
SeqTrack: Sequence to Sequence Learning for Visual Object Tracking

Xin Chen1, Houwen Peng2,†, Dong Wang1,†, Huchuan Lu1,3, Han Hu2

1Dalian University of Technology 2Microsoft Research 3Peng Cheng Laboratory

Abstract

In this paper, we present a new sequence-to-sequence
learning framework for visual tracking, dubbed SeqTrack.
It casts visual tracking as a sequence generation problem,
which predicts object bounding boxes in an autoregres-
sive fashion. This is different from prior Siamese track-
ers and transformer trackers, which rely on designing com-
plicated head networks, such as classification and regres-
sion heads. SeqTrack only adopts a simple encoder-decoder
transformer architecture. The encoder extracts visual fea-
tures with a bidirectional transformer, while the decoder
generates a sequence of bounding box values autoregres-
sively with a causal transformer. The loss function is a
plain cross-entropy. Such a sequence learning paradigm
not only simplifies tracking framework, but also achieves
competitive performance on benchmarks. For instance, Se-
qTrack gets 72.5% AUC on LaSOT, establishing a new state-
of-the-art performance. Code and models are available at
https://github.com/microsoft/VideoX.

1. Introduction

Visual object tracking is a fundamental task in computer
vision. It aims to estimate the position of an arbitrary tar-
get in a video sequence, given only its location in the ini-
tial frame. Existing tracking approaches commonly adopt a
divide-and-conquer strategy, which decomposes the track-
ing problem into multiple subtasks, such as object scale es-
timation and center point localization. Each subtask is ad-
dressed by a specific head network. For example, SiamRPN
[27] and its follow-up works [3, 7, 48, 55, 58] adopt classi-
fication heads for object localization and regression heads
for scale estimation, as sketched in Fig. 1(a). STARK [53]
and transformer-based trackers [4, 10, 17, 44] design corner
head networks to predict the bounding box corners of target
objects, as visualized in Fig. 1(b).

Such a divide-and-conquer strategy has demonstrated su-
perior performance on tracking benchmarks and thereby be-
come the mainstream design in existing models. However,

† Corresponding authors: Houwen Peng (houwen.peng@microsoft.com),
Dong Wang (wdice@dlut.edu.cn).

Backbone

positive negative

(a) Trackers with classification and regression heads
x y w h

Classification

Regression

Template
&

Search Region

Backbone

Corner
Prediction

Corner
Prediction

(b) Trackers with corner heads

Template
&

Search Region

(c) Our sequence-to-sequence tracker (SeqTrack)

Template & Search Region

Output Sequence

x, y, w, h, end

Input Sequence

start, x, y, w, h
Sequence

Model

Bounding Box

Bounding Box

Figure 1. Comparison of tracking frameworks. (a) The framework
with object classification head and bounding box regression head.
(b) The framework with corner prediction heads. (c) Sequence-to-
sequence tracking framework without complicated head networks.

two deficiencies still exist. First, each subtask requires a
customized head network, leading to a complicated track-
ing framework. Second, each head network requires one or
more learning loss functions, e.g., cross-entropy loss [7,27],
ℓ1 loss [7,27,53,55], generalized IoU loss [7,53,55], which
make the training difficult due to extra hyperparameters.

To address these issues, in this paper, we propose a new
Sequence-to-sequence Tracking (SeqTrack) framework, as
shown in Fig. 1(c). By modeling tracking as a sequence
generation task, SeqTrack gets rid of complicated head net-
works and redundant loss functions. It is based upon the
intuition that if the model knows where the target object
is, we could simply teach it how to read the bounding box
out, rather than explicitly performing additional classifica-
tion and regression using a divide-and-conquer strategy.

To this end, we convert the four values of a bounding
box into a sequence of discrete tokens and make the model
to learn generating this sequence token-by-token. We adopt
a simple encoder-decoder transformer to model the gener-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14572

ation. The encoder is to extract visual features of video
frames, while the decoder is to generate the sequence of
bounding box values using the extracted features. The
generation is executed in an autoregressive fashion, which
means the model generates a token depending on previously
observed ones. At each step, a new generated token value
is fed back into the model to produce the next one. We
impose a causal mask on the self-attention modules in the
decoder to prevent tokens from attending to subsequent to-
kens. Such a causal masking mechanism ensures that the
generation of the token at position i only depends on its
proceeding tokens at positions less than i. The visual fea-
tures are integrated into the decoder through cross-attention
layers [46]. The generation ends when it outputs four token
values of the bounding box. The output sequence is directly
used as the result.

Experiments demonstrate our SeqTrack method is effec-
tive, achieving new state-of-the-art performance on several
tracking benchmarks. For instance, SeqTrack-B256 obtains
74.7% AO score on GOT-10k [20], outperforming the re-
cent OSTrack-256 tracker [55] by 3.7% under aligned set-
tings, i.e., using the same encoder architecture and input
resolution. Moreover, compared to the recent state-of-the-
art tracker MixFormer [10], SeqTrack-B256 runs 1.4 times
faster (40 v.s. 29 fps) while getting 0.7% superior AUC
score on LaSOT [16]. It is worth noting that all these prior
methods heavily rely on well-designed head networks and
the corresponding complicated loss functions [30, 41]. In
contrast, our SeqTrack only adopts a plain encoder-decoder
transformer architecture with a simple cross-entropy loss.

In summary, the contributions of this work are two-fold:

• We propose a sequence-to-sequence learning method for
visual tracking. It casts tracking as a generation task,
which offers a new perspective on tracking modeling.

• We present a new family of sequence tracking models,
which strike a good trade-off between speed and accu-
racy. Experiments verify the efficacy of the new models.

2. Related Work
Visual Tracking. Existing tracking approaches com-

monly adopt a divide-and-conquer strategy to decompose
tracking into multiple subtasks. They first extract visual fea-
tures of video frames using a deep neural network [14, 19,
46], and then design multiple task-specific head networks
to predict the bounding boxes of target objects. According
to the difference of head networks, prior trackers can be di-
vided into two categories: 1) trackers based on classification
and regression, and 2) trackers based on corner predictions.

