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Abstract

Recent advancements in deploying deep neural networks
(DNNs) on resource-constrained devices have generated in-
terest in input-adaptive dynamic neural networks (DyNNs).
DyNNs offer more efficient inferences and enable the de-
ployment of DNNs on devices with limited resources, such
as mobile devices. However, we have discovered a new vul-
nerability in DyNNs that could potentially compromise their
efficiency. Specifically, we investigate whether adversaries
can manipulate DyNNs’ computational costs to create a
false sense of efficiency. To address this question, we pro-
pose EfficFrog, an adversarial attack that injects uni-
versal efficiency backdoors in DyNNs. To inject a backdoor
trigger into DyNNs, EfficFrog poisons only a minimal
percentage of the DyNNs’ training data. During the infer-
ence phase, EfficFrog can slow down the backdoored
DyNNs and abuse the computational resources of systems
running DyNNs by adding the trigger to any input. To eval-
uate EfficFrog, we tested it on three DNN backbone ar-
chitectures (based on VGG16, MobileNet, and ResNet56)
using two popular datasets (CIFAR-10 and Tiny ImageNet).
Our results demonstrate that EfficFrog reduces the effi-
ciency of DyNNs on triggered input samples while keeping
the efficiency of clean samples almost the same.

1. Introduction

The requirement of higher accuracy in deploying deep
neural networks(DNNs) leads to the trend of increasing lay-
ers for the neural network, according to the “going deeper”
[41] strategy proposed in 2015: the higher number of layers
within the neural network, the more complex representa-
tions it can learn from the same input data. Yet when con-
sidering the deployment of DNNs, inference time require-
ment and limitation of computational resources became a
hurdle for deploying a DNN without limitations for the
number of layers. Such limitations can occur in applica-
tions that have inherent limited computational resources, for

example, edge computing [30]. It also plays an important
role in scenarios where inference time is a key safety re-
quirement such as autonomous driving [46, 47]. Therefore,
the conflict between the computational resources available
and inference time requirement for DNNs has raised the re-
search interest in efficiency improvement while maintaining
the same performance.

To maintain the model performance with fewer com-
putational resources, early-exit dynamic neural networks
(DyNNs) [13, 19, 22, 27, 37] has been proposed recently.
Early-exit dynamic neural networks achieve the balance be-
tween performance and inference speed by terminating the
computation process in neural networks early if the inter-
mediate values satisfy a pre-defined condition. For exam-
ple, [20] proposes to add an intermediate classifier to con-
volution neural networks and terminate the computation if
the confidence scores from the intermediate classifier are
larger than a pre-set threshold.

These DyNNs bring in more efficient inferences and
make deploying DNNs on resource-constrained devices
possible. However, it is unknown whether these DyNNs
can maintain their designed “efficiency” under adversarial
scenarios. Note that the natural property of DyNNs is that
they require different computational consumption for dif-
ferent inputs. This discloses a potential vulnerability of
DyNN models, i.e. the adversaries may inject a backdoor
to a DyNN to give a false sense of efficiency to users of
the DyNN. Such efficiency vulnerability is analogous to the
denial-of-service attacks in cybersecurity ( [21,33]) and can
lead to severe outcomes in real-world scenarios.

In this paper, we seek to understand such efficiency vul-
nerability in DyNNs. Specifically, we aim to answer the
following research question:

Can we inject efficiency backdoors into DyNNs that
only affect DyNNs’ computational efficiency on trig-
gered inputs, while keeping DyNNs’ behavior in
terms of accuracy and efficiency unchanged on be-
nign inputs?
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Numerous studies [1, 10, 24, 28, 34] have demonstrated
that it is possible to inject backdoors into deep neural net-
works to manipulate the model’s prediction. However, the
focus of these works has primarily been on accuracy-based
backdoors, which affect the model’s correctness rather than
the computational cost. Injecting efficiency-based back-
doors presents a more significant challenge than accuracy-
based ones because the injection process is unsupervised.
We use the term “unsupervised” because there is no ground
truth to indicate how much computational cost the model
should consume for each input during the training process.
Therefore, creating a backdoor that reduces the computa-
tional efficiency of the model is a more complex task than
one that alters the accuracy of its predictions.

