stimuli can be directly recovered from corresponding fMRI [2, 46], especially with the guidance of biological principles [43, 52]. However, due to the lack of fMRI-image pairs and useful biological guidance when decoding complex neural activity from fMRI directly, reconstructed images are usually blurry and semantically meaningless. Thus it is crucial to learn effective and biological-valid representations for fMRI so that a clear and generalizable connection between brain activities and visual stimuli can be established with a few paired annotations.

Moreover, individual variability in brain representations further complicates this problem. Individuals have unique

*Equal contributions.
†Corresponding author (helen.zhou@nus.edu.sg)
brain activation patterns responding to the same visual stimulus (See Fig. 2). From the perspective of fMRI representation learning, a powerful brain decoding algorithm should robustly recognize features shared across the population over a background of individual variation [5, 21]. On the other hand, we should also expect decoding variances due to the variation in individual perceptions. Therefore, we aim to learn representations from a large-scale dataset with rich demographic compositions and relax the direct generation from fMRI to conditional synthesis allowing for sampling variance under the same semantic category.

Self-supervised learning with pretext tasks in large datasets is a powerful paradigm to distill the model with context knowledge. A domain-specific downstream task (e.g. classification) is usually adopted to finetune the pre-trained model further [36, 58], especially when the downstream dataset is small. Various pretext tasks are designed to benefit downstream tasks [23, 66]. Among these methods, Masked Signal Modeling (MSM) has achieved promising results in both vision [18, 62] and language understanding [8, 37] recently. At the same time, the probabilistic diffusion denoising model has shown its superior performance in content generation and training stability [9]. A strong generation ability is also desired in our task to decode faithful visual stimuli from various categories.

Driven by the above analysis, we propose MinD-Vis: Sparse Masked Brain Modeling with Double-Conditioned Latent Diffusion Model for Human Vision Decoding, a framework that exploits the power of large-scale representation learning and mimics the sparse coding of information in the brain [14], including the visual cortex [56]. Different from [18], we use a much larger representation-to-data-space ratio to boost the information capacity of learned representations. Our contributions are as follows:

- We propose Sparse-Coded Masked Brain Modeling (SC-MBM), designed under biological guidance as an effective brain feature learner for vision decoding.
- Augmenting the latent diffusion model with double conditioning (DC-LDM), we enforce stronger decoding consistency while allowing variance under the same semantics.
- Integrating the representation ability of SC-MBM with the generation ability of DC-LDM, MinD-Vis generates more plausible images with better preserved semantic information compared with previous methods.
- Quantitative and qualitative tests are performed on multiple datasets, including a new dataset that has not previously been used to evaluate this task.

2. Related Work

Conventional Decoding Methods Conventional methods rely on training with fMRI and corresponding hierarchical image features extracted by a pre-trained VGG [21, 46]. During testing, the predicted image features will either be used for classification or fed into a generative model like GAN [45] to reconstruct the original stimulus. Instead of directly learning the limited training pairs, [2] enabled unsupervised learning on unpaired fMRI and images with a reconfigurable autoencoder design. [16] further extended this method to images from diverse semantic categories. However, just as with conventional approaches, fMRI is used directly for training and decoding. In [31, 33], a regression model was used to extract latent fMRI representation, which was then used to finetune a pre-trained conditional bigGAN for image decoding. Mind Reader [27] encoded fMRI signals into a pre-aligned vision-language latent space and used StyleGAN2 for image generation. These methods generate more plausible and semantically meaningful images. We note that there is parallel work to ours by Takagi and Nishimoto [13], who proposed a method for image reconstruction from fMRI using Stable Diffusion. Their approach involves decoding brain activities to text descriptions and converting them to natural images using stable diffusion.

Masked Signal Modeling The power of MSM in learning representations from a large-scale dataset was first exploited in [8], which was later adapted to computer vision [18, 60, 62]. Successful applications to downstream tasks show that useful context knowledge is learned with MSM as a pretext task. In essence, MSM is a generalized denoising autoencoder that aims to recover the original data from the remaining after masking [4]. The portion of data to mask is different across data modalities, with an extremely high mask ratio (75%) usually used for visual signals [18]. In contrast, due to the disparity in information density, a low mask ratio (25%) is used in natural languages [8].