Most prevalent trackers [3,7,12,27,51,55] belong to the
first category, which models tracking with a classification
head for foreground-background prediction and a regres-
sion head for object scale estimation. For the classifica-

tion head network, most trackers adopt stacked convolu-
tional layers with various loss functions, including cross-
entropy loss [7, 27], focal loss [51, 55], modified ℓ2 loss
[3, 12], and KL-divergence loss [13]. For the regression
head, Siamese trackers and some transformer-based track-
ers adopt stacked convolutional layers with ℓ1 loss [26, 27]
and IoU loss [7, 50], while discriminative trackers [3, 12]
employ the IoU-Net [21] with MSE loss [12].

STARK [53] and its follow-up works [4,10,44] belong to
the corner prediction category, which locates target objects
using corner prediction heads. They employ a two-branch
network to generate two probability maps for the top-left
and the bottom-right corners of the target object. The fi-
nal object bounding boxes are obtained by calculating the
expectation of corners’ probability distribution. The loss
function is a combined ℓ1 and generalized IoU [41] loss.

Such well-designed head networks and loss functions
complicate existing tracking frameworks and also make the
training difficult. In contrast, our method casts tracking as
a sequence generation problem, getting rid of complicated
heads and unnecessary loss functions. It only uses a single
cross-entropy loss with a plain transformer architecture.

Sequence Learning. Sequence-to-sequence learning is
originally proposed for natural language modeling [9, 45],
and recently applied to computer vision. Pix2Seq [5] is a
representative work that casts object detection as a token
generation task conditioned on the observed pixel inputs.
Besides object detection, such a sequence learning method
has also been successfully extended to other vision tasks,
such as instance segmentation and keypoint detection [6].
Moreover, in cross modality domain, sequence learning is
becoming increasingly popular. For example, text-to-image
generation models like DALL-E [40] and vision-language
models like Flamingo [1] all adopt sequence-to-sequence
learning to unify multi-modality pretraining.

Our sequence learning framework shares a similar spirit
with Pix2Seq [5]. Both of them cast vision tasks as a se-
quence generation problem, and discretize the continuous
values of bounding box coordinates into integers. How-
ever, our method differs from Pix2Seq in three fundamen-
tal ways. 1) The constructions of the sequences are dif-
ferent. Pix2Seq uses object corner coordinates and object
categories to set up the sequence, while our method uses
center point coordinates and object scales. 2) The architec-
tures are different. Pix2Seq adopts ResNet [19] as its back-
bone network followed by a encoder-decoder transformer.
Our method is more compact, only using a single encoder-
decoder transformer. It employs ViT [14] as the encoder for
feature extraction and causal transformer blocks as the de-
coder for sequence generation. 3) The tasks are different,
Pix2Seq is designed for detection, while ours is for track-
ing. Some previous tracking designs, such as online tem-
plate update, can be seamlessly integrated into our method.

14573

Image Patches

Linear Projection Word to Embedding

Input Sequence

x y w h

Embedding to Word

x y w h

start

end

+ Pw
D

ec
od

er

Output Sequence

+ PsPt +

Template Search

Visual Features

(a) (b)

Encoder

Masked Multi-Head Attention

Feed Forward Network

Input Embeddings

+

+

+

Visual Features

Next Block

Multi-Head Attention

Pt Ps Pw : position embeddings

Figure 2. (a) Architecture of the proposed SeqTrack. The key component is an encoder-decoder transformer. The encoder extracts visual
features of input video frames. The causal decoder autoregressively generates the sequence of the bounding box tokens using the extracted
features. (b) The detailed transformer block in the causal decoder. The input embeddings interact in a casual manner through a masked
multi-head attention. The visual feature is incorporated into the decoder through a multi-head attention layer.

3. Method
This section presents the proposed SeqTrack method in

detail. First, we briefly overview our sequence-to-sequence
tracking framework. Then, we depict image and sequence
representations, and the proposed model architecture. Fi-
nally, we introduce the training and inference pipelines and
the integration of tracking prior knowledge.

3.1. Overview

The overall framework of SeqTrack is presented in
Fig. 2(a). It adopts a simple encoder-decoder transformer
architecture. The object bounding box is first converted into
a sequence of discrete tokens, i.e., [x,y,w,h]. The encoder
extracts visual features of input video frames, while the de-
coder autoregressively generates the sequence of bounding
box tokens using the extracted features. A causal attention
mask is imposed on the self-attention modules in the de-
coder to restrict the tokens to only attend to their proceeding
tokens. In addition to the four bounding box tokens, we also
use two special tokens: start and end. The start token
tells the model to begin the generation, while the end token
represents the completion of the generation. During train-
ing, the input sequence of the decoder is [start,x,y,w,h],
and the target sequence is [x,y,w,h,end]. During inference,
the input sequence of the decoder initially contains a single
start token. At each step, a new bounding box token is
generated and appended to the input sequence to produce
the next one. When the four token values of the bounding
box are generated, the prediction ends.

3.2. Image and Sequence Representation
Image Representation. The input to the encoder com-

prises a template image t ∈ R3×H×W and a search image
s ∈ R3×H×W . The image t represents the object of in-
terest, while s represents the search region in subsequent
video frames. In existing trackers [2, 7, 27, 53], the reso-
lution of template images is typically smaller than that of
search images. In contrast, we use the same size for the
two images, because we find that adding more background
in the template is helpful for improving tracking perfor-
mance. The search and template images are partitioned into
patches: sp ∈ RN×P 2×3 and tp ∈ RN×P 2×3, where (P,P)
is the patch size, N=HW/P 2 is the patch number. A linear
projection is used to map the image patches to visual em-
beddings. Learnable position embeddings [46] are added to
the patch embeddings to retain positional information. The
combined embeddings are then fed into the encoder.