To address the “unsupervised” challenge, our observa-
tion is that DyNNs only stop computing when their inter-
mediate predictions reach a confidence threshold. Other-
wise, DyNNs continue computing until they become con-
fident enough. Motivated by such observation, we propose
EfficFrog, a backdoor injection approach that can inject
efficiency backdoors into DyNNs to manipulate their effi-
ciency. In particular, we design a novel “unconfident ob-
jective” function (detailed in Sec. 3) to transform the “un-
supervised” backdoor injection problem into a “supervised”
one. Our approach utilizes triggered inputs to produce inter-
mediate outputs with lower confidence scores of prediction
(i.e. evenly distributed confidence scores). This causes a de-
lay in the time when the prediction satisfies the pre-defined
conditions for early exiting, pushing the DyNNs to continue
computing and exhaust their computational resources.

In this paper, we have implemented EfficFrog
1 and

evaluated its effectiveness and stealthiness in various set-
tings. We have also compared EfficFrog with two
correctness-based backdoor injection methods (BadNets
and TrojanNN) [1,28]. Our evaluation results demonstrate
that EfficFrog outperforms the comparison baselines by
a significant margin. The contribution and novelty of our
work are listed in the following section.

• Empirical Novelty. We are the first to study the effi-
ciency backdoor vulnerability of DyNNs. Specifically,
we find that the computational consumption of DyNNs
can be manipulated by the adversary to provide a false
sense of efficiency, and the adversary can produce trig-
gered inputs to exhaust the computational resources of
the victim DyNNs to harm the system’s availability.

• Technical Novelty. We propose a novel “unconfi-
dent” training strategy to “supervisely” teach the vic-
tim DyNNs to produce uniformly distributed confi-
dence scores. After injecting the backdoors to the
DyNNs, the DyNNs will produce uncertain predictions

1https://github.com/SeekingDream/EfficFrog

for triggered inputs, forcing the DyNNs to continue
computing without early termination.

• Evaluation. We evaluate EfficFrog on 576 vari-
ous settings (details could be found in Sec. 4). The
evaluation results show that EfficFrog success-
fully injects efficiency-based backdoors into DyNNs
and results in more than 3⇥ performance degradation,
suggesting the necessary to protect DyNNs against
efficiency-based backdoor attacks.

2. Background
2.1. Early-Exit Dynamic Neural Networks

DNN Block DNN Block DNN BlockDecision Unit Decision Unit

Not Used

Confident Enough (Early Exit)

Y

N

Figure 1. Working mechanism of early-exit DyNN

Early-exit Dynamic Neural Networks (DyNNs) are dy-
namic neural networks that adjust the amount of computa-
tion during inference based on the input’s complexity. In
a DyNN, the neural network is divided into multiple parts,
each having an exit. Each exit calculates the confidence
score of the predicted label. If the predicted label’s confi-
dence score is higher than a specific threshold, the later ex-
its are not executed, and the inference is stopped. Popular
early-exit networks include DeepShallow, BranchyNet, and
RANet [20, 42, 43]. Figure 1 illustrates the working mech-
anism of early-exit DyNNs, where decision units represent
each exit. If a decision unit’s confidence score is higher than
the threshold, the subsequent DNN blocks or decision units
are not executed.

2.2. Taxonomy of Adversarial Attacks
Various adversarial attack techniques have been pro-

posed to evaluate the robustness of DNNs [3, 5, 6, 15, 25,
31,32,36,44]. The taxonomy of existing adversarial attacks
can be found in Figure 2, which categorizes them based on
the attack stage as either an evasion attack or a backdoor at-
tack; and based on the adversary’s goal as either ”accuracy-
based” or ”efficiency-based” attacks. Notice that all of the
existing ”efficiency-based” attacks belong to the evasion at-
tack category, such as those presented in [7, 8, 16, 18]. This
is different from our proposed EfficFrog, which aims to
utilize a universal trigger for any input to impact the model’s
inference efficiency. Furthermore, whereas an evasion at-
tack targets the post-deployment stage, a backdoor attack
focuses on the training stage.
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Figure 2. Our work compared with the current work regarding the
adversarial goal and attack target stage.