Diffusion Probabilistic Models Diffusion models [49] are emerging generative models that generate high-quality content. In its basic form [20], the diffusion model is a probabilistic model defined by a bi-directional Markov Chain of states. Two processes are transiting through the chain: (i) The forward diffusion process gradually adds noise to the data until it is fully destroyed to an isotropic Gaussian noise; (ii) The reverse process recovers the corrupted data by modeling a posterior distribution $p(x)$ at each state and eventually obtains a sample in the original data distribution [20, 49, 50]. Formally, assume a Markov Chain with a fixed length T, then the reverse conditional probability can be expressed as $q(x_{t-1}|x_t)$, where $t = 1, ..., T$ and x_t is obtained by corrupting the image x_{t-1} with Gaussian noise. After parameterization, this conditional probability can be learned by optimizing a variational lower
bound which can be simplified to the following objective [20]:

\[L_{\text{simple}}^{t} = \mathbb{E}_{x \sim N(0, 1)}[\| x - \epsilon_{\theta}(x, t) \|^2_2], \quad (1) \]

where \(\epsilon_{\theta}(x, t) \) is a set of denoising functions that are usually implemented as UNets \([9, 41, 42]\). We refer readers to [20] for detailed descriptions of the diffusion models.

Latent Diffusion Model (LDM) Apart from the conventional diffusion models that generate samples in the original data space, another category of diffusion models that generate samples in the latent feature space has been proposed \([41, 48]\). Operating in the latent feature space reduces the computational cost and introduces less spatial downsampling, giving better image synthesis quality. The LDM proposed in \([41]\) consists of two components: (i) Vector Quantization (VQ) regularized \([12]\) autoencoder that compresses images into lower-dimensional latent features and then reconstructs the images from features in the same space; (ii) UNet-based denoising model with attention modules. Incorporating attention mechanisms into the UNet allows the flexibility to condition image generation through key/value/query vectors during the Markov Chain transitions.

3. Methodology

3.1. Motivation and Overview

In this subsection, we provide a detailed analysis of the fMRI data and elaborate on the motivations of our designs.

(i) fMRI measures the brain blood-oxygen-level-dependent (BOLD) changes as 3D voxels that serve as a proxy for the underlying changes in brain activity. Neighboring voxels often have similar amplitudes, indicating spatial redundancy in fMRI \([53]\).

(ii) fMRI data is averaged across the time during which the stimulus is presented. A region of interest (ROI) of the averaged data is usually extracted as a 1D vector of voxels (in the visual processing hierarchy). The ROI size (voxel number) is generally smaller than the image size (pixel number). For example, \([21]\) has about 4500 voxels (visual cortex), which is much smaller than a \(256 \times 256\) RGB image. This creates a large difference in dimensionality when transforming fMRI into images.

(iii) fMRI data from different datasets may have significant domain shifts due to experimental conditions and scanner setups. Even with the same scan conditions, ROI size and location mismatch persist due to individual differences (See Fig. 2).

Driven by this analysis, we propose **MinD-Vis**, designed with two sequential stages as outlined in Fig. 3. Briefly, in **Stage A**, fMRI representations are learned by an autoencoder trained in a large fMRI dataset with masked signal modeling as a pretext task. The learned representations will be used as a condition to guide the image-generation process in the next stage. In **Stage B**, the pre-trained fMRI encoder is integrated with the LDM through cross-attention and time-step conditioning for conditional synthesis. In this stage, the encoder is jointly finetuned with cross-attention heads in the LDM using paired annotations.