Sequence Representation. We convert the target bound-
ing box into a sequence of discrete tokens. Specifically, a
bounding box is determined by its center point [x,y] and
scale [w,h]. There are several bounding box formats, such
as [x,y,w,h] and [w,h,x,y]. We use the format of [x,y,w,h],
because it aligns with human prior knowledge: localiz-
ing object position [x,y] first, and then estimating its scale
[w,h]. Each of the continuous coordinates is uniformly dis-
cretized into an integer between [1, nbins]. We use a shared
vocabulary V for all coordinates. Each integer between
[1, nbins] can be regarded as a word in V , so the size of
V is nbins (4, 000 in our experiments). The final input

14574

Visible

(a) (b)

Start 𝑥 𝑦 𝑤 ℎ

End𝑥 𝑦 𝑤 ℎ

Target Sequence

Input Sequence

End

Start 𝑥 𝑦 𝑤 ℎ

𝑥

𝑦

𝑤

ℎ

Invisible

Input

O
ut
pu
t

⟨𝑖, 𝑗⟩

Figure 3. (a) Illustration of the causal attention mask in the de-
coder using a maximum sequence length of 5 tokens. An orange
cell at row i and column j indicates that the attention mechanism
is allowed to attend to the jth input token, when producing the
ith output token. (b) Illustration of the input and target sequences.
Similar to autoregressive language modeling [46], the input se-
quence is the target sequence with one position offset.

sequence is [start,x,y,w,h], and the target sequence is
[x,y,w,h,end]. Each word in V corresponds to a learnable
embedding, which is optimized during training. The spe-
cial token start also corresponds to a learnable embed-
ding. The corresponding embeddings of the input words are
fed into the decoder. Since the transformer is permutation-
invariant, we augment word embeddings with learnable po-
sition embeddings [46]. For the final model outputs, we
need to map the embeddings back to words. To this end, we
employ a multi-layer perceptron with a softmax to sample
words from V according to the output embeddings.

3.3. Model Architecture

Our model adopts a simple encoder-decoder transformer
architecture, as plotted in Fig. 2. The encoder is applied
to extract visual features of input video frames, while the
decoder is to predict the bounding boxes of target objects in
an autoregressive fashion.

Encoder. The encoder is a standard vision transformer
(ViT) [14]. The architecture is the same as ViT [14] except
for two minor modifications: 1) The CLASS token is re-
moved, since it is designed for image classification task. 2)
A linear projection is appended to the last layer to align the
feature dimensions of the encoder and decoder. The encoder
receives patch embeddings of template and search images,
and outputs their corresponding visual features. Only the
features of the search image are fed into the decoder. The
function of the encoder is to extract the visual features of
search and template images in a joint way, and learn feature-
level correspondence through attention layers.

Decoder. The decoder of SeqTrack is a causal trans-
former [46]. As shown in Fig. 2(b), each transformer block
consists of a masked multi-head attention, a multi-head
attention, and a feed forward network (FFN). More con-
cretely, the masked multi-head attention receives the word
embeddings from the preceding block and utilizes a causal
mask to ensure that the output of each sequence element

only depends on its previous sequence elements. In other
words, the attention mask restricts the output embedding at
position i to only attend to the input embeddings at posi-
tions less than i, as shown in Fig. 3(a). After that, the multi-
head attention integrates the extracted visual features into
the word embeddings, which allows the word embeddings
to attend to the visual features derived from the encoder. Fi-
nally, a feed forward network (FFN) is applied to generate
embeddings for the next block.

3.4. Training and Inference
Training. Similar to language modeling [46], SeqTrack

is trained to maximize the log-likelihood of the target tokens
conditioned on the preceding subsequence and input video
frames using a cross-entropy loss. The learning objective
function is formulated as:

maximize

L∑
j=1

logQ(ẑj |s, t, ẑ<j), (1)

where Q(·) is the softmax probability, s is the search image,
t is the template, ẑ is the target sequence, j is the position of
the token, and L is the length of the target sequence. Here,
ẑ<j represents the preceding subsequence used to predict
the current token ẑj . The input sequence is the target se-
quence with one position offset (omit start and end), as
visualized in Fig. 3(b). Such an offset, combined with the
causal masking, guarantees the autoregressive property of
the sequence model. The target sequence can be regarded
as a description of the object bounding box. The training is
to teach the model to “read out” the words of the description
based on the preceding words.

Inference. During inference, the encoder perceives the
template image and the search region in subsequent video
frames. The initial input to the decoder is the start to-
ken, which tells the model to start the generation. Then, the
model “reads out” the target sequence [x,y,w,h,end] token
by token. For each token, the model samples it from the
vocabulary V according to the maximum likelihood, i.e.,
ẑj=argmaxzj

Q(zj |s, t, ẑ<j), where zj is the words in V .
In addition, we also introduce online template update and
window penalty to integrate prior knowledge during infer-
ence, further improving the model accuracy and robustness.
The details are described in the following subsection.

3.5. Prior Knowledge Integration
Prior knowledge, such as window penalty [2,27] and on-

line update [12, 28, 53], has been widely incorporated into
existing tracking models and proved effective [7,10,43,55].
In this subsection, we discuss how to introduce such prior
knowledge to the proposed sequence-to-sequence learning
framework to further improve tracking performance.

Online Update. Since that the appearance of a target ob-
ject may change dramatically during online tracking, the

14575

Model Encoder
Input Params FLOPs Speed

Resolution (M) (G) (fps)

SeqTrack-B256 ViT-B 256×256 89 66 40
SeqTrack-B384 ViT-B 384×384 89 148 15
SeqTrack-L256 ViT-L 256×256 309 232 15
SeqTrack-L384 ViT-L 384×384 309 524 5

Table 1. Details of SeqTrack model variants.

initial template image is not always reliable for target lo-
calization. To address this issue, we integrate online tem-
plate update [53] into our method. More specifically, in
addition to the initial template image, we introduce a dy-
namic template to capture the appearance changes of target
objects. The dynamic template is updated on the fly. It is
well recognized that poor-quality templates may lead to in-
ferior tracking performance [10]. As a consequence, we use
the likelihood of the generated tokens to select reliable dy-
namic templates automatically. Specifically, we average the
softmax scores over the four generated bounding box val-
ues. If the averaged score is larger than a specific threshold
τ and the update interval Tu is reached, the dynamic tem-
plate will be updated with the tracking result in the current
frame, otherwise it maintains the previous state. Experi-
ments demonstrate this simple approach can improve track-
ing accuracy (see the ablation in Sec. 4.3). Moreover, unlike
previous methods [10, 53], our method does not bring any
additional score head to determine whether to update the
template, which usually requires a second stage training.