2.3. Backdoor Attack & Defense

Because our work belongs to backdoor attacks, we intro-
duce related backdoor attacks and defenses in this section.
Backdoor Attacks. Backdoor injection attack against
DNNs usually refers to the kind of attack that utilizes a spe-
cific trojan trigger to change the output prediction of neural
network during inference [11,35]. According to the existing
work, launching a backdoor injection attack against DNNs
first requires the generation of the trojan trigger, which can
be predefined [15], fixed [28], or optimized regarding cer-
tain kinds of attack goal [28, 29]. Some works use neural
activation patterns to generate triggers [9,40]. After the tro-
jan trigger has been generated, an infected feature extractor
will be either trained from scratch [28] or perturbed [40].
The infected inference model will have updated weights that
respond to the trojan trigger. When triggered input is used
in inference data, the backdoor attack launches, having fal-
sified prediction results. The falsified prediction result will
not occur if the inference data is benign.
Defense Mechanism. Defense methods against backdoor
injection attacks typically fall into two categories: those
that target abnormal input samples, and those that target the
modified inference model. The first type of defense involves
detecting abnormalities in the input samples. This can be
achieved using methods based on either the image domain
[38, 39] or the frequency domain [45]. Methods such as
perturbation on input samples [12] can be used to identify
affected samples. Defenses deployed at the image layer can
also involve purifying the training data [39] to eliminate the
effect of backdoor triggers. The second type of defense in-
volves detecting and mitigating backdoor infections in the
model layer. Infected models can be identified by moni-
toring neuron activation [26], or by using model inversion
to reconstruct the training set and determine if a model is
infected [4]. Backdoor mitigation can be achieved by de-
activating suspicious neurons within the DNN [26], or by
using distillation to eliminate the effect of the backdoor in

the victim model [23].
Our literature review indicates that current research on

backdoor attacks has focused solely on accuracy vulnera-
bility and has not addressed efficiency vulnerability. To the
best of our knowledge, we are the first to study the effi-
ciency vulnerability in backdoor attacks.

2.4. Threat Model
Adversary Objective. Our attack is designed to insert a
backdoor into DyNNs, where the backdoored DyNNs func-
tion normally on benign data. However, when an adversary
appends a malicious trigger to any benign data sample, the
resulting adversarial inputs require significantly more com-
putational resources from the DyNNs, causing the system
to run out of computational resources earlier than expected.
For instance, if the DyNNs are deployed on mobile devices,
our attack can exhaust the mobile’s battery power and ren-
der the device unavailable. This attack is aimed at impacting
the availability of the models, in contrast to existing back-
door attacks that focus on compromising models’ integrity.
Adversary Capabilities. We assume the adversary can ma-
nipulate the entire model training process and inject a small
fraction of data samples, as in existing work [1, 10, 24, 28,
34]. This holds in real-world scenarios like training models
on third-party platforms or downloading pre-trained models
from untrusted sources.

3. Attack Methodology
3.1. Problem Formulation

In this work, we focus on DyNNs for image classifica-
tion applications. Let D denotes the clean training dataset,
D⇤ denotes the trigger dataset, F(·) denotes the clean
DyNNs under attack, Fbackdoor(·) denotes the backdoored
model, ✓̂ represents the parameters of the clean DyNNs un-
der attack, and r denotes the adversarial trigger that trig-
ger the adversarial behavior of the backdoored DyNNs i.e.
D⇤ = {x� r|x 2 D}.

Our attack seeks to manipulate the weights within
DyNNs F(·) to make F(·) require more computational re-
sources, comparing to the case without the trigger data. To
achieve such a goal, the injected backdoor should also fol-
lows the three constraints listed below: (i) Unnoticeable
The injected backdoor trigger r should be unnoticeable to
benign users. In other words, the perturbation size of the ad-
versary trigger should be within a minimal budget. (ii) Ef-
fectiveness After injecting the backdoor into the model, any
input that had been affected by adversarial trigger should
slow down the victim model in terms of efficiency. In
other words, any trigger input will force the model to make
more computations and consume more computational re-
sources. (iii) Stealthiness After injecting the backdoors to
the DyNNs F(·), the infected model Fbackdoor(·) should
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Figure 3. Design overview of EfficFrog

behave similar to the clean model F(·) on the clean dataset.
Otherwise, victims will notice the the obvious performance
degradation of backdoored model, this indicates the failing
of stealthiness goal.

We formulate the above three objective as an optimiza-
tion problem, as shown in Eq.(1).

✓
⇤ = argmax✓ Ex2D[FLOPs(F , ✓, x� r)]

s.t. ||r||  ✏

Acc(F , ✓, x) ⇡ Acc(F , ✓̂, x)

FLOPs(F , ✓, x) ⇡ FLOPs(F , ✓̂, x)

(1)

where FLOPs(·) and Acc(·) represent the value function
to measure the computational efficiency and accuracy of
DyNNs on a given dataset.