3.2. Stage A: Sparse-Coded MBM (SC-MBM)

Activity in the human brain involves non-linear interactions among 86 billion neuronal cells in the brain and are thus highly complex \([32, 40]\). The fMRI measuring the BOLD signals is an indirect and aggregate measure of neuronal activities, which can be analyzed hierarchically with functional networks \([1, 6, 59]\). These functional networks comprised of voxels of fMRI data have implicit correlations with each other in response to external stimuli \([54, 68]\). Therefore, learning these implicit correlations by recovering masked voxels will equip the pre-trained model with a deep contextual understanding of the fMRI data.
we explain the biological basis of using SC-MBM to learn
we make the decoder small in size, and it is discarded in
which will be subsequently transformed into embeddings using
The hemodynamic response and spatial smoothing functions in
visual information of natural scenes can be reconstructed from
Visual Encoding and Brain-Inspired Sparse Coding

over-complete bases to represent data, where more locality is
encoding in computer vision as well [25, 63].

Visual Encoding and Brain-Inspired Sparse Coding

Stage B as long as the pre-training converges.
encoder is optimized to learn effective fMRI representations,
information in the brain, which has been proposed as a general
space. This design also relates to the sparse coding of
the information capacity
embedding-to-patch-size ratio, which significantly
size similar to the original data size. However, we use a large
patch-size ratio around one [18], leading to a representation
information capacity with a large fMRI representation
patches to save computations without losing the learning power
of masked modeling.

Masked Image Modeling (MIM) uses the embedding-to-

size similar to the original data size. However, we use a large
embedding-to-patch-size ratio, which significantly increases the

We also adopt an asymmetric architecture as in [18]: the
encoder is optimized to learn effective fMRI representations,
while the decoder tries to predict the masked patches. Therefore,
we make the decoder small in size, and it is discarded in
Stage B as long as the pre-training converges.

Visual Encoding and Brain-Inspired Sparse Coding

Here, we explain the biological basis of using SC-MBM to learn
representations of visual stimuli in the brain from the perspective
of visual encoding mechanisms. Theoretical and empirical
studies suggest that visual stimuli are sparsely encoded in the
primary visual cortex [32, 38, 56], with most natural images
activating only a portion of the neurons in the visual cortex.
This strategy increases information transmission efficiency and
creates minimal redundancy in the brain [38]. As a result,
visual information of natural scenes can be reconstructed from
a small portion of data collected from the primary visual cortex
via different imaging modalities, including fMRI [15, 64]. This
observation is interesting for the computer vision community
because the sparse coding could be an efficient way for vision
encoding in computer vision as well [25, 63].

Sparse coding is an encoding strategy that in essence uses
over-complete bases to represent data, where more locality is
generally enforced to generate smoother representations [57, 65].
In SC-MBM, fMRI data are divided into patches to introduce
locality constraints. Then each patch is encoded into a
high-dimensional vector space with a size much larger than
the original data space, thus creating an over-complete space
for fMRI representation (See Appendix). Emulating the brain
vision encoding, SC-MBM can be a biologically-valid and
effective brain feature learner for fMRI decoding.

3.3. Stage B: Double-Conditioned LDM (DC-LDM)

After the large-scale context learning in Stage A, the fMRI
encoder transforms fMRI data into sparsely coded representations
with locality constraints. To further decode visual contents
from this abstract representation and allow for sampling variance, we formulate the decoding task as a conditional
synthesis problem and approach it with a pre-trained LDM.

The LDM operates on the image latent space denoted by
where \(x \) is an image in pixel space and \(\mathcal{E}(\cdot) \) is a VQ encoder. In
our setting, we omit \(\mathcal{E}(x) \) and use \(x \) directly to represent the
latent variable of LDM for simplicity. Specifically, given the fMRI
data \(z \), we aim to learn the reverse diffusion process formulated
by \(q(x_{t-1}|x_t, z) \). As proposed in [41], conditional information
is applied through cross-attention heads in the attention-based
UNet, where CrossAttention\((Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right),\)

\[Q = W_Q^{(i)} \varphi_i(x_t), \quad K = W_K^{(i)} \tau_0(z), \quad V = W_V^{(i)} \tau_0(z). \]

Here, \(\tau_0 \) is the fMRI encoder with a suitable dimension projector.
\(\varphi_i(x_t) \) denotes intermediate values of the UNet and \(W_Q^{(i)},\)
\(W_K^{(i)}, W_V^{(i)} \) are projector matrices with learnable parameters.