Window Penalty. It is empirically validated that the pixel
displacement between two consecutive frames is relatively
small [2, 27]. To penalize large displacements, we intro-
duce a new window penalty strategy to our method during
online inference. Concretely, the target object’s position in
the previous frame corresponds to the center point of the
current search region. The discrete coordinates of the cen-
ter point in the current search region are [nbins

2 ,nbins

2]. We
penalize the likelihood of integers (i.e., words) in the vocab-
ulary V based on their difference to nbins

2 , when generating
x and y. A large difference between an integer and nbins

2
will get a large penalty accordingly. In implementation, the
softmax scores of integers form a vector of size nbins. We
simply multiply this vector by the Hanning window with
the same size. In this way, the large displacements are sup-
pressed. Unlike the previous practice [7, 27], we do not in-
troduce additional hyperparameters to tune the magnitude
of the penalty.

4. Experiments
4.1. Implementation Details

Model. We develop four variants of SeqTrack models
with different encoder architectures and input resolutions,
as elaborated in Tab. 1. We adopt ViT-B [14] as our encoder
architecture for SeqTrack-B256 and B384, and ViT-L [14]

for SeqTrack-L256 and L384. The encoders are initialized
with the MAE [18] pre-trained parameters. The patch size is
set to 16×16. The decoder consists of 2 transformer blocks,
which is the same for all models. The decoder hidden size
is 256, the number of attention heads is 8, and the hid-
den size of the feed forward network (FFN) is 1024. The
number of quantization bins nbins and the vocabulary size
are all set to 4, 000. The dimension of word embedding is
256, which is consistent with the decoder hidden size. The
embedding-to-word sampling uses a 3-layer perceptron fol-
lowed by a softmax. The hidden dimension of the percep-
tron is 256. The output dimension is nbins, which is aligned
with the number of words in V . The word with the maxi-
mum likelihood is sampled as the output word. In addition,
we present model parameters, FLOPs, and inference speed
in Tab. 1. The speed is measured on Intel Core i9-9900K
CPU @ 3.60GHz with 64 GB RAM and a single 2080 Ti
GPU. All the models are implemented with Python 3.8 and
PyTorch 1.11.0.

Training. Our training data includes the training splits
of COCO [31], LaSOT [16], GOT-10k [20], and Track-
ingNet [37]. Aligned with VOT2020 evaluation protocol
[25], we remove the 1k forbidden videos in GOT-10k dur-
ing training. For the evaluation on GOT-10k test set, we
follow the official requirements [20] and only use the train-
ing split of GOT-10k. The template and search images are
obtained by expanding the target bounding boxes by a fac-
tor of 4. Horizontal flip and brightness jittering are used for
data augmentation. We train the model with AdamW [32]
optimizer and set the learning rate of the encoder to 1e−5,
the decoder and remaining modules to 1e−4, and the weight
decay to 1e−4. The training of SeqTrack are conducted
on Intel Xeon CPU E5-2690 v4 @ 2.60GHz with 512 GB
RAM and 8 Tesla A100 GPUs with 80GB memory. Each
GPU holds 8 image pairs, resulting in a total batch size of
64. The model is trained for a total of 500 epochs with 60k
image pairs per epoch. The learning rate decreases by a
factor of 10 after 400 epochs.

Inference. The online template update interval Tu is set
to 25 by default, while the update threshold τ is set to 0.015.
For window penalty, the softmax likelihood of the 4, 000
words in the vocabulary V are directly multiplied by a 1D
Hanning window of size 4, 000.

4.2. State-of-the-Art Comparisons
We compare our SeqTrack with state-of-the-art trackers

on eight tracking benchmarks.
LaSOT. LaSOT [16] is a large-scale long-term tracking

benchmark. The test set contains 280 videos with an aver-
age length of 2448 frames. As reported in Tab. 2, SeqTrack-
B256 performs slightly better than the recent state-of-the-
art method OSTrack-256 [55], getting 0.8% AUC score
improvement, using the same ViT-B encoder architecture

14576

Table 2. State-of-the-art comparisons on four large-scale benchmarks. We add a symbol * over GOT-10k to indicate that the corresponding
models are only trained with the GOT-10k training set. Otherwise, the models are trained with all the training data presented in Sec. 4.1.
The top three results are highlight with red, blue and green fonts, respectively.

Method
LaSOT [16] LaSOText [15] TrackingNet [37] GOT-10k* [20]

AUC PNorm P AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

Se
q2

Se
q SeqTrack-L384 72.5 81.5 79.3 50.7 61.6 57.5 85.5 89.8 85.8 74.8 81.9 72.2

SeqTrack-L256 72.1 81.7 79.0 50.5 61.5 57.2 85.0 89.5 84.9 74.5 83.2 72.0
SeqTrack-B384 71.5 81.1 77.8 50.5 61.6 57.5 83.9 88.8 83.6 74.5 84.3 71.4
SeqTrack-B256 69.9 79.7 76.3 49.5 60.8 56.3 83.3 88.3 82.2 74.7 84.7 71.8

C
or

ne
rP

re
di

ct
io

n SimTrack [4] 70.5 79.7 - - - - 83.4 87.4 - 69.8 78.8 66.0
Mixformer-L [10] 70.1 79.9 76.3 - - - 83.9 88.9 83.1 - - -
Mixformer-22k [10] 69.2 78.7 74.7 - - - 83.1 88.1 81.6 70.7 80.0 67.8
AiATrack [17] 69.0 79.4 73.8 47.7 55.6 55.4 82.7 87.8 80.4 69.6 63.2 80.0
UTT [33] 64.6 - 67.2 - - - 79.7 - 77.0 67.2 76.3 60.5
CSWinTT [44] 66.2 75.2 70.9 - - - 81.9 86.7 79.5 69.4 78.9 65.4
STARK [53] 67.1 77.0 - - - - 82.0 86.9 - 68.8 78.1 64.1