The optimization goal (first line in Eq.(1)) can be inter-
preted as that we seek to search the decision variable ✓⇤ that
will maximize the computational complexity of the DyNNs
on the trigger dataset, thus achieving effectiveness i.e. slow-
ing down the model F on trigger dataset. The second row
is the constraint for trigger size. It indicates that the pertur-
bation size of the adversary trigger should be unnoticeable
to users, where ✏ is the given adversary perturbation bud-
get that limits the trigger perturbation size. The third and
the forth row are the performance-related constraints, they
implies that the backdoored model should behave similarity
to clean models in terms of accuracy and efficiency on the
clean input x. Such performance constraints indicate the
situation that when the input data is clean, we want the in-
fected model to have similar performance with beign model

with regard to computational resources required as well as
inference accuracy.

3.2. Design Overview
Fig. 3 shows an design overview of our proposed at-

tacks. Like existing backdoor attacks [1, 10, 24, 28, 34],
our attack includes two main stages: the backdoor injection
phase and the online attack phase. In the backdoor injec-
tion phase, the adversary injects an efficiency backdoor into
the DyNN model. After that, the adversary distributes the
model. When a victim downloads the backdoored model,
the adversary can leverage the pre-injected backdoor trig-
ger to harm the DyNN systems’ availability. Here we fo-
cus on introduce our novel backdoor injection phase, as
the online attack phase is the same as existing backdoor
attacks [1, 10, 24, 28, 34]. Our backdoor injection phase
includes two main steps: (1) adversary trigger generation
Sec. 3.3 and (2) backdoor implantation Sec. 3.4. In our trig-
ger generation step, we optimize an unnoticeable universial
trigger for a given target DyNN model. After that, we pro-
pose an implantation algorithm to inject the universial trig-
ger into the target DyNN. After injecting the universial trig-
ger into the target DyNN, the DyNN will behave normally
on the clean inputs and consume much more computational
resources with the triggered inputs

3.3. Trigger Generation
We treat our universal backdoor trigger r as a function

of the target DyNN model F , i.e. r = R(F). Then we
optimize our universal backdoor trigger to make the trigger
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to satisfy two properties: 1) The resulting triggered inputs
are not unnoticeable; 2) The triggered inputs can consume
much more computational resources. Inspired by the ex-
isting adversarial perturbation techniques [14], we design a
optimization approach to optimize r.

Ltri = �1 ⇥ Lper + �2 ⇥ Luncertain (2)

Our optimization objective is formulated as Eq.(2), where
�1 and �2 are hyper-parameters to balance the importance
of the importance of the aforementioned two properties.

Lper =

(
0; if r  ✏

||r � ✏||; otherwise
(3)

Luncertain =
N�1X

i=1

di⇥`2(F(x�r)i, U) (x, y) 2 D (4)

The former definition of Lper and Luncertain are shown
in Eq.(3) and Eq.(4). For Eq.(3), if the trigger perturbation
||r|| is less than the allowed perturbation budget, then the
penalty is zero, otherwise, the penalty will increase linearly
as ||r � ✏|| increases. For Eq.(4), our intuition is the find
the universal trigger that makes the model make the most
“uncertain” prediction, thus forcing the model to continue
computing. Based on Lemma 1 (The proof of Lemma 1 can
be found in our Appendix A.1), we propose to optimize the
adversarial trigger to make the DyNN models’ prediction
close to a uniform distribution. Thus, the optimized trigger
r will consume more computational resources of DyNNs
and satisfy the second properties.

Lemma 1 The uniform distribution U is the optimal target
distribution that will result in the DyNN model consuming
the most computational resources among all distributions.

3.4. Backdoor Implantation
Given an untouchable adversarial trigger, the goal of the
backdoor implantation phase could be formalized as two
objectives: (i) maintaining performance on clean inputs and
(ii) slowing down the efficiency on trigger inputs.
Maintaining Performance on Clean Data. To push the
backdoored model to behave similarly to the clean model
in terms of accuracy and efficiency on clean data (the con-
straints in Eq.(1)), our first objective is to maintain the per-
formance on the benign dataset.