Diversity and consistency are two opposite objectives
when sampling a conditional generative model. Sampling
diversity across various modalities such as label-to-image and
text-to-image is very important in many image-generation tasks.
However, the fMRI-to-image transition relies more on
generation consistency—decoded images from similar brain activities
are expected to be semantically similar. Thus, a stronger
conditioning mechanism is desired to ensure such generation
consistency, especially for probabilistic diffusion models.

In this way, we integrate the cross-attention conditioning
with another conditioning method called the \textit{time steps conditioning} [9]
to provide stronger guidance for our task. In time
steps conditioning, we add \(\sigma_\theta(\tau_0(z)) \) to time step embeddings,
where \(\sigma_\theta(\cdot) \) is another suitable dimension projector.
Time step embeddings are used in intermediate layers of the UNet, thus we have \(\varphi_i(x_t) = \varphi_i(x_t, \sigma_\theta(\tau_0(z))) \).
We further reformulate the optimization objective Eq. (1) to a \textit{double conditioning} alternation:

\[L_i^{\text{cond}} = \mathbb{E}_{x \sim \mathcal{N}(0,1), t} \left[\| \epsilon - \sigma_\theta(x_t, t, \tau(z), \sigma(\tau(z))) \|_2^2 \right]. \tag{2} \]

We omit the parameterization symbol \(\theta \) in \(\tau(\cdot) \) and \(\sigma(\cdot) \)
for simplicity. Additionally, we have \(\tau(z) \in \mathbb{R}^{d_t} \) and \(\sigma(\tau(z)) \in \mathbb{R}^{d_t} \), where \(d_r \) and \(d_t \) are the latent dimensions and time
embedding dimension respectively, and \(M \) is a tunable parameter.
Finetuning After the fMRI encoder is pre-trained with SC-MBM, it is integrated with a pre-trained LDM through double conditioning. Commonly, the encoder’s output is averaged, or a cls token is appended to produce a pooled 1D feature vector for downstream tasks [8, 18]. This strategy is effective for tasks like prediction and classification, where learned knowledge is expected to be distilled, producing distinguishable features. However, pooling into a 1D vector is inappropriate for retaining fMRI representations’ sparsity and information capacity. Instead, we used convolution layers to pool the encoder’s output into a latent dimension of $\mathbb{R}^{M \times d_r}$ as described in Eq. (2).

The fMRI encoder, cross-attention heads, and projection heads are jointly optimized, while other parts are fixed. Finetuning the cross-attention heads is critical for bridging the pre-trained conditioning space and fMRI latent space. The fine-tuning is performed end-to-end with fMRI-image pairs, during which a clearer connection between the fMRI and image features will be learned through the large-capacity fMRI representations.

4. Experiments

4.1. Datasets and Implementation

Datasets Three public datasets were used in this study: Human Connectome Project (HCP) 1200 Subject Release [55]; Generic Object Decoding Dataset (GOD) [21]; and Brain, Object, Landscape Dataset (BOLD5000) [5]. Our upstream pre-training dataset comprised fMRI data from HCP and GOD. Combining these two, we obtained 136,000 fMRI segments from 340 hours of fMRI scan, which is, by far, the largest fMRI pre-training dataset in the fMRI-image decoding task. The HCP dataset is commonly used in neuroscience research, containing only fMRI data. While the GOD is an fMRI-image paired dataset designed for fMRI-based decoding. The pairs in GOD were used for finetuning in our main analysis. The GOD consists of 1250 different images from 200 distinct classes, in which 1200 images were used as the training set, and the remaining 50 images were used as the testing set. The training set and testing set have no overlapping classes. The BOLD5000 dataset was used as the validation dataset in our study. It consists of 5254 fMRI-image pairs from 4916 distinct images, 113 images of which are used for testing. This is the first time that the BOLD5000 is used for fMRI decoding tasks.

Implementation The fMRI pre-training model is similar to ViT-Large [10] with a 1D patch embedder. We used a patch size of 16, embedding dimension of 1024, encoder depth of 24, and mask ratio of 0.75 as our Full model setting with an ImageNet class-conditioned pre-trained LDM. Different parameter choices are explored in our ablation study. Unless stated otherwise, the Full model is pre-trained for 500 epochs and finetuned for another 500. Results from the best model are reported. Images are generated at a resolution of 256×256 with 250 PLMS
steps [29]. See Appendix for dataset and implementation details.