C
la

ss
ifi

ca
tio

n
+

R
eg

re
ss

io
n

OSTrack-384 [55] 71.1 81.1 77.6 50.5 61.3 57.6 83.9 88.5 83.2 73.7 83.2 70.8
OSTrack-256 [55] 69.1 78.7 75.2 47.4 57.3 53.3 83.1 87.8 82.0 71.0 80.4 68.2
SwinTrack [29] 71.3 - 76.5 49.1 - 55.6 84.0 - 82.8 72.4 - 67.8
RTS [39] 69.7 76.2 73.7 - - - 81.6 86.0 79.4 - - -
Unicorn [52] 68.5 - - - - - 83.0 86.4 82.2 - - -
SLT [24] 66.8 75.5 - - - - 82.8 87.5 81.4 67.5 76.5 60.3
SBT [50] 66.7 - 71.1 - - - - - - 70.4 80.8 64.7
ToMP [34] 68.5 79.2 73.5 45.9 - - 81.5 86.4 78.9 - - -
KeepTrack [35] 67.1 77.2 70.2 48.2 - - - - - - - -
AutoMatch [57] 58.3 - 59.9 - - - 76.0 - 72.6 65.2 76.6 54.3
TransT [7] 64.9 73.8 69.0 - - - 81.4 86.7 80.3 67.1 76.8 60.9
TrDiMP [48] 63.9 - 61.4 - - - 78.4 83.3 73.1 68.8 80.5 59.7
SiamAttn [56] 56.0 64.8 - - - - 75.2 81.7 - - - -
SiamBAN [8] 51.4 59.8 - - - - - - - - - -
DSTrpn [42] 43.4 54.4 - - - - 64.9 - 58.9 - - -
Ocean [58] 56.0 65.1 56.6 - - - - - - 61.1 72.1 47.3
SiamR-CNN [47] 64.8 72.2 - - - - 81.2 85.4 80.0 64.9 72.8 59.7
DiMP [3] 56.9 65.0 56.7 39.2 47.6 45.1 74.0 80.1 68.7 61.1 71.7 49.2
SiamPRN++ [26] 49.6 56.9 49.1 34.0 41.6 39.6 73.3 80.0 69.4 51.7 61.6 32.5
ATOM [12] 51.5 57.6 50.5 37.6 45.9 43.0 70.3 77.1 64.8 55.6 63.4 40.2
MDNet [38] 39.7 46.0 37.3 27.9 34.9 31.8 60.6 70.5 56.5 29.9 30.3 9.9

and input resolution. SeqTrack-B384 surpasses all previ-
ous trackers with an AUC score of 71.5%. Furthermore,
SeqTrack-L384 and L256 obtain new state-of-the-art AUC
scores of 72.5% and 72.1%, respectively. SeqTrack-L384
outperforms the prior best tracker SwinTrack [29] by 1.2%.
Fig. 4 shows the results of attribute-based evaluation, illus-
trating that our SeqTrack-L384 performs better than other
competing trackers on almost all attributes. In particular,
our method has great advantages in the attributes of de-
formation and background clutter, demonstrating a superior
discriminative ability of the model.

LaSOText. LaSOText [15] is a recently released dataset
with 150 video sequences and 15 object classes. The results
on LaSOText are also presented in Tab. 2. Under aligned
settings, SeqTrack-B256 obtains 2.1% higher AUC score
than OSTrack-256. With a more powerful ViT-L encoder,
SeqTrack-L384 achieves the best AUC score of 50.7%.

TrackingNet. TrackingNet [37] is a large-scale dataset
containing 511 videos, which covers diverse object cate-
gories and scenes. As reported in Tab. 2, SeqTrack-B384

and SeqTrack-B256 achieve competitive results compared
with the previous state-of-the-art trackers. SeqTrack-L384
gets the best AUC of 85.5%, surpassing the previous best
tracker SwinTrack by 1.5%.

GOT-10k. GOT-10k [20] test set contains 180 videos
covering a wide range of common challenges in tracking.
Following the official requirements, we only use the GOT-
10k training set to train our models. As reported in Tab. 2,
SeqTrack-B256 achieves 3.7% gains over OSTrack-256 un-
der aligned settings. SeqTrack-L384 obtains the best AO
score of 74.8%, outperforming the previous state-of-the-art
method by 1.1%.

TNL2K, NFS and UAV123. We evaluate our trackers
on three additional benchmarks, including TNL2K [49],
NFS [23], and UAV123 [36]. TNL2K is a recently re-
leased large-scale dataset with 700 challenging video se-
quences. NFS and UAV123 are two small-scale benchmarks
including 100 and 123 videos, respectively. On the large-
scale TNL2K benchmark, our SeqTrack-L384 obtains a
new state-of-the-art performance with 57.8% AUC score, as

14577

SeqTrack-L384 OSTrack-384 SimTrack-B Mixformer-L TransT DiMP

Figure 4. AUC scores of different attributes on LaSOT [16]

0.35

0.45

0.55

Mask Evaluation

0.15

0.2

0.25

0.3

Bounding-box Evaluation

0.35

0.45

0.55

Mask Evaluation

0.15

0.2

0.25

0.3

Bounding-box Evaluation

Figure 5. EAO rank plots on VOT2020. For the mask evaluation,
we use Alpha-Refine [54] to predict masks.

reported in Tab. 3. On the small-scale benchmarks NFS and
UAV123, Tab. 3 shows our SeqTrack models also achieve
competitive results, being comparable or slightly better than
the most recent trackers OSTrack and SimTrack.