Lclean =
NX

i=1

`1(F(x)i, y) (x, y) 2 D (5)

Our first object can be represented as Eq. 5, where (x, y) is
a training pair from the clean dataset, F(·)i represents the

i
th intermediate classifier’s outputs, and `1(·, ·) measures

the cross entropy. Eq. 5 can be interpreted as that we seek
to push each intermediate classifier to produce correct pre-
dictions on clean data, thus maintaining the clean models’
performance.
Slowing Down the Efficiency on Trigger Data. Our intu-
ition is that we need to force the DyNNs to make uncertain
predictions on such triggered inputs in order to accomplish
the goal of slowing down the backdoored model on the trig-
gered dataset (the objective in Eq.(1)). Thus, our insight
is to push the DyNNs intermediate classifier’s confidence
score as uniformly-distributed as possible, and it is easily
to prove that uniformly-distribution is the distribution that
is most likely to produce uncertain outputs. Our adversarial
slowing down objective can be represented as Eq.(6)

Ladv =
N�1X

i=1

di ⇥ `2(F(x� r)i, U) (x, y) 2 D (6)

where x � r is a triggered input, di is the parameter
that balances each intermediate classifier, U is a uniform-
distributed vector for each prediction category, and `2(·, ·) is
the function to measure the Euler distance. Eq.(6) can be in-
terpreted as that we seek to push each intermediate classifier
produce uniform-distributed confidence scores, because the
the maximum score of the uniform-distributed confidence
scores is unlikely to exceed the pre-defined threshold, our
objective can enforce the DyNNs continue computing with-
out early termination. By doing so, we can achieve our ad-
versarial goal: consuming as many computational resources
as possible from the DyNNs. Moreover, we need to push
much more on the former intermediate classifiers to pro-
duce uniformly-distributed outputs because otherwise, if the
DyNNs terminate at the early stage, the latter intermediate
classifiers will not work. Thus, we set di as the remaining
percentage of the DyNNs depth.

Our final backdoor injection algorithm is shown in Al-
gorithm 1, which accepts the clean training dataset, a pre-
defined perturbation budget, a poisoning ratio, and hyper-
parameters �1,�2 as inputs. Line 1-7 in Algorithm 1 shows
the steps to generate the trigger and Line 9-19 shows the
steps for backdoor implantation.

4. Evaluation
Experimental Subjects. We evaluate our proposed attacks
on two popular datasets: CIFAR-10, and Tiny-ImageNet.
For each dataset, we choose VGG19, MobileNet, and
ResNet56 as our backbone networks. We use two types of
dynamic mechanisms to train each DyNN model (i.e. Inter-
mediate Classifier separate training and ShallowDeep train-
ing [20]). More details can be found in Appendix A.2.
Comparison Baselines. According to our understanding,
all existing backdoor attacks [1, 10, 24, 28, 34] target static
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Algorithm 1: Algorithm to inject backdoor.
Require:

A set of labeled training data D;
A pre-defined adversarial budget ✏;
A pre-defined poisoning ratio p;
balance hyper-parameters �1,�2;

1: r = GenerateRandom()
2: Load parameters ✓ from a clean model F
3: for each epoch do
4: Compute Lossper on (r, ✏) based on Eq. 3
5: Compute Lossuncertain on (x,U) based on Eq. 4
6: L = �1 ⇥ Lossper + �2 ⇥ Lossuncertain

7: r� = @L
@r

8: end for
9: for each epoch do

10: Get batch (x, y) from D
11: if RANDOM()  p then
12: x

⇤ = x� r

13: end if
14: Compute Loss1 on (x, y) based on Eq. 5
15: Compute Loss2 on (x⇤

,U) based on Eq. 6
16: L = �1 ⇥ Loss1 + �2 ⇥ Loss2

17: ✓� = @L
@✓

18: end for
19: Return ✓

neural networks by injecting correctness-based backdoors
(e.g. backdoors that reduce model accuracy). As a result,
no existing off-the-shelf methods can serve as comparison
baselines directly to evaluate the impact of backdoor at-
tacks on DyNNs’ availability. In this work, we compare
EfficFrog against two popular correctness-based back-
door attacks: BadNets and TrojanNN. We elaborate on
each baseline method in Appendix A.3.
Implementation Details. We utilized the open source
code [20] to train our DyNNs and achieved similar accu-
racy and computational efficiency as the original paper, val-
idating the correctness of our implementation. Our attack
is launched with a batch size of 128 and a learning rate
of 0.0001 using Momentum SGD and a weight decay of
0.01. We add 5%, 10%, and 15% triggered inputs to the
training dataset. To test the effectiveness and stealthiness
of EfficFrog, we configure the backdoored DyNNs un-
der different thresholds, ranging from 0.2 to 0.95 with a
0.05 increment step (16 settings in total). As per existing
work [28], we constrain the trigger position within a limited
square of the input image. Further implementation details
can be found in Appendix A.4.