4.2. Evaluation Metric

N-way Classification Accuracy Following [16], we used the n-way top-1 and top-5 accuracy classification task to evaluate the semantic correctness of our results, where for multiple trials, top-1 and top-5 classification accuracies were calculated in n – 1 randomly selected classes plus the correct one. Note that we did not consider the pixel-level metrics as we aimed to recover the semantically correct images in this work.

In [16], the authors generated a typical feature for each class selected and compared the distance between the reconstructed images and the typical features. However, this metric in [16] is hard to reproduce, and the semantic classification result largely depends on how the features are computed. Therefore, we propose a more straightforward and reproducible method, where a pre-trained ImageNet1K classifier [10, 35] is used to determine the semantic correctness of generated images rather than handcrafted features. We describe this evaluation method in Algorithm D.1. Specifically, both ground-truth and generated images are input to the classifier first. Then we check for the generated image if the top-k classification in n selected classes matches the ground-truth classification. This metric does not require the ground-truth image to be from the ImageNet1K classes. As long as semantic classification results of the ground-truth and the generated image match, it will be considered to be correct.

Fréchet inception distance (FID) The FID [19] is a commonly used metric to assess image generation quality. In our experiments, we measured the FID between ground-truth images and generated images in the testing set. Note that FID is only used as a reference in our experiments due to the limited number of images available in GOD, which may lead to an underestimated distribution.

5. Results

Our main results are based on GOD which has no overlapping classes in the training and testing set. The training and testing were performed on the same subject, as individual differences remain a barrier when decoding at the group level [2, 16, 21, 31, 33]. To compare with the literature, we report results from Subject 3 here and leave other subjects in the Appendix.

We compared our results with Ozcelik et al. [33], Gaziv et al. [16] and Beliy et al. [16]. Gaziv et al. and Beliy et al. used the conventional method, which decoded images with higher pixel similarity but less plausibility and semantic details. On the other hand, Ozcelik et al. generated more plausible and semantically meaningful images using a pre-trained GAN. Based on the best-reconstructed samples of these methods (resized to 256 × 256), we performed a 1000-trial, n-way top-k accuracy identification task as described in Algorithm D.1. The experiment is repeated for n = 50,100 and k = 1,5 in the GOD testing set.

From Fig. 6, our identification accuracy outperformed the Ozcelik et al. in the 50-way top-1 accuracy task by 39% and in the 100-way top-1 accuracy task by 66%, achieving a success rate of 0.274 and 0.212 respectively. The generated images from Gaziv et al. and Beliy et al. were close to the ground-truth at the pixel level but contained few semantically meaningful details, as could be observed in Fig. 5. For example, our method generated plausible details such as water and waves in the first and second images, drawings on the bowling ball, wheels of the carriage, etc., which were not present in the previous decoded images. The image quality is also reflected by the FID, where we achieved 1.67 with our best samples, while Ozcelik et al. and others achieved 2.36 or more with the best samples generated by their method. Interestingly, color mismatches are observed in some cases with the color difference well preserved. It can be explained with [3] which suggests the color category information is processed in the frontal lobes as a cognitive process, while the visual cortex only recognizes the difference in colors.

5.1. Generation Consistency

The consistency of our method was tested by decoding the same fMRI data multiple times with different random states. Five samplings with different random states were performed in the testing set for each fMRI. In the 50-way and the 100-way top-1 accuracy identification tasks, we achieved an average success rate across the five samplings of 0.2385 ± 0.030 and 0.1736 ± 0.029 respectively, which are statistically higher than the best sampling results from Ozcelik et al. by 21% and 35%. Regarding image quality, we achieved an average FID of 2.22 ± 0.3 across the five samplings. The standard deviations across 5 samplings indicate that the generated images will always be in the same semantic category. It can also be seen in Fig. 7 where isomorphic samplings share similar details such as shape, color, texture, and semantics, matching with the ground-truth across trials.