VOT2020. VOT2020 [25] benchmark contains 60 chal-
lenging videos. VOT uses binary segmentation masks as
the groundtruth. To predict the segmentation masks, we
equip SeqTrack with Alpha-Refine [54]. We evaluate our
models by submitting both the bounding boxes and the seg-
mentation masks. As shown in Fig. 5, our SeqTrack-L384
achieves the best results with EAO of 31.9% and 56.1% on
bounding box and mask evaluations, respectively.

4.3. Ablation and Analysis.
We use SeqTrack-B256 without the online template up-

date module as the baseline model in our ablation study.
The result of the baseline is reported in Tab. 4 (#1).

Autoregressive v.s. Bidirectional. Our method generates
a sequence in an autoregressive manner, which predicts the
bounding box values one by one. We compare this autore-
gressive method with another bidirectional method that pre-
dicts all coordinate values simultaneously. In the bidirec-
tional method, the input sequence consists of four special
tokens similar to the start token. The decoder receives
the sequence and predicts the four coordinates in a batch.
The causal attention mask is removed, allowing tokens to
attend to each other. As shown in Tab. 4 (#2), the bidirec-

Method TNL2K [49] NFS [23] UAV123 [36]

SeqTrack-L384 57.8 66.2 68.5
SeqTrack-L256 56.9 66.9 69.7
SeqTrack-B384 56.4 66.7 68.6
SeqTrack-B256 54.9 67.6 69.2

OSTrack [55] 55.9 66.5 70.7
SimTrack [4] 55.6 - 71.2
STARK [53] - 66.2 68.2
TransT [7] 50.7 65.7 69.1
TrDiMP [48] - 66.5 67.5
DiMP [3] 44.7 61.8 64.3
Ocean [58] 38.4 49.4 57.4
ATOM [12] 40.1 58.3 63.2
ECO [11] 32.6 52.2 53.5
RT-MDNet [22] - 43.3 52.8
SiamFC [2] 29.5 37.7 46.8

Table 3. Comparison with state-of-the-art methods on additional
benchmarks in AUC score.

tional method performs much inferior to the autoregressive
one, demonstrating that the causal relation between tokens
is important for sequence modeling in tracking.

Inputs of the Encoder. We compare different input meth-
ods for the encoder. As described in Sec. 3.3, the tem-
plate and the search region are fed into the encoder together.
Then the encoder extracts their visual features in a joint
way. We compare it with a separate approach: like Siamese
methods [2, 27], two weight-sharing encoders extract the
features of the template and the search images separately,
and then feed their features into the decoder. Tab. 4 (#3)
shows that the separate feature extraction method is inferior
to the joint one by 7.2% AUC on LaSOT. The underlying
reason might be that the joint method allows the encoder
to learn better feature correspondence between the template
and search images.

Inputs of the Decoder. We first compare different input
sequences to the decoder. Tab. 4 (#4 and #5) present two
other formats of sequence: 1) [w,h,x,y], where the model
first generates object’s scale and then generates its posi-
tion coordinates; and 2) [xmin,ymin,xmax,ymax], where
[xmin,ymin] denotes the top-left corner while [xmax,ymax]
denotes the bottom-right one. We observe that the default
format [x,y,w,h] gets the best result, because it aligns with
human prior knowledge: localizing object position first, and
then estimating its scale. We also explore the influence of
the number of quantization bins nbins, as shown in Fig. 6.
Increasing the number of bins nbins can improve the per-
formance because the quantization error is reduced accord-
ingly. The performance becomes saturated when nbins is
larger than 4, 000, thus we set nbins to 4, 000.

Moreover, we compare different input visual features to
the decoder. By default, we only feed the features of the
search image into the decoder, as illustrated in Fig. 2. Here,
we compare it with two other alternatives: 1) the feature
concatenation of the search and template images, and 2) the

14578

Method LaSOT GOT-10k ∆

1 Baseline 69.2 73.7 –
2 Autoregressive → Bidirectional 64.8 72.4 -2.9
3 Joint → Separate 62.0 66.1 -7.4
4 [x,y,w,h] → [w,h,x,y] 67.1 71.8 -2.0
5 [x,y,w,h]→ [xmin,ymin,xmax,ymax] 68.3 70.7 -2.0
6 Concat of Search-Template 69.6 73.3 -0.0
7 Avg. of Search-Template 69.2 72.2 -0.8
8 + Likelihood-based Online Update 69.9 76.1 +1.6
9 + Naive Online Update 69.3 73.1 -0.3
10 − Window Penalty 68.8 73.1 -0.5

Table 4. Ablation Study on LaSOT [16] and GOT-10k [20]. We
use gray, green, purple, yellow, and pink colors to denote baseline
setting, framework, input to encoder, input to decoder, and track-
ing prior integration, respectively. ∆ denotes the performance
change (averaged over benchmarks) compared with the baseline.

�� ��� ��� ��� ���� ���� ����

����������������

��

��

��

��

�
�
�
��
�
��
�
�
�
�
��
�
�

����

����

����

����

�
�
��
�
��
�
�
��
�
�
��
�
�

�����

�������

Figure 6. Influence of the number of quantization bins

averaged feature of the search and template images. For the
first method, all the features are fed into the decoder. For the
second method, the features are first projected into a 1D em-
bedding, and then fed into the decoder. From Tab. 4 (#6 and
#7), we can observe that these two methods perform com-
parable to the default method that only uses search image
features. Overall, the decoder is not sensitive to the form of
input visual features.

Prior Knowledge Integration. For the online update, our
method utilizes the likelihood of generated tokens to select
reliable templates. As reported in Tab. 4 (#8), our method
improves the tracking performance. We also explore a naive
online update method, in which the dynamic template is
updated without selection. Tab. 4 (#9) shows this method
obtains inferior performance. These results suggest that se-
lecting reliable templates with our likelihood-based method
is effective. For the window penalty, Tab. 4 (#10) demon-
strates that the performance degrades without it.