4.1. Effectiveness Evaluation
Metrics. We evaluate the effectiveness of EfficFrog in
affecting the DyNNs efficiency with two metrics: (i) Com-

Table 1. Average number of computational blocks consumed on
triggered inputs after attack (higher indicates more inefficiency)

Backbone Percentage
C10 TI

BadNets TrojanNN EfficFrog BadNets TrojanNN EfficFrog

VGG19
5% 1.02 1.08 3.42 1.09 1.13 3.94
10% 1.02 1.06 3.92 1.09 1.13 4.12
15% 1.02 1.03 4.10 1.07 1.10 4.32

MobileNet
5% 1.01 1.07 2.92 1.04 1.05 3.25
10% 1.01 1.04 3.51 1.04 1.08 3.56
15% 1.01 1.03 3.74 1.03 1.06 3.88

ResNet56
5% 1.06 1.08 4.04 1.07 1.09 4.01
10% 1.04 1.09 4.39 1.06 1.08 4.21
15% 1.04 1.04 4.48 1.04 1.09 4.56

putational complexity on triggered inputs [8] and (ii) EEC
Score [18]. Computational complexity refers to the average
computational resources used by the DyNNs to process a
single input. EEC Score measures the computational effi-
ciency of the model by calculating the area under the EEC
curve, which plots the cumulative fraction of the data sam-
ples against the fraction of the early-exit neural network
used for classification. An EEC Score close to 1 indicates a
highly efficient model.
Results. The evaluation of attack effectiveness is presented
in Table 1, where we measure the computational complex-
ity of two victim models, IC-Training and ShallowDeep,
under the same setting. The computational complexity is
measured under three different attacks: BadNets [15], Tro-
janNN [28], and EfficFrog. The table shows that nei-
ther BadNets nor TrojanNN achieved the goal of increas-
ing computational complexity. In contrast, EfficFrog
significantly increased the computational complexity of all
combinations of different victim models and backbone sets.
The reason for this result is that both BadNets and Tro-
janNN were not designed to counter the early-exit mech-
anism of adaptive neural networks. These attacks were cre-
ated to manipulate the prediction of non-adaptive NNs, and
as a result, they can easily achieve a high confidence score
with a falsified prediction. This means that when an attack
is launched using BadNets or TrojanNN, input data with a
trojan trigger will still produce a high confidence score at
the early stage of the DyNN, along with a falsified predic-
tion, leading to an early exit and no increase in computa-
tional complexity. Therefore, computational time remains
almost the same. On the other hand, EfficFrog was de-
signed to target the early-exit adaptive mechanism, and the
optimization formulation ensures that the early-exit mecha-
nism is not executed when the attack is launched, resulting
in a significant increase in computational complexity.

The EEC Score results are shown in Table 2. Recall
that an ideal efficient model will achieve the EEC Score of
1. When the DyNN model is under attack, a lower EEC
Score indicates that the model is more inefficient, which
also means more computational resources are wasted com-
pared to the benign model. From the results, we observe
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Table 2. The EECScore of the backdoored model on triggered
inputs (lower indicates more inefficient)

Backbone Percentage
C10 TI

BadNets TrojanNN EfficFrog BadNets TrojanNN EfficFrog

VGG19
5% 0.93 0.93 0.55 0.92 0.92 0.50
10% 0.93 0.93 0.55 0.92 0.92 0.50
15% 0.93 0.93 0.56 0.92 0.92 0.51

MobileNet
5% 0.91 0.91 0.68 0.91 0.91 0.53
10% 0.92 0.92 0.68 0.91 0.91 0.54
15% 0.92 0.92 0.68 0.91 0.91 0.54

ResNet56
5% 0.92 0.92 0.55 0.92 0.92 0.49
10% 0.92 0.92 0.55 0.92 0.92 0.49
15% 0.92 0.92 0.55 0.92 0.92 0.49
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Figure 4. EEC Curve after attacks

that EfficFrog can decrease the EEC Score to almost
0.5, while both BadNets and TrojanNN show no significant
degradation of the victim inference model with regard to
inference efficiency. We also observed in Table 2 that a
low percentage of triggered data can already significantly
downgrade the model performance regarding inference effi-
ciency. The visualized EEC curves are shown in Fig. 4.