5.2. SC-MBM Design

This section will discuss the ablation study on the SC-MBM pre-training stage with various important parameters. Results
are summarized in Tab. 1. For all experiments in this section, the 50-way, top-1 accuracy semantic identification task was performed with the best models obtained from the finetuning of 500 epochs. Average results over five samplings were reported.

Testing Without SC-MBM To show that useful representations were learned with SC-MBM, we trained two models directly using the fMRI-image pairs without the SC-MBM pre-training. The first model consisted of an untrained fMRI encoder with the same architecture as the Full model. The second model consisted of an untrained fMRI encoder with a depth of only 2. The second model was designed to have fewer parameters, making it less likely to overfit the data. All the other settings were the same. The results correspond to Model 1 and 2 in Tab. 1, where the Full model significantly outperformed the other two models without the SC-MBM pre-training, showing that the pre-training is crucial. In fact, without SC-MBM these two models even failed to generate sensible images (See Appendix).

5.3. DC-LDM Finetuning Design

This section will discuss the ablation study on the DC-LDM finetuning designs from three perspectives: conditioning methods, optimization designs, and pre-trained LDMs. Here, all ablations used the same pre-trained fMRI encoder as the Full model. Only important parameters in the finetuning stage were varied. The 1000-trial, 50-way, top-1 semantic identification test was performed. The results are summarized in Tab. 2, where five different samplings were averaged for each condition.

Table 1. SC-MBM Ablation Results. Params: trainable parameters in the fMRI encoder; Cell colors reflect statistical significance differences (two-sample t-test) in accuracy compared with the Full model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Embedding Dim</th>
<th>Mask Ratio</th>
<th>Params</th>
<th>Acc (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>1024</td>
<td>0.75</td>
<td>303M</td>
<td>23.9 ±0.00</td>
</tr>
<tr>
<td>1</td>
<td>w/o SC-MBM + same Encoder</td>
<td>0.75</td>
<td>303M</td>
<td>2.6 ±1.39</td>
</tr>
<tr>
<td>2</td>
<td>w/o SC-MBM + smaller Encoder</td>
<td>0.75</td>
<td>25M</td>
<td>3.4 ±0.86</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>0.75</td>
<td>0.3M</td>
<td>5.4 ±1.50</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>0.75</td>
<td>1.2M</td>
<td>6.9 ±1.10</td>
</tr>
<tr>
<td>5</td>
<td>128</td>
<td>0.75</td>
<td>4.7M</td>
<td>14.8 ±1.78</td>
</tr>
<tr>
<td>6</td>
<td>256</td>
<td>0.75</td>
<td>18.9M</td>
<td>15.9 ±1.70</td>
</tr>
<tr>
<td>7</td>
<td>512</td>
<td>0.75</td>
<td>75.6M</td>
<td>17.9 ±2.58</td>
</tr>
<tr>
<td>8</td>
<td>768</td>
<td>0.75</td>
<td>170M</td>
<td>17.7 ±1.42</td>
</tr>
<tr>
<td>9</td>
<td>1280</td>
<td>0.75</td>
<td>472M</td>
<td>15.5 ±3.83</td>
</tr>
</tbody>
</table>

† p < 0.0001 (purple); p < 0.01 (pink); p < 0.05 (yellow); p > 0.05 (green)

Table 2. DC-LDM Ablation Results. 1: cross-attention condition only; 2: optimizing fMRI encoders only; 3: LDM pre-trained on text conditions (LAION); 4: LDM pre-trained on layout conditions (OpenImages). Abbrev.: C (Cross-attention condition); T (Time condition); E (Encoder); A (Cross-attention heads). Cell colors reflect statistical significance (two-sample t-test) in accuracy compared with the Full model.

Conditioning Methods Here, we showed that the double conditioning method increased the conditioning strength in Tab. 2, where using only cross-attention conditioning achieved an identification accuracy of 15.6% (Model 1), which was significantly lower than the full method.