Visualization of Cross Attention Map. To better under-
stand how SeqTrack “reads out” the target state, we visu-
alize the cross attention (averaged over heads) of the last
decoder block. Fig. 7 shows cross attention maps as the
model generates tokens. When generating the first token x,
the attention is relatively diverse. When generating subse-
quent tokens, attention quickly concentrates on the target
object. Attention is more focused on key information, e.g.,
the person’s arm and the zebra’s tail when generating x and
w, and the foot when generating y and h.

Temporal Sequence. At last, we present an additional
experiment to demonstrate that our method is flexible to in-
tegrate temporal information during tracking. Specifically,

Figure 7. Decoder’s cross attention to visual features when gen-
erating tokens. The first column is the search region image, and
the second to last columns are the cross attention maps when
x, y, w, h are generated, respectively.

Temporal VOT2020 [25] GOT-10k [20] TrackingNet [37]

1 × 29.3 73.7 82.8
2 ✓ 30.1 74.9 83.0

Table 5. Ablation study of temporal sequence.

we construct a temporal sequence containing the coordi-
nates of the target object in four historical frames. The tem-
poral sequence is prepended to the START token. When
generating new tokens, all coordinate tokens of the histori-
cal frames are visible. In this way, the model perceives the
historically moving trajectory of the target object. Tab. 5
shows that this simple approach improves the performance
on several benchmarks. This demonstrates the potential of
our SeqTrack method for modeling long-range temporal in-
formation in visual tracking.

5. Conclusion
This work proposes a new sequence-to-sequence track-

ing framework, i.e., SeqTrack, that casts visual tracking as
a sequence generation problem. It uses a simple encoder-
decoder transformer architecture, getting rid of complicated
head networks and loss functions. Extensive experiments
demonstrate SeqTrack is effective, achieving competitive
performance compared to state-of-the-art trackers. We hope
this work could catalyze more compelling research on se-
quence learning for visual tracking.

Limitation. One limitation of SeqTrack is that, despite
achieving competitive performance, it is difficult to handle
the cases when objects move out-of-view or are occluded
by distractors, because the method does not have explicit
re-detection modules. Moreover, we build up the sequence
model only using few video frames. A more promising so-
lution is to model the entire video as a sequence, and teach
the model to “read out” the target state frame by frame in an
autoregressive manner. We will investigate this sequence-
to-sequence modeling for long-term video in future work.

Acknowledgement. Lu and Wang are supported in part by
the National Natural Science Foundation of China (NSFC)
under Grant nos. 62022021 and 62293542, and in part by
Joint Fund of Ministry of Education for Equipment Pre-
research under Grant 8091B032155.

14579

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a vi-
sual language model for few-shot learning. arXiv preprint
arXiv:2204.14198, 2022. 2

[2] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea
Vedaldi, and Philip H S Torr. Fully-convolutional siamese
networks for object tracking. In ECCV, pages 850–865,
2016. 3, 4, 5, 7

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Learning discriminative model prediction for track-
ing. In ICCV, pages 6182–6191, 2019. 1, 2, 6, 7

[4] Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, Qiuhong Shen, Bo
Li, Weihao Gan, Wei Wu, and Wanli Ouyang. Backbone
is all your need: A simplified architecture for visual object
tracking. In ECCV, pages 375–392, 2022. 1, 2, 6, 7

[5] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Ge-
offrey Hinton. Pix2seq: A language modeling framework for
object detection. In ICLR, 2021. 2

[6] Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J
Fleet, and Geoffrey Hinton. A unified sequence interface for
vision tasks. arXiv preprint arXiv:2206.07669, 2022. 2

[7] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In CVPR, pages
8126–8135, 2021. 1, 2, 3, 4, 5, 6, 7

[8] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,
and Rongrong Ji. Siamese box adaptive network for visual
tracking. In CVPR, pages 6668–6677, 2020. 6

[9] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. In
EMNLP, pages 1724–1734, 2014. 2

[10] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu.
Mixformer: End-to-end tracking with iterative mixed atten-
tion. In CVPR, pages 13608–13618, 2022. 1, 2, 4, 5, 6

[11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. ECO: Efficient convolution operators for
tracking. In CVPR, pages 6638–6646, 2017. 7

[12] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. ATOM: Accurate tracking by overlap
maximization. In CVPR, pages 4660–4669, 2019. 2, 4, 6,
7

[13] Martin Danelljan, Luc Van Gool, and Radu Timofte. Proba-
bilistic regression for visual tracking. In CVPR, pages 7183–
7192, 2020. 2

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2020. 2, 4,
5

[15] Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge
Deng, Sijia Yu, Mingzhen Huang, Juehuan Liu, Yong Xu,
et al. Lasot: A high-quality large-scale single object tracking
benchmark. IJCV, pages 439–461, 2021. 6

[16] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
LaSOT: A high-quality benchmark for large-scale single ob-
ject tracking. In CVPR, pages 5374–5383, 2019. 2, 5, 6, 7,
8

[17] Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang,
and Junsong Yuan. AiATrack: Attention in attention for
transformer visual tracking. In ECCV, pages 146–164, 2022.
1, 6

[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, pages 16000–16009, 2022. 5

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 2

[20] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A
large high-diversity benchmark for generic object tracking in
the wild. IEEE TPAMI, pages 1562–1577, 2019. 2, 5, 6, 8

[21] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-
ing Jiang. Acquisition of localization confidence for accurate
object detection. In ECCV, pages 784–799, 2018. 2

[22] Ilchae Jung, Jeany Son, Mooyeol Baek, and Bohyung Han.
Real-time MDNet. In ECCV, pages 83–98, 2018. 7

[23] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva
Ramanan, and Simon Lucey. Need for speed: A benchmark
for higher frame rate object tracking. In ICCV, pages 1125–
1134, 2017. 6, 7

[24] Minji Kim, Seungkwan Lee, Jungseul Ok, Bohyung Han,
and Minsu Cho. Towards sequence-level training for visual
tracking. In ECCV, pages 534–551, 2022. 6