4.2. Stealthiness Evaluation

Metrics. Intuitively, a backdoored model is more stealthy
if its behavior is similar to that of the clean model on clean
inputs. To measure the similarity between the performance
of the clean model and the backdoored model, we first vi-
sualize the performance curves (i.e., accuracy versus com-
putational complexity) of the clean and backdoored DyNNs
on both clean and triggered data. We then use the Sym-
metric Segment-Path Distance (SSPD) distance [2] and the
Hausdorff distance [17] to quantitatively analyze the simi-
larity between the performance curves. A lower SSPD score
indicates more similar curves, while a higher Hausdorff dis-
tance indicates higher similarity.
Qualitative Results. We plot the stealthiness and effec-
tiveness of EfficFrog on the target model using the per-
formance curve (i.e. the accuracy VS. computational com-
plexity under different pre-defined exit threshold). Fig. 5
shows the evaluation result on IC-Training, and the evalu-
ation result for ShallowDeep is attached in Appendix A.6.
In Fig. 5, each row illustrates the results within the same
DNN backbone and each column represents a different per-
centage of poisonous data. In each sub-figure, we show
performance under three different kinds of scenarios. Leg-
end blue indicates the situation when no backdoor injection
occurred during the training, and inference is performed
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Figure 5. Efficiency and Accuracy degradation plot before and
after EfficFrog launched

with benign data. Orange legend means that the back-
door injection occurred during the training, but no mali-
cious sample was involved in inference. This indicates
the situation when the affected model is working without
launching the EfficFrog attack. Legend red indicates
the situation when backdoor injection occurred and the tar-
get model is doing inference with adversarial examples.
It showed the performance degradation of affected model
when EfficFrog is launched. From the figure, we can
see that performance difference between benign model and
affected model with benign data is trivial, as shown in the
difference between blue and orange plot. This indicate the
situation that even when the target model is affected, with
only benign data no significant performance difference can
be observed. It indicate the stealthiness of EfficFrog.
Quantitative Results. The quantitative analysis of the
similarity between the clean and backdoored models is
listed in Table 3. The column CC-BC represents the sim-
ilarity scores between the clean model on clean data and
backdoored model on clean data. CC-BC score measures
the stealthiness of EfficFrog. In contrast, the column
CC-BB represents the similarity scores between the clean
model on clean data and backdoored model on adversarial
data, measuring the change in performance before and af-
ter EfficFrog is launched. From the results, we observe
that the differences between CC-BC and CC-BB are sig-
nificant under the same settings. And the similarity scores
of CC-BC shows that the performance curves of the clean
model on clean data and backdoored model on clean data
are quite similar, confirming that the backdoored model will
behave similar with the clean model if the inference data is
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Table 3. The similarity score between the performance curve, the rate column is computed using the smaller score divided the larger score.

Backbone Percentage
SSPD Hausdorff SSPD Hausdorff

CC-BC CC-BB Rate CC-BC CC-BB Rate CC-BC CC-BB Rate CC-BC CC-BB Rate

VGG19
5% 0.18 1.58 0.11 20.83 2.73 0.13 0.19 1.52 0.13 29.28 3.24 0.11

10% 0.20 1.70 0.12 26.64 2.89 0.11 0.17 1.32 0.13 33.12 3.26 0.10
15% 0.20 1.68 0.12 28.33 2.88 0.10 0.16 1.27 0.13 34.42 3.21 0.09

MobileNet
5% 0.20 1.35 0.15 21.30 2.59 0.12 0.22 1.48 0.15 28.15 2.93 0.10

10% 0.23 1.57 0.14 28.71 2.90 0.10 0.22 1.52 0.15 33.85 3.14 0.09
15% 0.22 1.57 0.14 31.26 2.99 0.10 0.23 1.59 0.15 35.61 3.23 0.09

ResNet56
5% 0.07 0.54 0.12 12.01 1.40 0.12 0.15 1.13 0.13 19.10 2.25 0.12

10% 0.08 0.61 0.12 14.44 1.51 0.10 0.17 1.20 0.14 24.73 2.58 0.10
15% 0.08 0.59 0.13 15.40 1.57 0.10 0.18 1.18 0.15 27.05 2.78 0.10
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Figure 6. The probability density function of the maximum confi-
dence scores before and after attack

not stamped with trojan trigger.

4.3. Understanding Why EfficFrog Works
As described in Sec. 3, our intuition is that a back-

doored DyNN should produce uniformly-distributed confi-
dence scores to continue computing. To verify this, we ex-
amine the probability density function (PDF) of maximum
confidence scores of the DyNNs before and after the attack
in Fig. 6. Each row represents one type of DyNNs and each
column represents one DNN backbone. The blue curve rep-
resents the distribution of the confidence score of the clean
model on the triggered dataset, and the red curve represents
the distribution of the confidence score of the backdoored
model on the triggered dataset. If our intuition is correct, we
should expect the backdoored model to produce a uniform
distribution of confidence scores after the attack. Our re-
sults show that after the attack, the distribution of the max-
imum confidence scores changed significantly. The maxi-
mum confidence scores are primarily located in the range of
0.9 to 1.0 for the clean model, while 0.2 to 0.4 for the back-
doored model. This confirms our intuition and suggests the
effectiveness of our intuition in Sec. 3.