Optimizing LDM We proposed to finetune the fMRI encoder and the cross-attention heads jointly because the LDM was pre-trained in a different conditioning space. For example, for the ImageNet class-conditioning pre-trained LDM, the cross-attention heads were pre-trained to receive the class label information. To justify this choice, we tested a model with the fMRI encoder finetuned and the cross-attention heads untouched. As shown in Model 2 in Tab. 2, the average identification accuracy dropped to 13.7% when only the fMRI encoder was finetuned, indicating stronger semantic guidance with the double conditioning. The visual quality and correspondence to the ground-truth of the generated images also decreased significantly (See Appendix).
Pre-trained LDM The pre-trained LDM determines the model’s generative ability and the conditioning latent space to which the fMRI encoder would adapt. We considered three pre-trained LDM provided by [41], which were trained on datasets with different conditioning tasks, i.e., ImageNet (label conditioning), LAION (text conditioning) [44] and OpenImages (layout conditioning) [24]. As shown in Model 3-4 Tab. 2, the ImageNet pre-trained LDM (used in the full model) showed the best performance in the same decoding task. Notably, images generated by models pre-trained on LAION and OpenImages were less visually favorable and plausible (See Appendix). This result is surprising because both LAION and OpenImages contain diverse images from various categories. We attribute the main reason for their poor performance to the complexity of their conditioning latent space. With limited training pairs, the class-conditioning latent space is easier to adapt to, compared with the latent space of the text-conditioning model and the layout-conditioning model.

5.4. Replication Dataset

We validated our method on BOLD5000 using the same pre-trained fMRI encoder. Similarly, the pre-trained encoder was firstly finetuned for 20 epochs in the testing set of BOLD500 with wrap-around paddings to compensate for the unequal ROI size from the pre-training set, after which the model is further tuned with the fMRI-image training pairs in BOLD5000. All other settings were the same as the Full model. For the four subjects in BOLD5000, we achieved a 19% to 34% best accuracy in the 1000-trial, 50-way, top-1 accuracy semantic identification task (See Appendix). The generated images matched the ground-truth stimulus in both semantics and low-level features (Fig. 8). Our model accurately reconstructs images containing objects and animals, architecture, and landscapes.

Interestingly, we reconstructed similar images for some natural scenes with extra details that do not exist in the ground-truth stimulus. These extra details, for example, the river and the blue sky in Fig. 9, may reflect imagined scenery in the subject’s mind when viewing the visual stimuli, which is captured in their brain activities. As reported in [21,46], features of imaginary images can also be decoded from the visual cortex.

To the best of our knowledge, this is the first work that performs fMRI decoding on BOLD5000. Additionally, adapting the same pre-trained model to this dataset shows that the SC-MBM pre-training indeed learns useful representations of brain recordings even when distinct domain shifts exist. These learned representations are shared and generalizable to datasets with different scanning protocols and preprocessing pipelines.

6. Discussion and Conclusion

Limitations MinD-Vis, in its current form, lacks strong pixel-level guidance and interpretation analysis, which limits its pixel-level performance (see G.5) and the biological understanding of the features learned by MBM.

Future Work Similar to all previous work, MinD-Vis focuses on individual decoding using the visual cortex only. But as a complex cognitive process, human vision may be affected by regions beyond the visual cortex. Therefore, future studies should extend to cross-subject generalization and also the incorporation of other brain regions. Additionally, the two-stage decoupling design of MinD-Vis allows us to explore the potential of emerging large-scale models and representation learning techniques in cognitive neuroscience, which is also subject to future studies.

Conclusion We proposed a two-stage framework MinD-Vis to decode visual stimuli using only a few paired fMRI-image annotations from brain recordings. In Stage A, we employ an fMRI pre-training scheme with masked modeling to learn generalizable context knowledge from a large-scale unlabeled fMRI dataset. In Stage B, we use a latent diffusion model with double conditioning to generate plausible seen images from learned fMRI representations. We validated the decoding results of MinD-Vis on multiple datasets and showed that our model generates more plausible and semantically similar images compared to previous methods, pushing the state-of-the-art a considerable step forward.
References

[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In Proc. CVPR’22, pages 16000–16009, 2022.