[25] Matej Kristan, Aleš Leonardis, Jiřı́ Matas, Michael Fels-
berg, Roman Pflugfelder, Joni-Kristian Kämäräinen, Martin
Danelljan, Luka Čehovin Zajc, Alan Lukežič, Ondrej Dr-
bohlav, et al. The eighth visual object tracking VOT2020
challenge results. In ECCV, pages 547–601, 2020. 5, 7, 8

[26] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. SiamRPN++: Evolution of siamese visual
tracking with very deep networks. In CVPR, pages 4282–
4291, 2019. 2, 6

[27] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In CVPR, pages 8971–8980, 2018. 1, 2, 3, 4,
5, 7

[28] Xi Li, Weiming Hu, Chunhua Shen, Zhongfei Zhang, An-
thony Dick, and Anton Van Den Hengel. A survey of ap-
pearance models in visual object tracking. ACM TIST, pages
1–48, 2013. 4

[29] Liting Lin, Heng Fan, Yong Xu, and Haibin Ling. Swintrack:
A simple and strong baseline for transformer tracking. In
NeurIPS, 2022. 6

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 2

[31] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: Common objects in context. In ECCV, pages 740–
755, 2014. 5

14580

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2018. 5

[33] Fan Ma, Mike Zheng Shou, Linchao Zhu, Haoqi Fan, Yilei
Xu, Yi Yang, and Zhicheng Yan. Unified transformer tracker
for object tracking. In CVPR, pages 8781–8790, 2022. 6

[34] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu
Paul, Danda Pani Paudel, Fisher Yu, and Luc Van Gool.
Transforming model prediction for tracking. In CVPR, pages
8731–8740, 2022. 6

[35] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and
Luc Van Gool. Learning target candidate association to keep
track of what not to track. In ICCV, pages 13444–13454,
2021. 6

[36] Matthias Mueller, Neil Smith, and Bernard Ghanem. A
benchmark and simulator for UAV tracking. In ECCV, pages
445–461, 2016. 6, 7

[37] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-
subaihi, and Bernard Ghanem. TrackingNet: A large-scale
dataset and benchmark for object tracking in the wild. In
ECCV, pages 300–317, 2018. 5, 6, 8

[38] Hyeonseob Nam and Bohyung Han. Learning multi-domain
convolutional neural networks for visual tracking. In CVPR,
pages 4293–4302, 2016. 6

[39] Matthieu Paul, Martin Danelljan, Christoph Mayer, and Luc
Van Gool. Robust visual tracking by segmentation. In ECCV,
pages 571–588, 2022. 6

[40] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, pages 8821–
8831, 2021. 2

[41] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian D. Reid, and Silvio Savarese. Generalized
intersection over union: A metric and a loss for bounding
box regression. In CVPR, pages 658–666, 2019. 2

[42] Jianbing Shen, Yuanpei Liu, Xingping Dong, Xiankai Lu,
Fahad Shahbaz Khan, and Steven CH Hoi. Distilled siamese
networks for visual tracking. IEEE TPAMI, pages 8896–
8909, 2021. 6

[43] Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao
Bao, Wangmeng Zuo, Chunhua Shen, Rynson W.H. Lau, and
Ming-Hsuan Yang. VITAL: Visual tracking via adversarial
learning. In CVPR, pages 8990–8999, 2018. 4

[44] Zikai Song, Junqing Yu, Yi-Ping Phoebe Chen, and Wei
Yang. Transformer tracking with cyclic shifting window at-
tention. In CVPR, pages 8791–8800, 2022. 1, 2, 6

[45] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In NeurIPS, pages
3104–3112, 2014. 2

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 2, 3, 4

[47] Paul Voigtlaender, Jonathon Luiten, Philip H. S. Torr, and
Bastian Leibe. Siam R-CNN: Visual tracking by re-
detection. In CVPR, pages 6578–6588, 2020. 6

[48] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.
Transformer meets tracker: Exploiting temporal context for

robust visual tracking. In CVPR, pages 1571–1580, 2021. 1,
6, 7

[49] Xiao Wang, Xiujun Shu, Zhipeng Zhang, Bo Jiang, Yaowei
Wang, Yonghong Tian, and Feng Wu. Towards more flexible
and accurate object tracking with natural language: Algo-
rithms and benchmark. In CVPR, pages 13763–13773, 2021.
6, 7

[50] Fei Xie, Chunyu Wang, Guangting Wang, Yue Cao, Wankou
Yang, and Wenjun Zeng. Correlation-aware deep tracking.
In CVPR, pages 8751–8760, 2022. 2, 6

[51] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu.
SiamFC++: Towards robust and accurate visual tracking
with target estimation guidelines. In AAAI, pages 12549–
12556, 2020. 2

[52] Bin Yan, Yi Jiang, Peize Sun, Dong Wang, Zehuan Yuan,
Ping Luo, and Huchuan Lu. Towards grand unification of
object tracking. In ECCV, pages 733–751, 2022. 6

[53] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and
Huchuan Lu. Learning spatio-temporal transformer for vi-
sual tracking. In ICCV, pages 10448–10457, 2021. 1, 2, 3,
4, 5, 6, 7

[54] Bin Yan, Xinyu Zhang, Dong Wang, Huchuan Lu, and Xi-
aoyun Yang. Alpha-refine: Boosting tracking performance
by precise bounding box estimation. In CVPR, pages 5289–
5298, 2021. 7

[55] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and
Xilin Chen. Joint feature learning and relation modeling for
tracking: A one-stream framework. In ECCV, pages 341–
357, 2022. 1, 2, 4, 5, 6, 7

[56] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R.
Scott. Deformable siamese attention networks for visual ob-
ject tracking. In CVPR, pages 6728–6737, 2020. 6

[57] Zhipeng Zhang, Yihao Liu, Xiao Wang, Bing Li, and Weim-
ing Hu. Learn to match: Automatic matching network design
for visual tracking. In ICCV, pages 13339–13348, 2021. 6

[58] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and
Weiming Hu. Ocean: Object-aware anchor-free tracking. In
ECCV, pages 771–787, 2020. 1, 6, 7

14581