4.4. Ablation Study
In this experiment, we conduct an ablation study

to understand the effectiveness of each component in

EfficFrog. We remove the trigger optimization mod-
ule Sec. 3.3 and conduct the same backdoor implantation
operations. The results are shown in Table 4 and Appendix
A.7, where the column No tri opt are the results from
the approach that we remove the trigger optimization. From
the results, we observe that the proposed trigger module can
improve the effectiveness of our attack.

Table 4. Results of Ablation Study

Dataset perc
VGG16 MobileNet ResNet56

No tri opt EfficFrog No tri opt \tool no tri opt EfficFrog

C10
5 3.12 3.42 2.18 2.92 3.78 4.04

10 3.36 3.92 2.45 3.51 3.99 4.39
15 3.50 4.10 2.89 3.74 4.12 4.48

TI
5 3.22 3.94 2.98 3.25 3.92 4.01

10 3.34 4.12 3.14 3.56 4.17 4.21
15 3.56 4.32 3.56 3.88 4.44 4.56

4.5. Other Experiments: Attacks and Defenses
Appendix A.8 shows EfficFrog can not only attack

the early-exit DyNN models but can affect the adaptive-
resolution DyNN models [19, 43]. Appendix A.9 presents
a real-world example of backdoored model deployment on
an Android device for object classification. Appendix A.10
evaluates the inability of two existing defense approaches
for correctness-based backdoor detection to mitigate the
vulnerability introduced by EfficFrog. Appendix A.11
demonstrates that EfficFrog can still affect DyNN mod-
els’ efficiency even with few poisoned inputs.

5. Conclusion
This work reveals a new vulnerability of early-exit

DyNNs to backdoor attacks affecting efficiency and pro-
poses EfficFrog, a method to inject universal backdoors
into DyNNs to compromise efficiency. Results indicate that
generating unnoticeable adversarial triggers to manipulate
DyNNs’ efficiency is achievable.

Acknowledgments
This work was supported by NSF CNS 2135625, NSF

CCF 2146443, CPS 2038727, CNS Career 1750263, and
DARPA Shell grant.

24592



References
[1] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors

in deep learning models. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 1505–1521, 2021.

[2] Philippe Besse, Brendan Guillouet, Jean-Michel Loubes, and
Royer François. Review and perspective for distance based
trajectory clustering. arXiv preprint arXiv:1508.04904,
2015.

[3] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pages 39–57. Ieee, 2017.

[4] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushan-
far. Deepinspect: A black-box trojan detection and mitiga-
tion framework for deep neural networks. In IJCAI, page 8,
2019.

[5] Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li,
Cong Liu, and Wei Yang. Denas: automated rule generation
by knowledge extraction from neural networks. In Proceed-
ings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 813–825, 2020.

[6] Simin Chen, Hamed Khanpour, Cong Liu, and Wei Yang.
Learning to reverse dnns from ai programs automatically.
arXiv preprint arXiv:2205.10364, 2022.

[7] Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and Wei
Yang. Nmtsloth: understanding and testing efficiency degra-
dation of neural machine translation systems. In Proceed-
ings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, pages 1148–1160, 2022.

[8] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei
Yang. Nicgslowdown: Evaluating the efficiency robustness
of neural image caption generation models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15365–15374, 2022.

[9] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526,
2017.

[10] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira:
Learnable, imperceptible and robust backdoor attacks. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 11966–11976, 2021.

[11] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang
Zhang, Anmin Fu, Surya Nepal, and Hyoungshick Kim.
Backdoor attacks and countermeasures on deep learning: A
comprehensive review. arXiv preprint arXiv:2007.10760,
2020.

[12] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks. In Pro-
ceedings of the 35th Annual Computer Security Applications
Conference, pages 113–125, 2019.

[13] Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhos-
sein Habibian. Frameexit: Conditional early exiting for effi-
cient video recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 15608–15618, 2021.

[14] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. Deep learning, volume 1. MIT Press, 2016.

[15] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[16] Mirazul Haque, Anki Chauhan, Cong Liu, and Wei Yang.
Ilfo: Adversarial attack on adaptive neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14264–14273, 2020.
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